
1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Develop and Deliver Enterprise-Critical Desktop and Web
Applications with VB.NET
• Step-by-Step Instructions for Installing and Configuring Visual Basic .NET

and Visual Studio .NET

• Hundreds of Developing & Deploying and Debugging Sidebars, Security
Alerts, and VB.NET FAQs

• Complete Coverage of the New Integrated Development Environment (IDE)

V B . N E T
D e ve l o p e r ’s G u i d e

Cameron Wakefield

Henk-Evert Sonder

Wei Meng Lee Series Editor

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor prod-
uct upgrades. You can access online updates for any affected chap-
ters.

■ “Ask the Author”™ customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

153_VBnet_FM 8/16/01 4:04 PM Page i

http://www.syngress.com/solutions

153_VBnet_FM 8/16/01 4:04 PM Page ii

1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

V B . N E T
D e ve l o p e r ’s G u i d e

Cameron Wakefield
Henk-Evert Sonder
Wei Meng Lee Series Editor

153_VBnet_FM 8/16/01 4:04 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is sold
AS IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable case, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, and “Career Advancement Through Skill Enhancement®,”are registered
trademarks of Syngress Media, Inc. “Ask the Author™,”“Ask the Author UPDATE™,”“Mission Critical™,”
“Hack Proofing™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of their
respective companies.
KEY SERIAL NUMBER
001 DL84T9FVT5
002 ASD524MLE4
003 VMERL3FG4R
004 SGD34WR75N
005 8LUVCX5N7H
006 NZSJ9NTEM4
007 BWUH5MR46T
008 2AS3R565MR
009 8PL8Z4BKAS
010 GT6Y7YGVFC

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
VB.NET Developer’s Guide

Copyright © 2001 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or dis-
tributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher, with the exception that the program listings may be entered, stored, and execut-
ed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-48-2
Technical Editor: Cameron Wakefield Freelance Editorial Manager: Maribeth Corona-Evans
Series Editor:Wei Meng Lee Cover Designer: Michael Kavish
Co-Publisher: Richard Kristof Page Layout and Art by: Shannon Tozier
Acquisitions Editor: Catherine B. Nolan Indexer: Robert Saigh
Developmental Editor: Jonathan Babcock CD Production: Michael Donovan

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

153_VBnet_FM 8/16/01 4:04 PM Page iv

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Richard Kristof and Duncan Anderson of Global Knowledge, for their generous
access to the IT industry’s best courses, instructors, and training facilities.

Ralph Troupe, Rhonda St. John, and the team at Callisma for their invaluable insight
into the challenges of designing, deploying, and supporting world-class enterprise
networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner,
Kevin Votel, Kent Anderson, and Frida Yara of Publishers Group West for sharing
their incredible marketing experience and expertise.

Mary Ging, Caroline Hird, Simon Beale, Caroline Wheeler,Victoria Fuller, Jonathan
Bunkell, and Klaus Beran of Harcourt International for making certain that our
vision remains worldwide in scope.

Anneke Baeten and Annabel Dent of Harcourt Australia for all their help.

David Buckland,Wendi Wong, Daniel Loh, Marie Chieng, Lucy Chong, Leslie Lim,
Audrey Gan, and Joseph Chan of Transquest Publishers for the enthusiasm with
which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

Ethan Atkin at Cranbury International for his help in expanding the
Syngress program.

153_VBnet_FM 8/16/01 4:04 PM Page v

153_VBnet_FM 8/16/01 4:04 PM Page vi

vii

Contributors

Todd Carrico (MCDBA, MCSE) is a Senior Database Engineer for
Match.com. Match.com is a singles portal for the digital age. In addition
to its primary Web site, Match.com also provides back-end services to
AOL, MSN, and many other Web sites in its affiliate program.Todd spe-
cializes in design and development of high-performance, high-availability
data architectures primarily on Microsoft technology. His background
includes designing, developing, consulting, and project management for
companies such as Fujitsu,Accenture, International Paper, and
GroceryWorks.com.Todd resides in Sachse,TX.

Mark Horninger (A+, MCSE+I, MCSD, MCDBA) is President and
founder of Haverford Consultants Inc. (www.haverford-consultants.com),
located in the suburbs of Philadelphia, PA. He develops custom applica-
tions and system engineering solutions, specializing primarily in Microsoft
operating systems and Microsoft BackOffice products. He has over 10
years of computer consulting experience and has passed 29 Microsoft
Certified exams. During his career, Mark has worked on many extensive
projects including database development, application development, train-
ing, embedded systems development, and Windows NT and 2000 project
rollout planning and implementations. Mark lives with his wife Debbie
and two children in Havertown, PA.

Tony Starkey is the Lead Software Developer for Lufkin Automation in
Houston,TX and is currently in charge of revamping, restructuring, and
redesigning, their award-winning, well analysis programs. He also provides
consulting services to other companies in the city.Tony specializes in
Visual Basic,VBScript,ASP, and GUI design. He has been the head
developer on several projects that have seen successful completion
through all cycles of software design.Tony holds a bachelor’s degree in
Computer Science from the University of Houston with a minor in
Mathematics. He is a highly respected expert in numerous online
developer communities, where he has offered in excess of 3,000

153_VBnet_FM 8/16/01 4:04 PM Page vii

viii

validated solutions to individuals, ranging from the novice to the
experienced Microsoft Certified Professional.

Henk-Evert Sonder (CCNA) has over 15 years of experience as an
Information and Communication Technologies (ICT) professional,
building and maintaining ICT infrastructures. In recent years, he has spe-
cialized in integrating ICT infrastructures with secure business applica-
tions. Henk’s company, IT Selective, works with small businesses to help
them develop high-quality, low cost solutions. Henk has contributed to
several Syngress books, including the E-Mail Virus Protection Handbook
(ISBN: 1-928994-23-7), Designing SQL Server 2000 Databases for .NET
Enterprise Servers (ISBN: 1-928994-19-9), and the upcoming book BizTalk
Server 2000 Developers Guide for .NET (ISBN: 1-928994-40-7). Henk lives
in Hingham, MA with his wife Jude and daughter Lilly.

Jonothon Ortiz is Vice President of Xnext, Inc. in Winter Haven, FL.
Xnext, Inc. is a small, privately owned company that develops Web sites
and applications for prestigious companies such as the New York Times.
Jonothon is the head of the programming department and works together
with the CEO on all company projects to ensure the best possible solu-
tion. Jonothon lives with his wife Carla in Lakeland, FL.

Prasanna Pattam is an Internet Architect for Qwest Communications.
He is responsible for the overall architecture, design, development, and
deployment of the multi-tiered Internet systems using Microsoft
Distributed interNet Application Architecture. His expertise lies in devel-
oping scalable, high-performance enterprise Web solutions for Fortune
500 companies.At Qwest, Prasanna has helped to formalize methodolo-
gies, development standards, and best coding practices, as well as to men-
tor other developers. He has written technical articles for different Web
sites and also teaches advanced e-commerce courses. Prasanna holds a
master’s degree in Computer Science. He resides in Fairview, NJ.

Mike Martone (MCSD, MCSE, MCP+Internet, LCNAD) is a Senior
Software Engineer and Consultant for Berish & Associates

153_VBnet_FM 8/16/01 4:04 PM Page viii

ix

(www.berish.com), a Cleveland-based Microsoft Certified Solutions
Provider, Partner Level. In 1995, Mike became one of the first thousand
MCSDs and is certified in VB 3, 4, and 5. Since graduating from Bowling
Green State University with degrees in Computer Science and
Psychology, he has specialized in developing Visual Basic, Internet, and
Office applications for corporations and government institutions. Mike
has contributed to several study guides on Visual Basic and SQL 7 in the
best-selling certification series from Syngress. He lives in Lakewood, OH.

Robeley Carolina (MCP) is a Senior Engineer with Computer Science
Innovations, where his specialties include user interface design and devel-
opment. He has also served on the faculties of the Florida Institute of
Technology and Herzing College, teaching numerous mathematics and
computer science courses. Robley holds a bachelor’s degree in
Mathematics and a master’s degree in Management from the Florida
Institute of Technology. Robley currently resides in Palm Bay, FL and
would like to thank Pamela for her support.

Rick DeLorme (MCP) is a Software Consultant in Ottawa, Ontario,
Canada. He currently works for a small company developing logistics
applications with Visual Basic 6. He has worked on other large-scale
projects such as the Canadian Census of Population where we worked
with VB6, MTS, DCOM, and SQL Server. He is currently working
towards his MCSD. Rick would like to thank his fiancé Jenn for her
encouragement and support.

Narasimhan Padmanabhan (MCSD) is a software consultant with a
major software company. His current responsibilities include developing
robust testing tools for software. He holds a bachelors degree in
Commerce and is an application developer for ERP applications back
home in India. He lives with his wife Aarthi and daughter Amrita in
Bellvue,WA.

153_VBnet_FM 8/16/01 4:04 PM Page ix

153_VBnet_FM 8/16/01 4:04 PM Page x

xi

Technical Editor and Contributor

Cameron Wakefield (MCSD, Network+) is a Senior Engineer at
Computer Science Innovations, Inc. headquartered in Melbourne, FL
(www.csi.cc). CSI provides automated decision support and custom data
mining solutions. Cameron develops custom software solutions ranging
from satellite communications to data mining applications. He is currently
working on a neural network-based network intrusion detection system.
His development work spans a broad spectrum including C/C++,Visual
Basic, COM,ADO, SQL,ASP, Delphi, CORBA, and UNIX. Cameron
has developed a variety of Web applications including online trading sys-
tems and international gold futures site. Cameron has passed 10 Microsoft
certifications and teaches Microsoft and Network+ certification courses at
Herzing College (AATP). Cameron has contributed to a number of
Syngress books including Designing SQL Server 2000 Databases for .NET
Enterprise Servers (ISBN: 1-928994-19-9) and several MCSE and MCSD
study guides.

Cameron holds a bachelor’s of science degree in Computer Science
with a minor in Mathematics at Rollins College and is a member of
IEEE. He currently resides in his new home in Rockledge, FL with his
wife Lorraine and daughter Rachel.

Series Editor
Wei Meng Lee is Series Editor for Syngress Publishing’s .NET
Developer Series. He is currently lecturing at The Center for Computer
Studies, Ngee Ann Polytechnic, Singapore.Wei Meng is actively involved
in Web development work and conducts training for Web developers and
Visual Basic programmers. He has co-authored two books on WAP. He
holds a bachelor’s of science degree in Information Systems and
Computer Science from the National University of Singapore.

153_VBnet_FM 8/16/01 4:05 PM Page xi

xii

This CD-ROM contains the code files that are used in each chapter of this book.
The code files for each chapter are located in a directory. For example, the files for
Chapter 9 can be found in Chapter 09/Chapter9 Beta2/Samples/XML/MyData.xsd.
The organizational structure of these directories varies. For some chapters, the files
are named by a number. In other chapters, the files are organized by the projects that
are presented within the chapter.

Chapters 4 and 5 contain sample code.These are not standalone applications, just
examples. Chapter 4 contains code samples for performing File I/O, using the
System.Drawing namespace for graphics and printing. Chapter 5 contains code sam-
ples for working with classes, string manipulation, and exception handling.

Chapter 6 contains the source files for two complete applications: one for per-
forming a simple draw command and one for using C# classes. Chapter 9 contains
the source code for several applications demonstrating how to use ADO.NET includ-
ing: using a Typed Data Set and using data controls. It also contains sample XML and
XSD dataset files.

Chapter 10 contains the source code for exercises that demonstrate how to create
Web applications. Most of these exercises build on each other.You will build a Web
form, then put controls on it.You will see how to use a DataGrid control on a Web
form.Then you will see how to use custom controls. Starting with Exercise 10.8, you
will create and use a Web service and in Exercise 10.11 you will create a sample
application.

Chapter 11 contains a sample calculator application to demonstrate debugging
and testing tools built into Visual Basic .NET. Chapter 12 contains a sample Digital
certificate for Web applications and a sample configuration file with security policies.
And lastly, Chapter 14 contains code for the ICalculator interface.

Look for this CD icon to obtain files used
in the book demonstrations.

About the CD

153_VBnet_FM 8/16/01 4:05 PM Page xii

Contents

xiii

From the Series Editor xxxi

Chapter 1 New Features in Visual Basic .NET 1
Introduction 2
Examining the New IDE 3

Cosmetic Improvements 3
Development Accelerators 5

.NET Framework 6
A Very Brief and Simplified History 6
.NET Architecture 7
ASP.NET 7
Framework Classes 8
.NET Servers 8

Common Language Runtime 8
History 8
Convergence 9

Object-Oriented Language 10
Object-Oriented Concepts 10
Advantages of Object-Oriented Design 11
History of Object Orientation and VB 13
Namespaces 13

Web Applications 13
Web Applications Overview 13
Web Forms 14
Web Services 15

HyperText Transport Protocol 16
Simple Object Access Protocol 17

.NET Architecture

.NET Framework

ASP.NET

Updated ASP Engine

Web Forms Engine

Framework Classes

System.Math, System.Io, System.Data, Etc.

Common Language Runtime

Memory Management

Common Type System

Garbage Collection

.NET

.NET Servers

153_VBnet_TOC 8/16/01 1:12 PM Page xiii

xiv Contents

Security 17
Type Safety 18

Casting 18
Data Conversion 19
Bitwise Operations 20

New Compiler 20
Compiling an Executable 20
Architecture 21
File Management in Previous Versions of VB 21
File Management 22

Changes from Visual Basic 6.0 23
Variants 23
Variable Lower Bounds 23
Fixed Length Strings 23
NULL Propagation 23
Other Items Removed 24

Function Values 24
Short Circuits 25

Properties and Variables 25
Variable Lengths 25
Get and Set 26
Date Type 26
Default Properties 27

Summary 28
Solutions Fast Track 28
Frequently Asked Questions 31

Chapter 2 The Microsoft .NET Framework 33
Introduction 34
What Is the .NET Framework? 34
Introduction to the Common Language Runtime 35
Using .NET-Compliant Programming Languages 37
Creating Assemblies 39

Using the Manifest 42
Compiling Assemblies 45

Assembly Cache 45
Locating an Assembly 45

153_VBnet_TOC 8/16/01 1:12 PM Page xiv

Contents xv

Private Assembly Files 51
Shared Assembly Files 51

Understanding Metadata 51
The Benefits of Metadata 52
Identifying an Assembly with Metadata 53
Types 53

Defining Members 54
Using Contracts 54

Assembly Dependencies 55
Unmanaged Assembly Code 55

Reflection 56
Attributes 57

Ending DLL Hell 58
Side-by-Side Deployment 58
Versioning Support 59

Using System Services 60
Exception Handling 60

StackTrace 61
InnerException 61
Message 61
HelpLink 62

Garbage Collection 62
Console I/O 62

Microsoft Intermediate Language 63
The Just-In-Time Compiler 63

Using the Namespace System to Organize Classes 64
The Common Type System 65

Type Safety 68
Relying on Automatic Resource Management 68

The Managed Heap 69
Garbage Collection and the Managed Heap 71

Assigning Generations 77
Utilizing Weak References 77

Security Services 79
Framework Security 80

Granting Permissions 81

NOTE

Visualization is still
key! Die-hard VB
programmers may
find themselves
having a hard time
visualizing all the
new concepts in
VB.NET (and we all
know that proper
logic visualization
plays a big role in
what we do).
Something that may
help is to think
about VB.NET as a
completely flexible
language that can
accommodate Web,
console, and
desktop use.

153_VBnet_TOC 8/16/01 1:12 PM Page xv

xvi Contents

Gaining Representation through
a Principal 82

Security Policy 83
Summary 85
Solutions Fast Track 85
Frequently Asked Questions 88

Chapter 3 Installing and Configuring
VB.NET 91

Introduction 92
Editions 92
Installing Visual Studio .NET 93

Exercise 3.1: Installing Visual Studio .NET 94
Installing on Windows 2000 99

The New IDE 100
Integrated Development Environment
Automation Model 100

Add-Ins 104
Exercise 3.2 Creating an Add-In Using

the Add-In Wizard 105
Wizards 109
Macros 109
Home Page 110
Project Options 112
Toolbox 116
Child Windows 120

Window Types 122
Arranging Windows 123

Task List 123
Exercise 3.3 Setting Up a Custom Token 124
TaskList Views 124
Locating Code 126
Annotating Code 126

Solution Explorer 127
Properties Window 129
Form Layout Toolbar 130
Hide/Show Code Elements 132

Installing Visual
Studio .NET

■ Phase 1: Installing
Windows components

■ Phase 2: Installing
Visual Studio .NET

■ Phase 3: Checking for
service releases

153_VBnet_TOC 8/16/01 1:12 PM Page xvi

Contents xvii

Web Forms 133
Intellisense 134

Customizing the IDE 135
Customizing the Code Editor 135
Customizing Shortcut Keys 135
Customizing the Toolbars 136

Exercise 3.4 Adding a New Toolbar to
the Existing Set 136

Exercise 3.5 Adding Commands to
Toolbars 137

Customizing Built-In Commands 137
Exercise 3.6 Creating an Alias 138

Customizing the Start Page 139
Accessibility Options 141

Summary 142
Solutions Fast Track 142
Frequently Asked Questions 143

Chapter 4 Common Language Runtime 145
Introduction 146
Component Architecture 148
Managed Code versus Unmanaged Code 150

Interoperability with Managed Code 152
System Namespace 153

File I/O 155
Drawing 156
Printing 157

Common Type System 158
Type Casting 160

Garbage Collection 163
Object Allocation/Deallocation 164
Close/Dispose 165

Summary 166
Solutions Fast Track 167
Frequently Asked Questions 168

Developing &
Deploying…

Embrace Your
Parameters
VB.NET is insistent upon
enclosing parameters of
function calls within
parentheses regardless of
whether we are returning
a value or whether we are
using the Call statement.
It makes the code much
more readable and is a
new standard for VB
programmers that is
consistent with the
standard that nearly all
other languages adopted
long ago.

153_VBnet_TOC 8/16/01 1:12 PM Page xvii

xviii Contents

Chapter 5 .NET Programming
Fundamentals 171

Introduction 172
Variables 173
Constants 175
Structures 176
Program Flow Control 178

If…Then…Else 178
Select Case 182
While Loops 184
For Loops 186

Arrays 187
Declaring an Array 188
Multidimensional Arrays 189
Dynamic Arrays 191

Functions 192
Object Oriented Programming 196

Inheritance 196
Polymorphism 197
Encapsulation 197
Classes 198

Adding Properties 198
Adding Methods 200
System.Object 201
Constructors 201

Overloading 202
Overriding 203
Shared Members 205

String Handling 206
Error Handling 210
Summary 213
Solutions Fast Track 214
Frequently Asked Questions 217

NOTE

When porting Visual
Basic applications to
Visual Basic .NET, be
careful of the lower
bounds of arrays. If
you are using a for
loop to iterate
through the array,
and it is hard-coded
to initialize the
counter at 1, the first
element will be
skipped. Remember
that all arrays start
with the index of 0.

153_VBnet_TOC 8/16/01 1:12 PM Page xviii

Contents xix

Chapter 6 Advanced Programming
Concepts 219

Introduction 220
Using Modules 221
Utilizing Namespaces 222

Creating Namespaces 222
Understanding the Imports Keyword 226
Implementing Interfaces 229
Delegates and Events 232

Simple Delegates 235
Multicast Delegates 236
Event Programming 236

Handles Keyword 236
Language Interoperability 237
File Operations 239

Directory Listing 239
Data Files 241
Text Files 243
Appending to Files 246

Collections 246
The Drawing Namespace 248

Images 253
Printing 256

Understanding Free Threading 262
SyncLock 263

Summary 265
Solutions Fast Track 265
Frequently Asked Questions 267

Chapter 7 Creating Windows Forms 269
Introduction 270
Application Model 270

Properties 271
Manipulating Windows Forms 275

Properties of Windows Forms 275
Methods of Windows Forms 276
Creating Windows Forms 287

What Are Collections?

Collections are groups of
like objects. Collections
are similar to arrays, but
they don’t have to be
redimensioned. You can
use the Add method to
add objects to a
collection. Collections take
a little more code to
create than arrays do, and
sometimes accessing a
collection can be a bit
slower than an array, but
they offer significant
advantages because a
collection is a group of
objects whereby an array
is a data type.

153_VBnet_TOC 8/16/01 1:12 PM Page xix

xx Contents

Displaying Modal Forms 288
Displaying Modeless Forms 289
Displaying Top-Most Forms 289

Changing the Borders of a Form 289
Resizing Forms 291
Setting Location of Forms 292

Form Events 294
Creating Multiple Document Interface
Applications 297

Creating an MDI Parent Form 297
Creating MDI Child Forms 298

Exercise 7.1 Creating an MDI
Child Form 298

Determining the Active MDI
Child Form 299

Arranging MDI Child Forms 299
Adding Controls to Forms 300

Anchoring Controls on Forms 301
Docking Controls on Forms 303
Layering Objects on Forms 304
Positioning Controls on Forms 304

Dialog Boxes 305
Displaying Message Boxes 306
Common Dialog Boxes 306

The OpenFileDialog Control 306
The SaveFileDialog Control 309
The FontDialog Control 311
The ColorDialog Control 313
The PrintDialog Control 315
The PrintPreviewDialog Control 316
The PageSetupDialog Control 321

Creating Dialog Boxes 322
Creating and Working with Menus 323

Adding Menus to a Form 323
Exercise 7.2 Adding a Menu to a Form

at Design Time 323

Creating Dialog Boxes

1. Create a form.
2. Set the BorderStyle

property of the form to
FixedDialog.

3. Set the ControlBox,
MinimizeBox, and
MaximizeBox
properties of the form
to False.

4. Customize the
appearance of the
form appropriately.

5. Customize event
handlers in the Code
window appropriately.

153_VBnet_TOC 8/16/01 1:12 PM Page xx

Contents xxi

Dynamically Creating Menus 326
Exercise 7.3 Adding a Menu to a Form

at Design Time 326
Adding Status Bars to Forms 328
Adding Toolbars to Forms 330
Data Binding 332

Simple Data Binding 332
Complex Data Binding 333
Data Sources for Data Binding 333
Using the Data Form Wizard 334

Using the Windows Forms Class Viewer 338
Using the Windows Forms ActiveX Control

Importer 338
Summary 340
Solutions Fast Track 340
Frequently Asked Questions 344

Chapter 8 Windows Forms
Components and Controls 347

Introduction 348
Built-In Controls 348

Label Control 351
LinkLabel Control 354
TextBox Control 357
Button Control 361
CheckBox Control 364
RadioButton Control 365
RichTextBox Control 367
TreeView Control 369
ListBox Control 371

CheckedListBox Control 374
ListView Control 376

ComboBox Control 381
DomainUpDown Control 384
NumericUpDown Control 386

PictureBox Control 388
TrackBar Control 389

Adding Items to
a Combo Box at
Design-Time

1. Select the ComboBox
control on the form.

2. If necessary, use the
View menu to open
the Properties
window.

3. In the Properties
window, click the
Items property, then
click the ellipsis.

4. In String Collection
Editor, type the first
item, then press Enter.

5. Type the next items,
pressing Enter after
each item.

6. Click OK.

153_VBnet_TOC 8/16/01 1:13 PM Page xxi

xxii Contents

DateTimePicker Control 391
Panel Control 394
GroupBox Control 396
TabControl Control 397

Creating Custom Windows Components 399
Exercise 8.1: Creating a Custom
Windows Component 399

Creating Custom Windows Controls 403
Exercise 8.2: Creating a Custom
Windows Control 404

Summary 407
Solutions Fast Track 407
Frequently Asked Questions 408

Chapter 9 Using ADO.NET 409
Introduction 410
Overview of XML 411

XML Documents 411
XSL 411
XDR 412
XPath 412

Understanding ADO.NET Architecture 412
Differences between ADO and ADO.NET 414
XML Support 414

ADO.NET Configuration 415
Remoting in ADO.NET 415

Maintaining State 415
Using the XML Schema Definition Tool 416
Connected Layer 417

Data Providers 418
Connection Strings 418

Exercise 9.1 Creating a Connection
String 419

Command Objects 421
DataReader 425
DataSet 426

XML Documents

XML documents are the
heart of the XML
standard. An XML
document has at least one
element that is delimited
with one start tag and one
end tag. XML documents
are similar to HTML,
except that the tags are
made up by the author.

153_VBnet_TOC 8/16/01 1:13 PM Page xxii

Contents xxiii

Disconnected Layer 427
Using DataSet 428

Relational Schema 428
Collection of Tables 430
Data States 431
Populating with the DataSet Command 432
Populating with XML 433
Populating Programmatically 434

Using the SQL Server Data Provider 435
TDS 436

Exercise 9.2 Using TypedDataSet 437
Remoting 439
Data Controls 440

DataGrid 440
Exercise 9.3 Using TypedDataSet and

DataRelation 441
DataList 446
Repeater 450

Summary 454
Solutions Fast Track 454
Frequently Asked Questions 457

Chapter 10 Developing Web Applications 459
Introduction 460
Web Forms 461

A Simple Web Form 462
Exercise 10.1 Creating a Simple
Web Form 462

How Web Forms Differ from Windows
Forms 464

Why Web Forms Are Better Than
Classic ASP 465

Adding Controls to Web Forms 467
Exercise 10.2 Adding Web Controls to

a Web Form 468
Code Behind 473

NOTE

Web form controls
not only detect
browsers such as
Internet Explorer and
Netscape, but they
also detect devices
such as Palm Pilots
and cell phones and
generate appropriate
HTML accordingly.

153_VBnet_TOC 8/16/01 1:13 PM Page xxiii

xxiv Contents

How Web Form Controls Differ from
Windows Form Controls 476

ASP.NET Server Controls 476
Intrinsic Controls 476
Bound Controls 478
Exercise 10.3 Using the DataGrid

Control 478
Exercise 10.4 Customizing DataGrid

Control 482
Custom Controls 487
Validation Controls 488
Exercise 10.5 Using the Validation

Controls 489
Creating Custom Web Form Controls 492

Exercise 10.6 A Simple Custom Control 493
Exercise 10.7 Creating a Composite

Custom Control 497
Web Services 504

How Web Services Work 505
Developing Web Services 505

Exercise 10.8 Developing Web Services 507
Web Service Utilities 509

Service Description Language 509
Discovery 510
Proxy Class 510

Consuming Web Services from Web Forms 511
Exercise 10.9 Consuming Web Services

from Web Forms 511
Using Windows Forms in
Distributed Applications 513

Exercise 10.10 Consuming Web Services
from Windows Forms 514

Exercise 10.11 Developing a Sample
Application 516

Summary 519
Solutions Fast Track 519
Frequently Asked Questions 521

153_VBnet_TOC 8/16/01 1:13 PM Page xxiv

Contents xxv

Chapter 11 Optimizing, Debugging,
and Testing 523

Introduction 524
Debugging Concepts 524

Debug Menu 528
Watches 529
Breakpoints 531
Exceptions Window 532
Command Window 534
Conditional Compilation 536
Trace 538
Assertions 540

Code Optimization 541
Finalization 542
Transitions 542
Parameter Passing Methods 542
Strings 543
Garbage Collection 544
Compiler Options 544

Optimization Options 544
Output File Options 544
.NET Assembly Options 545
Preprocessor Options 546
Miscellaneous Options 546

Testing Phases and Strategies 546
Unit Testing 547
Integration Testing 547
Beta Testing 547
Regression Testing 548
Stress Testing 548

Monitoring Performance 548
Summary 550
Solutions Fast Track 551
Frequently Asked Questions 552

What Are Watches?

Watches provide us with a
mechanism where we can
interact with the actual
data that is stored in our
programs at runtime. They
allow us to see the values
of variables and the values
of properties on objects.
In addition to being able
to view these values, you
can also assign new
values.

153_VBnet_TOC 8/16/01 1:13 PM Page xxv

xxvi Contents

Chapter 12 Security 553
Introduction 554
Security Concepts 555

Permissions 555
Principal 556
Authentication 557
Authorization 557
Security Policy 558
Type Safety 558

Code Access Security 558
.NET Code Access Security Model 559

Stack Walking 559
Code Identity 561
Code Groups 562
Declarative and Imperative Security 564
Requesting Permissions 565
Demanding Permissions 570
Overriding Security Checks 572
Custom Permissions 576

Role-Based Security 578
Principals 578

WindowsPrincipal 579
GenericPrincipal 580
Manipulating Identity 581

Role-Based Security Checks 583
Security Policies 585

Creating a New Permission Set 588
Modifying the Code Group Structure 593
Remoting Security 600

Cryptography 600
Security Tools 603
Summary 606
Solutions Fast Track 607
Frequently Asked Questions 611

Within the .NET
Framework, Three
Namespaces Involve
Cryptography

1. System.Security
.Cryptography The
most important one;
resembles the
CryptoAPI
functionalities.

2. System.Security
.Cryptography .X509
certificates Relates
only to the X509 v3
certificate used with
Authenticode.

3. System.Security
.Cryptography.Xml For
exclusive use within
the .NET Framework
security system.

153_VBnet_TOC 8/16/01 1:13 PM Page xxvi

Contents xxvii

Chapter 13 Application Deployment 615
Introduction 616
Packaging Code 617
Configuring the .NET Framework 622

Creating Configuration Files 622
Machine/Administrator Configuration Files 623
Application Configuration Files 625
Security Configuration Files 626

Deploying the Application 629
Common Language Runtime 629
Windows Installer 630
CAB Files 631
Internet Explorer 5.5 632
Resource Files 633

Deploying Controls 637
Summary 639
Solutions Fast Track 640
Frequently Asked Questions 642

Chapter 14 Upgrading Visual Basic
Applications to .NET 647

Introduction 648
Considerations Before Upgrading 648

Early Binding of Variables 649
Avoiding Null Propagation 650
Using ADO 651
Using Date Data Type 652
Using Constants 652

Considering Architecture Before Migration 653
Intranet/Internet Applications 653

Internet Information Server (IIS)
Applications 654

DHTML Applications 655
ActiveX Documents 655

Client/Server and Multi-Tier Applications 655
Single-Tier Applications 656
Data Access Applications 656

WARNING

You should under no
circumstance edit the
Security.config and
Enterprise.config files
directly. It is very
easy to compromise
the integrity of these
files. Always use the
Code Access Security
Policy utility
(caspol.exe) or the
.NET Configuration
tool; these will guard
the integrity of the
files and will also
make a backup
copy of the last
saved version.

153_VBnet_TOC 8/16/01 1:13 PM Page xxvii

xxviii Contents

Data Types 657
Variants 657
Integers 658
Dates 658
Boolean 659
Arrays 659
Fixed-Length Strings 660
Windows API Data Types 661

Converting VB Forms to Windows Forms 662
Control Anchoring 664

Keyword Changes 665
Goto 666
GoSub 666
Option Base 666
AND/OR 666
Lset 666
VarPtr 667
StrPtr 667
Def 667

Programming Differences 668
Method Implementation 668

Optional Parameters 668
Static Modifier 669
Return Statement 669
Procedure Calls 670
External Procedure Declaration 671
Passing Parameters 672
ParamArray 672
Overloading 674

References to Unmanaged Libraries 677
Metadata 679
Runtime Callable Wrapper 681
COM Callable Wrapper 682

Properties 684
Working with Property Procedures 684
Control Property Name Changes 685
Default Property 687

Avoiding Null
Propagation

Null propagation means
that if Null is used in an
expression, the resulting
expression is always Null.
In previous versions of
Visual Basic, the Null value
disseminated throughout
the expression.

153_VBnet_TOC 8/16/01 1:13 PM Page xxviii

Contents xxix

Null Usage 690
Understanding Error Handling 690

Exercise 14.1: Using Error Handling 692
Data Access Changes in Visual Basic .NET 693

Dataset and Recordset 694
Application Interoperability 694
Cursor Location 695
Disconnected Access 695
Data Navigation 695
Lock Implementation 696

Upgrading Interfaces 696
Upgrading Interfaces from Visual Basic 6.0 699

Using the Upgrade Tool 703
Exercise 14.2 Using the Upgrade Wizard 703

Summary 708
Solutions Fast Track 709
Frequently Asked Questions 712

Index 713

153_VBnet_TOC 8/16/01 1:13 PM Page xxix

153_VBnet_TOC 8/16/01 1:13 PM Page xxx

2001 marks the 10th anniversary of Microsoft Visual Basic (VB). In May 1991,
Microsoft introduced Visual Basic 1.0. Microsoft’s plan was to use VB as a strategic
tool to encourage developers to write Windows applications.

With VB,Windows application development was no longer restricted to a privi-
leged few.Anybody with moderate programming capabilities was able to develop a
Windows application by dragging and dropping controls onto a form. In contrast to
the more prevalent C and C++ programmers who wrote obscure code,VB program-
mers concentrated on writing applications that were meant to be prototypes. It is
perhaps this ease of use and simplicity of language that gave VB the name of “toy”
language.This is not the case anymore.

VB has come a long way. Since version 1.0, it has evolved from a toy language to
a full-fledged Object-Oriented programming language.Today, with VB you are able
to do almost everything possible with other programming languages.VB is finally a
true-blue Object-Oriented language.

Visual Basic, Today and Tomorrow—VB.NET
With the announcement of the Microsoft .NET Framework in 2000, Microsoft has
firmly re-iterated its commitment to the Visual Basic language.With language fea-
tures such as inheritance, structured exception handling, and parameterized construc-
tors,Visual Basic programming has become more elegant, simplified, and
maintainable.

With Microsoft’s vision of a programmable Web and its announcement of the
.NET Framework and Visual Studio.NET,VB.NET is poised to become the most
widely used language for developing Windows and Web applications.

xxxi

From the Series Editor

153_VBnet_FromSE 8/16/01 1:44 PM Page xxxi

xxxii From the Series Editor

The Syngress .NET Developer Series
VB.NET Developer’s Guide, part of the Syngress .NET Developer Series, is written
for Visual Basic programmers looking to harness the power of VB.NET’s new features
and functionality. Developers will appreciate the in-depth explanations of key con-
cepts and extensive code examples.This practical, hands-on book will make you a
productive VB.NET developer straight away!

I hope you will enjoy reading the book as much as the authors have enjoyed
writing it.

—Wei Meng Lee
Series Editor, Syngress .NET Developer Series

www.syngress.com

153_VBnet_FromSE 8/16/01 1:44 PM Page xxxii

New Features in
Visual Basic .NET

Solutions in this chapter:

■ Examining the New IDE

■ .NET Framework

■ Common Language Runtime

■ Object-Oriented Language

■ Web Applications

■ Security

■ Type Safety

■ New Compiler

■ Changes from Visual Basic 6.0

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 1

1

153_VBnet_01 8/14/01 11:56 AM Page 1

2 Chapter 1 • New Features in Visual Basic .NET

Introduction
Before we dig into the details of Visual Basic .NET, let’s take a look at an
overview of all the changes and new features.This new release is a significant
change from the previous version. It will take some effort to get used to, but I am
sure you will feel that the new features will make it worthwhile.Visual Basic
.NET is more than just an upgrade from Visual Basic 6.0.As you would expect,
the Integrated Development Environment (IDE) has been enhanced with some
new features.All of the Visual Studio development tools will now share the same
environment. For example, you will no longer need to learn a different IDE
when switching between Visual Basic and Visual C++. Some nice features have
been added that many of us have been asking for to ease development.

Visual Studio .NET is now built on top of the .NET Framework.This will
be a significant change from Visual Basic 6.0.The .NET Framework takes appli-
cation development to viewing the Internet as your new operating system.Your
applications will no longer recognize hardware as a boundary limitation.This is
an evolution of the Windows DNA model.This new framework is built on open
Internet protocols for a standardized interoperability between platforms and pro-
gramming languages.The .NET Framework will also allow the creation of new
types of applications.Applications will now run using the Common Language
Runtime (CLR).All .NET applications will use this same runtime environment,
which allows your Visual Basic applications to run on equal ground with other
languages.The CLR allows Visual Basic to provide inheritance and free
threading, whose absence created two glaring limitations to Visual Basic
Applications.Visual Basic .NET is object-oriented. Everything is now an object,
and every object is inherited from a standard base class.Another benefit of the
CLR is a common type system, which means that all programming languages
share the same types.This greatly increases interoperability between languages.

The Internet has entered a new phase. First, it was used to display static Web
pages. Businesses soon found that this did not help them significantly. Next, the
Internet evolved to dynamic content and allowing electronic commerce.The
next step is to move towards complete applications running on the Internet.
Visual Basic .NET promotes these new Web applications.Web services allow
objects to be located anywhere on the Internet and to be called from any appli-
cation across the Internet (no more trying to get DCOM configured). Of course,
extending applications across the Internet will increase security risks.The .NET
Framework has many security features built-in to it to protect your applications.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 2

www.syngress.com

Type safety is now enforced.This prevents code from accessing memory loca-
tions that it does not have authorization to access.This allows you to define how
your objects are accessed. Before code is run, it is verified to be type-safe. If it is
not type-safe, it will only run if your security policies allow for it.

Visual Basic has many new changes.This chapter gives you a high-level look
at the overall architectural changes.This will help you dig into the details in the
following chapters with an eye on the big picture.

Examining the New IDE
Whether you are a developer or a manager, you probably care more about how
difficult the transition to this new environment will be than about every new fea-
ture. Microsoft shares your concerns.As you explore what VB.NET can offer, you
will continually observe an intelligent blending of earlier versions of VB with fea-
tures adapted from other languages. Nowhere is this clearer than in the IDE.
Microsoft has added significant new functionality to make developers work more
effectively, without requiring them to learn entirely new ways of doing their jobs.

If you have seen earlier versions of Visual Basic, the IDE for VB.NET will
look very familiar. But if you have also worked with InterDev in the past, even
more of the new interface will be old hat.That is because the new IDE used for
VB.NET has integrated the best ideas from both environments to provide a more
effective way of getting work done.

Of course, nothing comes without a cost. Some of the issues involved with
this upgrade of VB are discussed later in this chapter and in the chapters to come,
and these challenges must certainly be weighed when choosing a development
tool. But first, we take a look at some of the specific new features in the IDE and
the benefits they provide.

Cosmetic Improvements
Although numerous changes have been made to the IDE, the ones you will
probably notice first are the cosmetic changes to existing functionality. Previous
versions of Visual Basic have attempted to strike a balance between conserving
screen real estate and providing one-click access to as much functionality as pos-
sible.Table 1.1 describes some of the ways that these tradeoffs have been
addressed in VB.NET.

New Features in Visual Basic .NET • Chapter 1 3

153_VBnet_01 8/14/01 11:56 AM Page 3

4 Chapter 1 • New Features in Visual Basic .NET

www.syngress.com

Table 1.1 Cosmetic Improvements

Feature Description Benefit

Multimonitor
support

Tabbed forms

Toolbox

Expandable
code

Help

Developers can use more
than one monitor for display
at the same time.

A tabbed layout is used to
display the child MDI forms
within the development envi-
ronment. The code windows,
Help screens, form layout
windows, and home page all
can be dragged on top of
each other and displayed in
the same pane.
Instead of displaying the con-
trols in a grid, the controls
are presented vertically, with
a description next to each.

Using an interface similar to
Outline mode in Microsoft
Word, you can now break
your code into sections and
conceal or expand each with
a single click.
Instead of having to press F1,
the .NET IDE now observes
what you are doing and pre-
sents context-sensitive help in
its own window.

By executing their code in
one window and debugging
in another, developers can
more accurately simulate the
experiences of the end user.
Though you can’t see as
much information at once,
you have the benefit of
taking up less screen real
estate.

In previous versions of Visual
Basic, you had to hover over
the control to display the
name of the control. (This
was especially frustrating
when you developed your
own custom controls,
because frequently they
would all default to the same
icon.)
Developers now can keep a
higher-level view on their
code, allowing them to
migrate through their appli-
cation more efficiently.

Accurate guidance is now
continuously available to
your developers in real time.

153_VBnet_01 8/14/01 11:56 AM Page 4

New Features in Visual Basic .NET • Chapter 1 5

Development Accelerators
Of course, not all of the new IDE features are simply cosmetic.The developers of
VB.NET have also provided new interfaces to more efficiently use existing func-
tionality.The features discussed in Table 1.2 all have clear predecessors in VB 6.0,
but they now allow developers to more efficiently generate their applications.

www.syngress.com

Table 1.2 Development Accelerators

Feature Description Benefit

Menu Editor

Solution
Explorer

Server Explorer

Home Page

Using the in-place Menu
Editor, you now can edit
menus directly on the
associated form.

Unlike the Project Explorer
provided in previous versions,
the Solution Explorer pro-
vides a repository to view
and maintain heterogeneous
development resources.

Now you can see the servers
available in a client/server or
Internet app and directly
incorporate their resources
into your code.

The opening screen that
appears when you launch VB
is now created using DHTML.

Previously, you had to choose
the Menu Editor item from
the Tools menu This change
speeds up development and
reduces errors associated
with using the wrong form.
You can now manage com-
ponents that did not origi-
nate in VB. (The ability to
make VB work better with
other languages is one of the
driving forces behind the
.NET initiative.)
What was formerly done
manually now can be done
using drag-and-drop. For
example, if you have a stored
procedure on a server in SQL,
you can browse directly to
the stored procedure and
make the update on the page
directly.
You can now do more pro-
gramming visually, reducing
potential for error. For
example, if you have a stored
procedure in SQL Server, you
could browse directly to that
stored procedure and drag it
onto the needed pane. VB
does the rest of the coding
automatically.

153_VBnet_01 8/14/01 11:56 AM Page 5

6 Chapter 1 • New Features in Visual Basic .NET

.NET Framework
The best way to understand what .NET offers is to observe some of the limita-
tions of its predecessors. In this section, we take a very brief and simplified look
at the history of Microsoft component interaction and then a short look at the
architecture.

A Very Brief and Simplified History
When Windows 3.0 was introduced, the initial method used for communicating
across applications was Dynamic Data Exchange, or DDE. DDE was resource-
intensive, inflexible, and prone to cause system crashes. Nonetheless, it worked
acceptably on single machines, and for many years, many applications continued
to use this approach to send messages between applications.

Over the years, Microsoft discouraged the use of DDE, and encouraged the
use of the Common Object Model (COM) and Distributed COM (DCOM).
COM was used for communication among Microsoft applications on a single
machine, whereas DCOM was used to communicate with remote hosts.

Meanwhile, a consortium of allied vendors (including IBM, Sun, and Apple)
were proposing an alternative approach to interhost communication called
CORBA. Unlike COM, CORBA was much better at passing messages across
different operating systems. Unfortunately, the protocol was resource-intensive
and difficult to program, and its use never lived up to its promise.

During this time, Microsoft was improving its technology, and they intro-
duced COM+, Microsoft Transaction Server (MTS), and Distributed Network
Architecture (DNA).These technologies allowed more sophisticated interactions
among components, such as object pooling, events, and transactions.
Unfortunately, these technologies required that each of the applications know a
great deal about the other applications, and so they didn’t work very well when
the operating platforms were heterogeneous (for example,Windows apps com-
municating with Linux).

This brings us to the year 2001 and the .NET initiative, which combines the
power of COM with the flexibility of CORBA.Although this technology is pri-
marily associated with Microsoft, its flexibility and scalability means that theoreti-
cally it could be usable on other platforms in the future. (Although the .NET
Framework runs on all Windows operating systems from Windows 95 on up,
another version called the .NET Compact Framework is intended to run on
Windows CE.)

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 6

New Features in Visual Basic .NET • Chapter 1 7

.NET Architecture
The .NET Framework consists of three parts: the Common Language Runtime,
the Framework classes, and ASP.NET, which are covered in the following sec-
tions.The components of .NET tend to cause some confusion. Figure 1.1 pro-
vides an illustration of the .NET architecture.

ASP.NET
One major headache that Visual Basic developers have had in the past is trying to
reconcile the differences between compiled VB applications and applications built
in the lightweight interpreted subset of VB known as VBScript. Unfortunately,
when Active Server Pages were introduced, the language supported for server-
side scripting was VBScript, not VB. (Technically, other languages could be used
for server side scripting, but VBScript has been the most commonly used.)

Now, with ASP.NET, developers have a choice. Files with the ASP extension
are now supported for backwards compatibility, but ASPX files have been intro-
duced as well.ASPX files are compiled when first run, and they use the same

www.syngress.com

Figure 1.1 .NET Architecture

.NET Framework

ASP.NET

Updated ASP Engine

Web Forms Engine

Framework Classes

System.Math, System.Io, System.Data, Etc.

Common Language Runtime

Memory Management

Common Type System

Garbage Collection

.NET

.NET Servers

153_VBnet_01 8/14/01 11:56 AM Page 7

8 Chapter 1 • New Features in Visual Basic .NET

syntax that is used in stand-alone VB.NET applications. Previously, many devel-
opers have gone through the extra step of writing a simple ASP page that simply
executed a compiled method, but now it is possible to run compiled code
directly from an Active Server Page.

Framework Classes
Ironically, one of the reasons that VB.NET is now so much more powerful is
because it does so much less. Up through VB 6.0, the Visual Basic compiler had
to do much more work than a comparable compiler for a language like C++.
This is because much of the functionality that was built into VB was provided in
C++ through external classes.This made it much easier to update and add fea-
tures to the language and to increase compatibility among applications that shared
the same libraries.

Now, in VB.NET, the compiler adopts this model. Many features that were
formerly in Visual Basic directly are now implemented through Framework
classes. For example, if you want to take a square root, instead of using the VB
operator, you use a method in the System.Math class.This approach makes the
language much more lightweight and scalable.

.NET Servers
We mention this here only to distinguish .NET servers from .NET Framework.
These servers support Web communication but are not necessarily themselves
written in the .NET Framework.

Common Language Runtime
CLR provides the interface between your code and the operating system, pro-
viding such features as Memory Management, a Common Type System, and
Garbage Collection. It reflects Microsoft’s efforts to provide a unified and safe
framework for all Microsoft-generated code, regardless of the language used to
create it.This chapter shows you what CLR offers and how it works—Chapter 4
covers it in much greater detail.

History
For years, the design of Visual Basic has reflected a compromise between power
and simplicity. In exchange for isolating intermediate developers from the
complexities and dangers of API programming,VB developers accepted certain

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 8

New Features in Visual Basic .NET • Chapter 1 9

limitations.The compiled VB code could not interact directly with the Windows
API (usually written in C++), but instead they would interface through a runtime
module that would handle the dirty work of data allocation and dereferencing.

Because of this situation, a gulf developed between VB and C++ program-
mers. In fact, many C++ programmers looked down at VB as merely suitable for
Rapid Application Development and not as an appropriate tool for serious enter-
prise development.They also resented having to write wrappers to allow the VB
developers to access new Windows APIs.This has all changed in VB.NET. Now,
the code created by Visual Basic developers and C++ developers both interface
with Windows in the same way—through the CLR. (For that matter, so do other
new languages, such as C# or JavaScript.NET.)

Convergence
One of the advantages of VB.NET is that it is now possible to use VB to develop
applications that previously needed to be developed in lower-level languages,
without losing the traditional advantages of VB development.Whether you are a
developer or a manager, your job involves analyzing the tradeoffs of the various
tools available to better illustrate the convergence of these two platforms,Table 1.3
compares the ways in which VB and C handle four critical issues, both historically
and in the .NET environment.

Table 1.3 VB and C Comparison

VB 1.0–4.0 VB 5.0–6.0 VB.NET C++ C#

Runtime Yes Yes No No No
Required?
Interface COM COM CLR COM CLR
Model
Memory Few Few Very few Many Very few
Leaks?
Inheritance Yes No No Yes Yes
Supported?

Runtime Required? Starting with VB 5.0, Microsoft made the claim
that Visual Basic could actually compile to a true executable, but it is
probably more accurate to say that the runtime module was just smaller

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 9

10 Chapter 1 • New Features in Visual Basic .NET

and more transparent to the user. By contrast, C++ has never required a
runtime module.

Interface Model With the CLR, the code compiled is no longer the
exact code executed, but rather it is translated on the client machine.
(Some of the advantages of this approach are described in more detail in
the New Compiler section.) In previous versions of VB and C++, the
code was compiled to use COM, but in VB.NET and C#, the code is
compiled to CLR.

Memory Leaks? One of the traditional advantages of VB is that
memory was managed responsibly by the compiled executable, and this
advantage remains in VB.NET, although the work is now done in the
CLR. (By contrast, poorly written C++ code often created these errors
because memory was not deallocated after it was used.)

Inheritance Supported? This is probably the most important advance
in VB.NET, and it is covered in the next section. (Starting with Version
5.0,VB supported a rough simulation of inheritance that is also
described in the next section.)

Object-Oriented Language
Possibly the most valuable addition in VB.NET is true object orientation.
Although approximations of object orientation have been available in earlier ver-
sions of Visual Basic, only in VB.NET do developers gain the advantages of true
code inheritance, which allows business logic to be more easily and reliably prop-
agated through an organization. In this section, we briefly introduce some princi-
ples of object-oriented design and describe the benefits it can provide to VB
developers.

Object-Oriented Concepts
One could write an entire book on Object-oriented design (and indeed, many
people have) but we will provide an introduction here.The primary advantage of
object-oriented (OO) languages compared to their procedural predecessors is that
not only can you encapsulate data into structures; you can also encapsulate
behavior as well. In other words, a car not only describes a collection of bolts,
sheet metal, and tires (properties), but it also describes an object that can speed up
and slow down (methods).

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 10

New Features in Visual Basic .NET • Chapter 1 11

OO design frequently requires more up-front work than other environments,
and usually the design process starts by enumerating a list of declarative sentences
that describe what an object must do. For example, if you were building a car
using object-oriented principles, you might describe the requirements as follows:

■ The CAR must ACCELERATE.

■ The CAR is a type of VEHICLE.

■ The CAR has the color RED.

Now we know enough to begin defining the objects we need. In general, the
nouns in these sentences describe the objects that are required (in this case, the
car); the verbs describe the methods that the object must perform, and the adjec-
tives describe the properties contained within the object.Then, after each of these
are defined, the code can be developed to support these requirements.This
breakdown is summarized in Table 1.4.

Table 1.4 Object-Oriented Terms

High-Level Concept Part of Speech Example

Objects Nouns Car
Methods Verbs Accelerate
Properties Adjectives Color=Red

Advantages of Object-Oriented Design
The true advantages to object-oriented design come when you can propagate
behavior from one object to another. For example, if you were developing a
sedan and a coupe, you might design few differences between the two cars other
than the number of doors (four versus two).

This is where inheritance comes in. If you already had a sedan designed, you
could build a coupe just by inheriting all of the behavior of the sedan, except for
overriding the number of doors. Observe the following VB pseudocode:

Public Class Coupe

Inherits Sedan

Overrides Sub BuildDoors()

Doors = Doors + 2

End Sub

End Class

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 11

12 Chapter 1 • New Features in Visual Basic .NET

Now, if you add new features to the sedan (such as side air bags, for example),
they are automatically propagated to the coupe without adding any additional
code.

By contrast, overloading is when you want the methods of a single object to
have different behaviors depending upon what parameters you pass to it.Then,
VB is smart enough to determine which module to run depending upon the
parameter list.The differences between overriding and overloading are summa-
rized in Table 1.5.

Table 1.5 Overriding versus Overloading

Type Overriding Overloading

Method Name Same Same
Argument List Same Different
Behavior Replaces existing method Supplements existing method

By combining the new overloading and overriding capabilities of VB.NET,
you can create applications that are much more stable and scalable.

www.syngress.com

Taking Care with Inheritance
There is a famous story about the Australian army that illustrates the risks
involved with careless OO design. They were developing an object-ori-
ented combat training simulation. First, they created a soldier object that
could move and shoot. The programmers then wanted a kangaroo
object. Because so much of the behavior was the same, they decided to
save some time and inherit the soldier as the parent class and added the
ability to hop. Unfortunately, because they didn’t override the attack
method, the next time the virtual soldiers encountered the virtual kanga-
roos, the kangaroos shot back at them!

Developing & Deploying…

153_VBnet_01 8/14/01 11:56 AM Page 12

New Features in Visual Basic .NET • Chapter 1 13

History of Object Orientation and VB
Visual Basic has been best described as an object-based language, rather than an
object-oriented one, because it did not support true inheritance from one object to
another. Programmers have used different methods to simulate Inheritance since
VB 5.0, specifically by using the Implements interface.Although this feature didn’t
actually bring functionality of a parent class, at least it defined a set of methods
that would need to be coded. However, there was not an effective way to reuse
business logic.This was a clumsy workaround, at best, and is far inferior to the
overriding and overloading that are now available.

Namespaces
One final new topic that addresses OO design is that of namespaces, which are
used in the .NET architecture to keep application resources separated to reduce
global conflicts. One of the major design decisions of .NET was to try to reduce
the risk of harmful program interaction, while still allowing applications that
were intended to work together to share their resources effectively.To achieve
this, Microsoft introduced namespaces. Now, when you declare a resource, you
also must declare the namespace where that resource will reside.Although the
resources will traditionally reside in a local namespace local to the user, it is pos-
sible to override that. Of course, you may occasionally need to expose code in
common repositories.Although .NET supports this approach, you now need to
digitally sign and authorize your code to achieve this. Because of the extra hassles
involved, this approach will likely be less used in the future.

Web Applications
In general, a Web application is an application that uses resources that are dis-
tributed on the client’s machine and on one or many Web servers, which may in
turn require resources from other servers.This chapter first describes the different
ways this has been done in the past and then focuses upon the new resources
available to the VB.NET developer.

Web Applications Overview
In the past, four primary approaches were used to develop Microsoft Internet
applications:

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 13

14 Chapter 1 • New Features in Visual Basic .NET

■ ActiveX documents You could compile your applications to a VPD,
which allowed a nonmodal VB application with an interface that resem-
bled a traditional VB app to be displayed directly in the Internet
Explorer interface. Unfortunately, this is not directly supported in
VB.NET, so you will probably want to maintain legacy applications
using this architecture in VB 6.0.

■ DHTML applications You could create applications that deployed
content to a browser using extensions to HTML that allowed significant
data entry and validation to be performed on the client without
requiring a round-trip to the server.This approach would require appli-
cations that were much smaller and easier to deploy than those created
using ActiveX documents. Unfortunately, this approach is not directly
supported in VB.NET, so you will probably want to maintain legacy
applications using this architecture in VB 6.0.

■ ASP applications You could create applications that executed pri-
marily on the server, dynamically generating the HTML required to
render the interface for the application.Although this approach has been
very popular, it can lead to code that can be difficult to maintain.

■ WebClasses Finally, you could create applications visually that Visual
Basic would translate into Internet applications.Although the implemen-
tation of WebClasses in VB 6.0 was very limited,WebClasses have
evolved into Web forms, which are the preferred approach for devel-
oping and deploying Internet applications in VB.NET.

Web Forms
The idea behind ASP applications is that each page is generated dynamically for
the user. Because this work is performed on the server, this approach has the
huge advantage of being relatively browser- and version-independent—all that
the browser has to do is display a static page, and the server does the rest of the
work. However, when used by inexperienced engineers, this approach can be dif-
ficult to maintain, debug, deploy, and update.Although Web forms may not seem
impressive compared to normal VB forms, they compare very favorably to a tradi-
tional ASP application.

By contrast,VB.NET supports the use of Web forms, which look similar to
ASP pages but have four primary advantages:

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 14

New Features in Visual Basic .NET • Chapter 1 15

■ Unlike ASP pages, which are interpreted when they are executed,Web
forms are compiled when they are first used, so the performance can be
much better.

■ Unlike ASP pages, which didn’t natively support VB, the full language is
now available directly from this environment.

■ Building and maintaining the layout of the Web forms is much easier
using the built-in VB designers than it was to code them by hand in
ASP. (Although ASP has had visual layout tools since InterDev 6.0, these
were awkward and rarely used in professional environments.)

■ Separating the presentation layer and business layer of the application is
much easier, which makes it easier to leverage specialized development
resources instead of requiring that all of your developers be skilled in
page design.

Web Services
One of the greatest challenges in designing Web applications that communicate
with each other is trying to define and determine the required application inter-
faces. Unless you had a pre-existing strategic relationship with the applications
that you were leveraging, you might be unable to integrate your applications, or
you might be forced to integrate them in a very inefficient way. For example,
some applications can interact only by having one application pretend to be a user
with a Web browser, navigating among the screens of the target application and
screen-scraping the needed information off of the display.The disadvantages of
this approach are numerous:You waste server resources by displaying more data
than is needed to perform the transfer, and you run the risk of your application
breaking whenever the screen layout would change.

This is where Web Services come in. Now, writing server applications that are
capable of exposing functionality to non-Microsoft applications is much easier.
Features include the following:

■ Direct support of industry standard XML for passing information

■ Greater platform independence than can be provided through MTS

■ Use of HTML to get through firewalls (but note the following warning)

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 15

16 Chapter 1 • New Features in Visual Basic .NET

WARNING

Firewalls are explicitly created by network administrators to restrict
access on certain ports. You can bypass this by routing your data
through HTTP port 80. However, when using this approach, make sure
that you consider the security priorities not only of your own organiza-
tion, but also of the organization you are interfacing with.

Of course, to consume these Web services you need to use the new discovery
capability of Web services.This allows an external application to know what
methods are available, and what parameters are required to drive them.This is
performed by using the protocols HTTP and SOAP.These protocols are
described in the following sections.

HyperText Transport Protocol
The HyperText Transfer Protocol (HTTP) is the backbone of the Internet. It is most
frequently used to transmit Web pages from one computer to another, but it also
can be used to transmit other kinds of information.

When you type a URL into a browser, you specify the protocol you
use to download the content to your local browser (for example, in
http://www.microsoft.com, the protocol is http).This protocol is designed
to emphasize reliability over speed, because for Web applications it is more
important to wait a little longer to get everything right the first time.

A disadvantage of HTTP is that a separate connection must be created for
every resource that is downloaded. It also is not as fast as other protocols (such as
FTP) because of this increased overhead. However, more recently, newer versions
of Internet servers have done a better job of caching and connection pooling to
reduce these disadvantages.

In the .NET architecture, the HTTP protocol is used in conjunction with
the SOAP protocol to transmit information and instructions from one Web server
to another.The following section describes the SOAP protocol in more detail.

NOTE

Don’t confuse HTTP with HTML, which stands for HyperText Markup
Language. That is the protocol that defines how Web pages are laid out
visually, not how they are transferred from one computer to another.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 16

New Features in Visual Basic .NET • Chapter 1 17

Simple Object Access Protocol
The Simple Object Access Protocol (SOAP) is not nearly as widely used as HTTP,
but it is expected to have a large impact in the future. SOAP is a protocol that
works on top of HTTP to communicate between servers.Although HTTP
simply is used to pass strings of data, SOAP is a way of organizing those strings to
represent messages that can be easily parsed and understood either by a computer
or by a human analyst. Instead of passing messages in proprietary protocols, it
simply sends strings in XML in human-readable form. For example, observe the
following excerpt from a simple SOAP message:

<SOAP:Body>

<MyValue>12345</MyValue>

<SOAP:Body>

Although HTTP is used to make sure that all the letters and numbers get
from point A to point B, the SOAP protocol inserts the hierarchical tags that
ascribe meaning to the content.

Other protocols allow servers to communicate with each other. For example,
DCOM is used in the Microsoft world, and RMI provides roughly the equivalent
functionality for Java applications. However, these protocols work poorly when
they span different operating systems.

Of course, this approach has its downsides. SOAP messages will never be as
small as those sent using proprietary technologies. For example, in the earlier
message, the number 12345 would take either 5 or 10 bytes, (depending on
whether or not you were using the international Unicode standard), plus the
bytes required to send the XML tags themselves. By contrast, that information
could be transmitted in 2 bytes if it was stored as an integer.

Also, the use of SOAP doesn’t eliminate the need to have a clear under-
standing of the contents of the message received. It simply pushes the responsi-
bility for interpretation from the operating system to the programmer.

Security
As applications are extended to the Internet, new risks are extended to the orga-
nizations that deploy these applications.The security models for existing client/
server applications have been based upon several assumptions. Unfortunately, as
the boundaries between client/server, Internet, intranet, and distributed applica-
tions have become blurred, some of these assumptions have been challenged. It is
no longer safe to focus security efforts upon servers, because the lines between

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 17

18 Chapter 1 • New Features in Visual Basic .NET

servers and clients have been blurred. It is no longer safe to assume that the
effects of an application can be analyzed on a single computer, because more
applications now run on and require the resources of multiple machines.And if
you are deploying your application to the general public, it is no longer safe to
assume you can identify all of the users of your application. Because of this,
Microsoft has now introduced a new security tool in .NET to support the devel-
oper: SECUTIL.This tool makes it easier to extract information about the user
identity, after the user has been validated using the Public Key Value (internal
users) or the X.509 certificate (external users).

Because of this, users are accountable for their code. In the past, a developer
could write their own version of an OCX or DLL, copy it into a Windows
system directory and register it, and this would have an impact upon every other
application that was dependent upon that resource.

Although this was a handy way to quickly deploy patches, it also infuriated
developers whose code failed when used with the new DLL due to dependence
upon behavior that was altered in the new versions of the code. By contrast, by
using SECUTIL, it is possible to identify what code was developed by what
developer, which increases accountability.

Type Safety
Although much of VB.NET allows you to eliminate development steps, a few
cases exist where you need to take extra precautions in this new environment,
and type safety is one of those factors. Type safety is the enforcement of variable
compatibility when moving data from one variable to another. In this section, we
examine the new requirements in VB.NET and the approaches to address this
requirement.

Casting
If you have experience with languages such as C++ or Java, then you are prob-
ably experienced with casting. If you are an experienced VB developer, then you
probably have used casting, but the term may be new to you.

Casting is the process of explicitly converting a variable of one type to a vari-
able of another type, and it is used to reduce bugs caused by moving information
into variables using inappropriate data types. For example, observe the following
code:

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 18

New Features in Visual Basic .NET • Chapter 1 19

Dim A as integer

Dim B as long

A = 20000

B = CLng(A)

The variable B has been explicitly cast to a Long type, using the CLng func-
tion.A cast function exists for each type of variable. Some examples of this are
provided in Table 1.6. Casting is not new in VB.NET, but it is more important,
for reasons discussed in the next section.

Table 1.6 Cast Functions for Variable Types

Cast Function Action

CLng Convert to a “Long”
CStr Convert to a “String”
CInt Convert to a “Integer”
CDbl Convert to a “Double”

Data Conversion
When you convert from one variable type to another, it is called narrowing if
there is a risk of loss of precision, and widening if there is no risk of this loss.

In other languages like C++, the developer explicitly tells the compiler what
to do when you pour data from one variable into another with a risk of data loss.
The reason is to provide informed consent—to make sure that you are aware of
the risk and accept responsibility for the consequences if the data is too large for
the defined container.

Now, in the current version of VB.NET, Microsoft has introduced Option
Strict. If you use this option, you must perform an explicit cast for every nar-
rowing assignment. For example, with Option Strict off, the following line would
successfully compile:

Dim a as integer

Dim b as long

A = 20000

B = a ' Cint excluded

But with Option Strict on, this code would generate a compilation error.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 19

20 Chapter 1 • New Features in Visual Basic .NET

Bitwise Operations
VB.NET enforces more precise type usage in other ways as well, and some short-
cuts that were used by previous generations of VB programmers are no longer
permitted.

In VB.NET, when writing conditional code, the parameter used for the IF
statement must be of the type Boolean. In previous versions of VB, programmers
could take a shortcut, and implicitly cast the integer 0 to the Boolean False. For
example, the following line of code would work in VB 6.0:

Dim a as integer

A = 0

If (a) then MsgBox "Hello world"

This code would, however, fail in VB.NET.To correct the code, you have to
make the following change in the third line:

Dim a as integer

A = 0

If (CBool(a)) then MsgBox "Hello world"

Note that this situation is similar to the relationship between C++ and Java.
Java supports only Booleans with IF, whereas C++ allowed implicit casting of
other variable types.

New Compiler
Although you will normally use the compiler from within the IDE, you also have
new flexibility in compiling from the command line with VB.NET. In this sec-
tion, we take a look at how you can use the compiler, and then we take a look at
some of the advantages to the executables created by the new compiler.

Compiling an Executable
You can initiate compilation from the command line, invoking the executable
wsc.exe, with the parameters shown in Table 1.7.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 20

New Features in Visual Basic .NET • Chapter 1 21

Table 1.7 Parameters for WSC Compiler

Tag Meaning

/t The type of output code. For example an EXE means a
console application, while WINEXE means that it is a
Windows application.

/r References to include (all DLLs that are referenced in
the app).

/version The version number visible when the properties of the
executable are viewed (major version, minor version,
revision, and build).

The last parameter The VB file to compile.

Architecture
To understand the operation of the new VB compiler, you need to understand
the architecture for the applications that the VB compiler creates.

Previously, the executable created by a language such as C++ would make
direct references to registers, interrupts, and memory locations.Although working
inside the Microsoft foundation classes could reduce the risk of error, eliminating
risk due to inexperience (or malice) was not possible.

That has changed with VB.NET. Now, instead of compiling directly to hard-
ware-specific machine code, the compilation is performed to MSIL (Microsoft
Intermediate Language).The syntax of MSIL is similar to machine code, but any
EXE or DLL containing MSIL will need to be reinterpreted after it is deployed
to the destination machine.

File Management in Previous Versions of VB
In previous versions of VB, each resource that you included in your project would
have its own extension and reside in its own file, with an extension that identified
the type of resource, as shown in Table 1.8.

Table 1.8 Sample File Extensions in VB 6.0

Resource Type Extension

Form .frm
Class Module .cls
Module .bas

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 21

22 Chapter 1 • New Features in Visual Basic .NET

Although this made it easy to interpret the resource type immediately, it also
made it very difficult to manage projects with large numbers of small classes.
Another challenge was trying to keep filenames reconciled with class names.This
became especially difficult as projects grew and changed in focus.

File Management
In VB.NET, the filename extension restriction has been removed. Now,
regardless of which type of resource you create, it will have the same extension
(see Table 1.9).

Table 1.9 Some of the File Extensions in VB.NET

Resource Type Extension

Form .vb
Class Module .vb
Module .vb

You can also concatenate as many resources as you want into a single file,
regardless of type.The default behavior (when using the Project | Add Class
menu option) is still to create new files, but you can copy this content into a
single source file. For example, two distinct classes could be represented in the file
MyClasses.vb with the following code:

Public Class Beeper

Public Sub Beep()

MsgBox("Beep")

End Sub

End Class

Public Class Booper

Public Sub Boop()

MsgBox("Boop")

End Sub

End Class

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 22

New Features in Visual Basic .NET • Chapter 1 23

Changes from Visual Basic 6.0
The following sections detail some options you have to prepare for VB.NET.
First, we look at features in VB 6.0 that are gone in VB.NET.Then we look at
new features in VB.NET. Finally, we observe features that are present in both ver-
sions but with some significant changes.This section doesn’t cover every change,
but it will provide enough context to illustrate the challenges and opportunities
involved with this transition.

Variants
The Variant data type is no longer supported in VB.NET, and it has been merged
into the Object type. More specifically, because all variables are now objects, a
variant is simply defined as an object.

Variable Lower Bounds
To make the language compatible with the other .NET languages, you no longer
can start an array at 1 using the Option Base command.All arrays are now
forced to begin with array element zero.

Fixed Length Strings
You now cannot create strings of fixed length. In previous versions of VB, you
could write the following code to define the string to be exactly 12 characters
long:

Dim sLastName as String * 12

This is no longer supported in VB.NET to ensure compatibility with the
other .NET languages.

NULL Propagation
In previous versions of Visual Basic, any expression that had a NULL in it would
yield a null. For example, 1 + NULL would yield a NULL in VB 6.0. However,
VB.NET does not support NULL propagation. If you are using it to do error
handling, you should rewrite your code and use the IsNull function.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 23

24 Chapter 1 • New Features in Visual Basic .NET

NOTE

Interestingly, this approach to null propagation is not standard for all
Microsoft applications. One major difference between SQL Server 6.5 and
7.0 is that null propagation has been introduced into 7.0 unless you
explicitly disable it. In other words, A + NULL + B would equal AB in SQL
Server 6.5, but NULL in version 7.0. This was done to comply with the
ANSI SQL standard.

Other Items Removed
In addition to those already mentioned, the following features shown in Table 1.10
are no longer supported in VB.NET.

Table 1.10 Language Substitution Strategies

Statement Old Operation Approach to Replace

GoSub Allowed execution of a section Replace with new
of code without leaving the modules.
existing function or procedure.

Computed GoTo / Acted like the Switch Use Select Case or
GoSub statement, but selecting one of Switch with custom

many sections of code to functions.
execute.

DefInt, DefLong, Defined a range of scalar Define each of the
DefStr, and so on variables of the type specified variables explicitly or

with a certain range. rewrite code to
support an array.

Lset Reassign variables of Copy over components
user-defined types. of new types

individually.

Function Values
You now can return a value from a function using the command Return,
instead of needing to assign the value to the name of the function. Not only does
this make it easier to terminate the function (instead of having to use two lines to
set the value and then Exit Function, these two statements can be rolled up into

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 24

New Features in Visual Basic .NET • Chapter 1 25

a single command), it also means that you can rename the function without
having to change all the references to the function name.

Short Circuits
In many other languages, as soon as an IF statement resolves to False, the other
parts of code do not execute. For example, observe the following piece of code:

If DebitsCorrect("Chase") and CreditsCorrect("Citibank") then

MsgBox "Transaction processed"

End if

In VB6, both the function DebitsCorrect and the function CreditsCorrect
would always execute. However, in one of the new features proposed for
VB.NET, if DebitsCorrect resolved to False, then CreditsCorrect would never
execute.This behavior is called short circuiting because the code knows that the
expression can never resolve to True if the first half resolves to False; it doesn’t
have to bother to execute the second half of the expression. Unfortunately, this
causes greater incompatibility with legacy code, which is why Microsoft has not
confirmed whether or not they will include this change in the final release of
VB.NET.

Properties and Variables
Of course, many of the day-to-day changes you will notice are evolutionary, not
revolutionary. In this section, we look at the impact of changes in how properties
and variables are stored and manipulated.

Variable Lengths
Unfortunately, in the history of computer science there has been disagreement
over the definition of a byte, which has led to significant confusion for the
modern developer. Many early computers used eight bits (binary digits) to
describe the smallest unit of storage, but when computers became more powerful
and stored data internally in larger structures, some developers still thought that a
byte was eight bits, whereas other developers thought that a byte should still rep-
resent how the processor stored data, even if it used 16 bits, or more. Because of
this situation, the size of the variables in C could change when code was recom-
piled on other hardware platforms, and other languages that came in the future
reflected these incompatibilities. Now, in .NET, the definitions of the variable
types have been standardized, as shown in Table 1.11.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 25

26 Chapter 1 • New Features in Visual Basic .NET

Table 1.11 Variable Lengths in Bits

Bit Length VB 6.0 VB.NET

8 bits Short Byte
16 bits Integer Short
32 bits Long Integer
64 bits N/A Long

These definitions bring the standards in line with those used in the rest of the
.NET suite of application development tools.Although some of these variable
names will be automatically substituted when a VB 6.0 application is imported
into VB.NET, you should still examine the finished code to make sure that the
new code reflects your application needs. (Also be aware that this will also affect
the changes made in the API calls—if it used to be a Long, it should now be an
Integer, and so on.)

Get and Set
Previously, your Get and Let/Set statements had to be coded separately, as two
separate blocks of code residing in a class. Of course, it was possible to have a Get
without a Let/Set for read-only properties (or vice versa, for write-only proper-
ties), but for most properties, this added unnecessarily clumsiness to the organiza-
tion of the class modules. Now, in VB.NET, these are now grouped together in a
single module that is broken down into two sections that support both assigning
and retrieving these values.

Date Type
In earlier versions of Visual Basic, variables of the Date type were stored internally
as Doubles (with the number of days to the left of the decimal point and the
fraction of a day stored to the right).Therefore, many developers chose to store
their dates as Doubles instead of as Dates, even after VB introduced the Date
type.

This approach had many advantages. (For example, when using heterogeneous
databases, it was often more reliable to store data as numbers, and the math was
often much easier as well if you reserved the use of Dates for presentation only.)
However, in VB.NET, Double and Date are no longer equivalent, so you should
use the Date type for date use in VB.NET, or you may get compilation errors.
Although Dates are now represented internally using the .NET DateTime

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 26

New Features in Visual Basic .NET • Chapter 1 27

format, which supports a greater precision and range of dates, you can still use
the ToOADate VB.NET function to convert this type back into a Double-
compatible format.

Default Properties
Some Visual Basic developers use a shortcut to omit the reference to the default
property of an object. For example, if you wanted to assign a value to a text box,
instead of writing this:

tbFirstName.text = "John"

You could instead write this:

tbFirstName = "John"

Each control had a default property that would be referenced if you omitted
the name of the property, and when you created your own objects you could
define the default property you wanted to use for it.

However, in VB.NET, because all data types are now represented as objects, a
reference to an object that omits any property can be interpreted as the object
itself instead of a default property of an object.Therefore, when developing
applications in VB.NET, remember to explicitly declare the default properties.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 27

28 Chapter 1 • New Features in Visual Basic .NET

Summary
VB.NET introduces many exciting new features to the VB developer, though
these enhancements do cause some minor compatibility issues with legacy code.
The new Integrated Development Environment (IDE) incorporates some of the
best ideas of VB 6.0 and InterDev to make it easier and more intuitive to quickly
create applications using a wider variety of development resources.The code
developed in the IDE can then be compiled to work with the new .NET
Framework, which is Microsoft’s new technology designed to better leverage
internal and external Internet resources.The compiler writes the code to
Common Language Runtime (CLR), making it easier to interact with other
applications not written in VB.NET. It is now possible to use true inheritance
with VB, which means that a developer can more efficiently leverage code and
reduce application maintenance. Not only is the CLR used for stand-alone VB
applications, it is also used for Web Applications, which makes it easier to exploit
the full feature set of VB from a scripted Web application.Another way in which
security is enhanced is through enforcement of data type compatibility, which
reduces the number of crashes due to poorly designed code. Exploiting the new
features of VB.NET is not a trivial task, and many syntax changes were intro-
duced that will cause incompatibilities with legacy code. But, many of these are
identified, emphasized, and in some cases automatically updated by the IDE
when a VB 6.0 project is imported into VB.NET.

Solutions Fast Track

Examining the New IDE

The improvements in the new IDE can be broken down into two cate-
gories: those that conserve development time and those that conserve
screen real estate.

Among the cosmetic improvements in the new IDE are multimonitor
support, tabbed forms, a better layout for the toolbox, expandable code,
and live interactive help.

Among the development improvements in the new IDE are an inte-
grated menu editor, an enhanced solution explorer, a server explorer that
permits the developer to directly access resources on remote hosts, and a
dynamically configurable IDE home page.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 28

New Features in Visual Basic .NET • Chapter 1 29

.NET Framework

The .NET Framework is made up of three parts: the Common
Language Runtime, the Framework classes, and ASP.NET.

The Common Language Runtime provides the interface between your
code and the operating system.

The Framework classes offload much of the work done by the VB into
language-independent development libraries.

ASP.NET provides direct access to the full VB language from a scripting
platform.

Common Language Runtime

In .NET, the compiler no longer reduces the source code into a file that
can be directly executed.

Instead, the code is compiled into CLR, a Common Language Runtime
that has an identical syntax regardless of the .NET compiler used to
generate it.

By executing CLR instead of compiled code, the operating system can
reduce the number of system crashes caused by the execution of erro-
neous or malicious code, while also increasing opportunities for cross-
platform compatibility.

Object-Oriented Language

Previous versions of Visual Basic did not offer true object-oriented
inheritance of code from a parent class to a child class.

In VB.NET, propagating code from one module to another is now pos-
sible, while only overriding the behavior that needs changed in the child
class, thus improving maintainability.

Because of the CLR, not only can a VB developer inherit a class from
another VB module, he can also inherit from a module developed in
another language, such as C#.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 29

30 Chapter 1 • New Features in Visual Basic .NET

Web Applications

Web applications are the successor of Web forms in VB 6.0.

Using Web applications allows a developer to separate the presentation
layer of an application from the business layer and data layer.

Web applications can be more efficient than traditional ASP applications,
because the ASPX pages are compiled when they are first run.

Security

Microsoft has now introduced a new security tool in .NET to support
the developer: SECUTIL.This tool makes it easier to extract informa-
tion about the user identity, after the user has been validated using the
Public Key Value (internal users) or the X.509 certificate (external users).

By using SECUTIL, it is possible to identify what code was developed
by what developer, which increases accountability.

Type Safety

To reduce the security and application risks associated with careless vari-
able assignment,VB.NET is more restrictive than VB 6.0 when copying
data from one variable to another.

If you assign a variable residing in one variable to another, and the
second variable cannot store numbers as large as the first variable, it is
now necessary to explicitly cast the variable to the new type. (In VB 6.0,
in most cases the conversion happens automatically.)

New Compiler

The Compiler in VB.NET compiles the code not into code that can be
directly executed by the OS or by a runtime module, but rather to CLR
syntax.

The code generated by the new compiler is more reliable (many errors
are screened out at runtime), more secure (security holes have been
closed), and more interoperable (new CLRs could potentially be
generated for other platforms in the future).

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 30

New Features in Visual Basic .NET • Chapter 1 31

Changes from Visual Basic 6.0

Although there are substantial syntax changes between VB 6.0 and
VB.NET, in most cases clear substitutes are available to the developer to
accomplish the same thing.

Many of these substitutes are automatically substituted when a VB 6.0
project is imported into VB.NET. However, you should still inspect and
heavily test your application after any such conversion.

Q: If we’re deploying other .NET applications across our organization, do I need
to update my applications builtin VB 6.0?

A: No.Traditional COM based applications will continue to be supported for at
least the next several years, and CLR applications will interface cleanly with
legacy code. However, if you want to start gaining some of the advantages of
CLR, you may consider writing a wrapper application in VB.NET that is
used as the new interface to your application. Remember that (unlike some
other Microsoft products) you can have VB 6.0 and VB.NET on your com-
puter at the same time and use them to support different families of products.

Q: When should I use ASP.NET, and when should I use MTS?

A: If you need to support distributed transactions, you may want to stick with
MTS because ASP.NET will not support that feature in its initial release.
Conversely, if you need to use XML to pass data, it may be easier to do this
with ASP.NET than with MTS (though, of course, you could write your
own tools in MTS to accomplish the same thing). Over time,ASP.NET will
probably replace most of the need for MTS.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_01 8/14/01 11:56 AM Page 31

32 Chapter 1 • New Features in Visual Basic .NET

Q: I am creating a project that will have 40 classes. Should I put all of these
classes into their own file or into one big file?

A: This may depend upon how your work team is organized. If you have a small
project team, you may want to aggregate many of your resources together
into a single file. However, if you have a large, decentralized team, you may
want to keep the old style of separating the classes into many different files,
because this would work better with traditional version control software. Just
because Microsoft has added a feature doesn’t mean you have to use it.

Q: On my project team, we’ve set up inheritance, but we’re having some prob-
lems. My team is inheriting objects created by another team, but whenever
the other team changes the behavior of their objects, our code breaks.What
can we do?

A:You can organize your object model in many different ways, but one popular
approach is to use abstract classes.These classes are not directly instantiated,
but they are intended to serve only parents of other classes. Instead of inher-
iting directly from the objects created by the other team, you may want to
work with them to define a subset of functionality that won’t change, put
that in an abstract class, and then both inherit instead from that shared object.

www.syngress.com

153_VBnet_01 8/14/01 11:56 AM Page 32

The Microsoft .NET
Framework

Solutions in this chapter:

■ What Is the .NET Framework?

■ Introduction to the Common
Language Runtime

■ Using .NET-Compliant
Programming Languages

■ Creating Assemblies

■ Understanding Metadata

■ Using System Services

■ Microsoft Intermediate Language

■ Using the Namespace System to
Organize Classes

■ The Common Type System

■ Relying on Automatic Resource
Management

■ Security Services

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 2

33

153_VBnet_02 8/16/01 11:54 AM Page 33

34 Chapter 2 • The Microsoft .NET Framework

Introduction
Chapter 1 provided an overview of Visual Basic .NET applications; let’s now look
more closely at the various components of the .NET Framework.The .NET
Framework includes a number of base classes, which you will use to begin.The
Framework includes abstract base classes to inherit from as well as implementa-
tions of these classes to use.You can even derive your own classes for custom
modifications.All the classes are derived from the system object.As you can
imagine, this gives you great power and flexibility. Some of this power was previ-
ously available in Visual C++, but now you can have this same power within
Visual Basic.All applications will share a common runtime environment called
the Common Language Runtime (CLR).The .NET Framework now includes a
common type system.This system allows all the languages to share data using the
same types.These features facilitate cross-language interoperability.

To use .NET, you are required to learn some new concepts, which we discuss
throughout this chapter.A Visual Basic .NET application is wrapped up in an
assembly.An assembly includes all the information you need about your applica-
tion. It includes information that you would find currently in a type library as
well as information you need to use the application or component.This makes
your application or component completely self-describing.When you compile
your application, it is compiled to an intermediate language called the Microsoft
Intermediate Language (MSIL). When a program is executed, it is then converted
to machine code by CLR’s just-in-time (JIT) compiler.The MSIL allows an
application to run on any platform that supports the Common Language
Runtime without changing your development code.

Once the code has been prepared, .NET’s work is still not done. .NET con-
tinues to monitor the application and performs automatic resource management on
the application to clear up any unused memory resources and provide security
measures to prevent anyone from accessing your assembly.

In these few paragraphs, we’ve introduced the major new concepts found
within .NET: the CLR, the assembly unit (and its contents), what makes .NET
interoperable, and how .NET is “smart” in terms of automatic memory manage-
ment and security.

What Is the .NET Framework?
The .NET Framework is Microsoft’s latest offering in the world of cross-
development (developing both desktop and Web-usable applications),

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 34

www.syngress.com

interoperability, and, soon, cross-platform development.As you go through this
chapter, you’ll see just how .NET meets these developmental requirements.
However, Microsoft’s developers did not stop there; they wanted to completely
revamp the way we program.

In addition to the more technical changes, .NET strives to be as simple as
possible. .NET contains functionality that a developer can easily access.This same
functionality operates within the confines of standardized data types and naming
conventions.This internal functionality also encompasses the creation of special
data within an assembly file that is vital for interoperability, .NET’s built-in secu-
rity, and .NET’s automatic resource management.

Another part of the “keep it simple” philosophy is that .NET applications are
geared to be copy-only installations; in other words, the need for a special instal-
lation package for your application is no longer a requirement.The majority of
.NET applications work if you simply copy them into a directory.This feature
substantially eases the burden on the programmer.

The CLR changes the way that programs are written, because VB developers
won’t be limited to the Windows platform. Just as with ISO C/C++,VB pro-
grammers are now capable of seeing their programs run on any platform with
the .NET runtime installed. Furthermore, if you delegate a C programmer to
oversee future developments on your VB.NET program, the normal learning
curve for this programmer will be dramatically reduced by .NET’s multilanguage
capabilities.

NOTE

Visualization is still key! Die-hard VB programmers may find themselves
having a hard time visualizing all the new concepts in VB.NET (and we all
know that proper logic visualization plays a big role in what we do).
Something that may help is to think about VB.NET as a completely flex-
ible language that can accommodate Web, console, and desktop use.

Introduction to the Common
Language Runtime
CLR controls the .NET code execution. CLR is the step above COM, MTS,
and COM+ and will, in due time, replace them as the Visual Basic runtime layer.

The Microsoft .NET Framework • Chapter 2 35

153_VBnet_02 8/16/01 11:54 AM Page 35

36 Chapter 2 • The Microsoft .NET Framework

To developers, this means that our VB.NET code will execute on par with other
languages, while maintaining the same, small file size.

The CLR is the runtime environment for .NET. It manages code execution
as well as the services that .NET provides.The CLR “knows” what to do through
special data (referred to as metadata) that is contained within the applications.The
special data within the applications store a map of where to find classes, when to
load classes, and when to set up runtime context boundaries, generate native
code, enforce security, determine which classes use which methods, and load
classes when needed. Since the CLR is privy to this information, it can also
determine when an object is used and when it is released.This is known as
managed code.

Managed code allows us to create fully CLR-compliant code. Code that’s
compiled with COM and Win32API declarations is called unmanaged code, which
is what you got with previous versions of Visual Basic. Managed code keeps us
from depending on obstinate dynamic link library (DLL) files (discussed in the
Ending DLL Hell section later in this chapter). In fact, thanks to the CLR, we
don’t have to deal with the registry, graphical user identifications (GUIDs),
AddRef, HRESULTS, and all the macros and application programming interfaces
(APIs) we depended on in the past.They aren’t even available options in .NET.

Removing all the excess also provides a more consistent programming model.
Since the CLR encapsulates all the functions that we had with unmanaged code,
we won’t have to depend on any pre-existing DLL files residing on the hard
drive.This does not mean that we have seen the last of DLLs; it simply means
that the .NET Framework contains a system within it that can map out the
location of all the resources we are using.We are no longer dependent upon VB
runtime files being installed, or certain pre-existing components.

Because CLR-compliant code is also Common Language Specification (CLS)-
compliant code, it allows CLR-based code to execute properly. CLS is a subset of
the CLR types defined in the Common Type System (CTS), which is also dis-
cussed later in the chapter. CLS features are instrumental in the interoperability
process, because they contain the basic types required for CLR operability.These
combined features allow .NET to handle multiple programming languages.The
CLR manages the mapping; all that you need is a compiler that can generate the
code and the special data needed within the application for the CLR to operate.
This ensures that any dependencies your application might have are always met
and never broken.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 36

The Microsoft .NET Framework • Chapter 2 37

When you set your compiler to generate the .NET code, it runs through the
CTS and inserts the appropriate data within the application for the CLR to read.
Once the CLR finds the data, it proceeds to run through it and lay out every-
thing it needs within memory, declaring any objects when they are called (but
not before).Any application interaction, such as passing values from classes, is also
mapped within the special data and handled by the CLR.

Using .NET-Compliant
Programming Languages
.NET isn’t just a single, solitary programming language taking advantage of a
multiplatform system.A runtime that allows portability, but requires you to use a
single programming model would not truly be delivering on its perceived value.
If this were the case, your reliance on that language would become a liability
when the language does not meet the requirements for a particular task.All of a
sudden, portability takes a back seat to necessity—for something to be truly
“portable,” you require not only a portable runtime but also the ability to code in
what you need, when you need it. .NET solves that problem by allowing any
.NET compliant programming language to run. Can’t get that bug in your class
worked out in VB, but you know that you can work around it in C? Use C# to
create a class that can be easily used with your VB application.Third-party pro-
gramming language users don’t need to fret for long, either; several companies
plan to create .NET-compliant versions of their languages.

Currently, the only .NET-compliant languages are all of the Microsoft flavor;
for more information, check these out at http://msdn.microsoft.com/net:

■ C#

■ C++ with Managed Extensions

■ VB.NET

■ ASP.NET (although this one is more a subset of VB.NET)

■ Jscript.NET

In addition, the following are being planned for .NET compliance.To obtain
more information on these languages, visit the following URLs:

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 37

38 Chapter 2 • The Microsoft .NET Framework

■ Dyalog APL (www.dyadic.com, or directly at www.dyadic.com/
msnet.htm)

■ CAML (http://research.microsoft.com/Projects/SML.NET)

■ Cobol (www.adtools.com/info/whitepaper/net.html)

■ Eiffel (www.eiffel.com/announcements/2000/pdc)

■ Haskell (www.haskell.org/pipermail/haskell/2000-November/
000133.html)

■ Mercury (www.cs.mu.oz.au/research/mercury/information/dotnet/
mercury_and_dotnet.html)

■ ML (http://research.microsoft.com/Projects/SML.NET)

■ Mondrian (www.haskell.org/pipermail/haskell/2000-November/
000133.html)

■ Oberon (www.oberon.ethz.ch/lightning)

■ Oz (reported by Microsoft as under development)

■ Pascal (www2.fit.qut.edu.au/CompSci/PLAS//ComponentPascal)

■ Perl (http://aspn.activestate.com/ASPN/NET/index)

■ Python (http://users.bigpond.net.au/mhammond/managed_python/
ManagedPython.html)

■ Scheme (http://rover.cs.nwu.edu/~scheme)

■ SmallTalk (reported by Microsoft as under development)

NOTE

Don’t see your language on the lists in this section? Don’t worry; it
doesn’t mean it’s not going to happen! Several developers have men-
tioned waiting until .NET enters Beta 3 phase before writing a CLR com-
piler for their languages. If you don’t think the particular programming
language you’re interested in will do it, write to the developers and let
them know you want your language in .NET.

These developments will enhance your ability to work with multiple languages.
For example, a COBOL advancement that might not exist in VB.NET doesn’t

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 38

The Microsoft .NET Framework • Chapter 2 39

mean that a VB.NET programmer can’t take advantage of it.You can easily find a
workaround for the issue using the COBOL solution as an example or simply
convert the code to VB.NET.

Creating Assemblies
When you have multiple languages, how do they all work together to execute?
Most other programming languages do not use Portable Executable (PE) format
for their executables.With the .NET environment comes something new: a log-
ical approach to executables named assemblies.The CLR handles the entire exe-
cuting of an assembly.The assembly owns a collection of files that are referred to
as static assemblies, which the CLR uses. Static assemblies can be resources used by
the assembly, such as image files or text files that the application will use.The
actual code that executes is found within the assembly in Microsoft Intermediate
Language (MSIL) format. In other words, an assembly is roughly the equivalent
of a VB 6.0 COM component.An assembly has three options that need to be set
when you create it:

■ Loader optimization

■ Naming

■ Location

The loader optimization option has three settings; single domain, multidomain, and
multidomain host.The single-domain setting is the default and is used most in
client-side situations.The JIT code is generally smaller when the single-domain
setting is used, compared with the other two settings, and there is no noticeable
difference between memory resources.The exception is if the application winds
up being used as part of a multidomain or multidomain host setup, where it will
actually hurt more than it’ll help—such as within a client/server solution.

The multidomain and multidomain host settings apply to the same concept
of multidomain usage.The only difference between the two is how the CLR will
react with the code; in multidomain, the code is assumed to be the same across
the domain. In multidomain host, however, each domain hosts different code.
Let’s say that you have an application development in which all the domains have
the assembly filename, but each one has different code hosted to see how they
can still interact.You would get the best performance using the multidomain host
optimization routine.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 39

40 Chapter 2 • The Microsoft .NET Framework

You will receive many benefits by setting the assembly to be useable by mul-
tiple applications. Fewer resources will be consumed, since the type (object) will
be loaded and mapped already, therefore the type won’t need to be recreated each
time it’s needed. However, the end result of the JIT code is increased some, and
access to static items are slower, since the static references are referenced indirectly.

The name of the assembly can impact the scope and usage by multiple appli-
cations.A single-client use application uses the name given to it when created,
but there is no prevention for name collision. So, in order to help prevent name
collisions in an assembly in a multiassembly scenario, you can also give the
assembly a shared name. Having a shared name means that the assembly can be
deployed in the global assembly cache, which you can think of as a global repository
of assemblies.

A shared name is made up of the textual name of the assembly (the name you
created for it) and a digital signature. Shared names are unique names due to the
pairing of the text name and digital signature.This system, in turn, helps prevent
name collision and keeps anyone using the same textual name from writing over
your file, since the shared name is different.A shared name also provides the
required information that’s needed for versioning support by the CLR.This same
information is used to provide integrity checks to give a decent level of trust. (For
full trust, you should include a full digital signature with certificates.) Figure 2.1
illustrates how the shared-name process works.

www.syngress.com

Figure 2.1 The Shared-Name Process

Manifest

Digital Signature is written into
the Manifest.1

Manifest

Token digital signature
 in Assembly 1 is created.2

Assembly 1

Assembly 2

3

CLR

Assembly 1 stored in Global
Assembly cache.

Assembly 2 token referenced
by the CLR.

CLR evaluates between the two, and

if both are equal, the CLR verifies

that the data is 100 percent from
the same developer.

153_VBnet_02 8/16/01 11:54 AM Page 40

The Microsoft .NET Framework • Chapter 2 41

From the shared-name diagram, you can see that the shared name is first cre-
ated into the primary assembly (Assembly 1), then the reference of the primary
assembly is stored as a token of the version within the referencing assembly’s
(Assembly 2’s) metadata, and it is finally verified through the CLR.

Once created, an assembly has the following characteristics:

■ Contains code that the runtime executes PE MSIL code is not
executed without the manifest present. In other words, if the file is not
formatted correctly, it will not run.

■ Only one entry point An assembly cannot have more than one
starting point for execution by the runtime. For example, you cannot use
both WinMain and Main.

■ Unit of side-by-side execution An assembly provides the basic unit
needed for side-by-side execution.

■ Type boundary Each type declared within an assembly is recognized
as a type of the assembly, not as a solitary type initiated into memory.

■ Security boundary The assembly evaluates permission requests.

■ Basic deployment unit An application made up of assemblies requires
only the assemblies that make up its core functions.Any other assemblies
that are needed can be provided on demand, which keeps applications
from having the bloated setup files commonly associated with VB 6.0
runtime files.

■ Reference scope boundary The manifest within the assembly dictates
what can and can’t occur in order to resolve types and resources. It also
enumerates assembly dependency.

■ Version boundary Being the smallest versionable unit in the CLR, all
the types and resources that it has are also versioned as a unit.The mani-
fest describes any version dependencies.

Figure 2.2 displays a typical assembly.The assembly has been dissected to dis-
play the code, the manifest area, the metadata within the manifest, and the infor-
mation stored within the metadata.

As you can see, all the benefits that CLR gives us are located within the
assembly but reside within the manifest.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 41

42 Chapter 2 • The Microsoft .NET Framework

Using the Manifest
Apart from the MSIL, an assembly contains metadata within its manifest.We will
go into detail about metadata and its uses in upcoming sections, but for now just
remember that the metadata is all the relevant information that the CLR needs
to properly run the file, and the manifest stores the metadata.Thanks to the man-
ifest, assemblies are freed from depending on the registry and breaking DLLs (the
cause of DLL Hell). Basic metadata includes the items listed in Table 2.1.

Table 2.1 Basic Attribute Classes

Basic Attribute Class Description

AssemblyCompanyAttribute Contains a string with the company
name and product information.

AssemblyConfigurationAttribute Contains current build information,
as in “Alpha” stage.

AssemblyCopyrightAttribute Copyright information that is stored
as a string.

AssemblyDefaultAliasAttribute Name information and alias
information.

www.syngress.com

Figure 2.2 A Typical Assembly

Manifest generated by
the Compiler

Code

Code Reuse Interoperability
Assembly

Information

Version Objects/Types Members

METADATA

Continued

153_VBnet_02 8/16/01 11:54 AM Page 42

The Microsoft .NET Framework • Chapter 2 43

AssemblyDescriptionAttribute Provides a description of the
modules included within the
assembly.

AssemblyInformationalVersionAttribute Any extra version information; this is
not used by the CLR for versioning
purposes.

AssemblyProductAttribute Product information.
AssemblyTitleAttribute Title of the assembly.
AssemblyTrademarkAttribute Any trademarks of the assembly.

There are also custom attributes that you can set into the Manifest (see
Table 2.2).

Table 2.2 Custom Attributes

Custom Attributes Description

AssemblyCultureAttribute Contains information on the “cultural”
settings, such as base language or time
zone.

AssemblyDelaySignAttribute Tells the CLR that there is some extra
space that might be empty to reserve
space for a future digital signature.

AssemblyKeyFileAttribute Contains the name of the file that
contains the key pair for a shared name.

AssemblyKeyNameAttribute If you use the CSP option, the key will
be stored within a key container. This
attribute returns the name of the key
container.

AssemblyOperatingSystemAttribute Information on the operating system(s)
supported by the assembly.

AssemblyProcessAttribute Information on the CPU(s) supported by
the assembly.

AssemblyVersionAttribute Returns the version of the assembly in
the standard major.minor.build.revision
form.

www.syngress.com

Table 2.1 Basic Attribute Classes

Basic Attribute Class Description

153_VBnet_02 8/16/01 11:54 AM Page 43

44 Chapter 2 • The Microsoft .NET Framework

In regard to the third assembly option, location, a manifest’s location on the
assembly can also be altered, based on the type of assembly deployment.An
assembly can be deployed as either a single file or multiple files.A single file-
assembly is pretty much like a standard DLL file, because its manifest is placed
directly within the application. Once again, the assembly is not that different
from the standard executable or DLL; what changes is how it’s run. In a multifile
assembly, the manifest is either incorporated into the main file (such as the main
DLL file) or as a standalone (see Figure 2.3).

NOTE

Depending on what you are doing, you might want to use a standalone
manifest for any multifile assembly. A standalone manifest provides a
consistent access location for the manifest and ensures that it will be
there when needed. However, constantly referencing the assembly can
be a small memory overhead, so its advantage is apparent with larger,
multifile assemblies.

www.syngress.com

Figure 2.3 Manifest Location within an Assembly

DLL File

Manifest

DLL File

Manifest

image.jpg DLL File logo.bmp

sugoi.ico

DLL File

check.exe

DLL File

Manifest

Single File
Multiassembly
with Manifest

Multiassembly with Standalone Manifest

153_VBnet_02 8/16/01 11:54 AM Page 44

The Microsoft .NET Framework • Chapter 2 45

Compiling Assemblies
Creating assemblies isn’t as hard as it might seem. Compilers are available for all
the currently supported .NET languages within the software development kit
(SDK). For Visual Basic applications, the compiler is named VBC.EXE (Visual
Basic Compiler).Any code you need to run through VBC needs to be saved with
the .VB extension.The good thing about this is that you don’t need to stick to
Visual Studio to create your applications.You can use any text editor you want; as
long as you save code with the .VB extension,VBC will compile it for you.

Assembly Cache
The cache on which the CLR relies is called the machinewide code cache.This
cache is further divided into two subsections: the global assembly cache and the
download cache.The download cache simply handles all the online codebases that
the assembly requires.The global download cache stores and deals with the
assemblies that are required for use within the local machine—namely, those that
came from an installer or an SDK. Only assemblies that have a shared name can
be entered into the global assembly cache, since the CLR assumes that these files
will be used frequently and between programs.

Even though a file will be used often, however, it could still be sluggish. Since
the CLR knows that to enter the global assembly cache, the assembly must be
verified, it assumes that it is already verified and does not go through the verifi-
cation process, thus increasing the time it takes to reference the assembly within
the global assembly cache. One integrity check is performed on it prior to entry
into the global assembly cache; this integrity check consists of verifying the hash
code and algorithms located within the manifest. Furthermore, if multiple files
attempt to reference the assembly, a single dedicated instance of the assembly is
created to handle all the references, which allows the assemblies to load faster and
reference faster across multiassembly situations.

A file that’s located in the global assembly also experiences a higher degree of
end-user security, since only an administrator can delete files located within the
global assembly cache. In addition, the integrity checks ensure that an assembly
has not been tampered with, since assemblies within the global assembly cache
can be accessed directly from the file system.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 45

46 Chapter 2 • The Microsoft .NET Framework

Locating an Assembly
Once the assembly is created, finished, and deployed, its scope is basically private.
In other words, the assembly will not in any way, shape, or form interfere with any
other assemblies, DLL files, or settings that are not declared in the assembly’s mani-
fest. It’s all part of CLR’s automation; it used to be that only VB coders had pro-
tection from memory leaks or other sorts of problems by inadvertently creating a
program that went too far out of its area, but now the CLR handles all that.

Now a single assembly is easy to run, and easy for the CLR to locate.
However, when you’re dealing with multiple files, you might ask yourself,
“Wait—if the assembly is so tightly locked, how can multiple assemblies interact
with each other?” It’s a good question to ask, because most programmers working
with .NET create multifile assemblies, and so we need to understand the process
the CLR takes to locate an assembly. It goes like this:

1. Locate the reference and begin to bind the assembly(ies). Once
the request has been made (through AssemblyRef) by an assembly in a
multiassembly to reference another assembly within the multiassembly, the
runtime attempts to resolve a reference in the manifest that tells the
CLR where to go.The reference within the manifest is either a static
reference or a dynamic reference.A static reference is a reference created at
build time by the compiler; a dynamic reference is created as an on-the-fly
call is made. Figure 2.4 displays Step 1.

www.syngress.com

Figure 2.4 Step 1 of the Location Process

Manifest

Reference Request

Is it a static?

to Step 2

It is dynamic;
create on-the-fly

then proceed.

YES

NO

153_VBnet_02 8/16/01 11:54 AM Page 46

The Microsoft .NET Framework • Chapter 2 47

2. Check the version policy in the configuration file. The CLR
checks to see if there’s a configuration file. For client-side executables,
the file usually resides in the same directory with the same name, but has
a *.CFG extension. For Internet-based applications, the application must
be explicitly declared in the HTML file.A standard configuration file
can look like the following example:

<?xml version = "1.0">

<Configuration>

<AppDomain

PrivatePath="bin;etc;etc;code"

ShadowCOpy="true"/>

<BindingMode>

<AppBindingMode Mode="normal"/>

</BindingMode>

<BindingPolicy>

<BindingRedir Name="TestBoy"

Originator="45asdf879er423"

Version="*" VersionNew="7.77"

UseLatestBuildRevision="yes"/>

</BindingPolicy>

<Assemblies>

<CodeBaseHit Name="s_test_mod.dll"

Originator="12d57w8d9r6g7a3r"

Version="7.77"

CodeBase=http://thisisan/hreflink/test.dll/>

</Assemblies>

</Configuration>

The document element of this XML file is Configuration.All this
node does is tell the CLR that it’s found a configuration file type and
that it should look through it to see if this type is the one it needs.The
first node contains the AppDomain element that has the PrivatePath and
ShadowCopy attributes. PrivatePath points to a shared and private path to
the bin(s) directory(ies).The path is the location of the assemblies that
you need and the location of the global assembly cache.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 47

48 Chapter 2 • The Microsoft .NET Framework

Keep in mind that the PrivatePath attribute is relative to the
Assembly’s root directory and/or subdirectories thereof, and anything
outside of that needs to be either in the global assembly cache or linked
to using the CodeBase attribute of the Assemblies attribute. ShadowCopy is
used to determine whether or not an assembly should be copied into
the local download cache, even if it can be run remotely.

The next node contains BindingMode. Binding mode refers to how the
assemblies within the application should bind to their exact versions.
BindingMode contains the AppBindingMode element, which declares the
BindingMode to be safe or normal.A safe binding mode indicates that this
assembly is of the same Assembly version as the others when the applica-
tion is deployed. No Quick Fix Engineering (QFE) methods are applied,
and any version policies are ignored; these characteristics apply to the
entire application. Normal mode is simply the normal binding process in
which the QFE is used and version policies are applied.

NOTE

The reference that’s checked against from the AssemblyRef contains the
following information from the assembly it’s asking for: text name, ver-
sion, culture, and originator if it has a shared name. Of the references
listed, the location process can work without all of them except the
name. If it can’t find culture, version, or originator (which only shows
up on shared names), it will try to match the filename and then the
newest version.

BindingPolicy stores the BindingRedir element, which deals with the
attributes that tell the CLR which version to look for.This type of ele-
ment applies only to assemblies that are shared.The Name attribute is the
assembly’s name, Originator contains an 8-byte public key of the assembly,
and Version can either explicitly state which version the assembly should
be redirected to or uses a wildcard (*) to signify that all versions should be
redirected. VersionNew contains the version to which the CLR should be
redirected, and UseLatestBuildVersion contains a yes/no value that states
whether or not the QFE will automatically update it.

Assemblies stores the tags that the CLR can use to locate an assembly.
The tags in this element are always attempted before a thorough search.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 48

The Microsoft .NET Framework • Chapter 2 49

Name and Originator contain the same information that they contain in the
BindingPolicy. Version contains only the current version of the assembly, and
CodeBase contains the URL at which the assembly can be located. Figure
2.5 illustrates Steps 2 and 3.

WARNING

Even though you can use partial references, doing so not only kills the
whole concept of version support—it can also cause you to use the
wrong file at times. For example, let’s say that you’ve created a whole
new set of classes and need to benchmark the differences. If you are
using partial references, it’s more than likely that the new version will be
picked over the old version. Be precise, even if it’s tedious to do so!

3. Locate the assembly via probing or codebase. When the informa-
tion stored in the Configuration file is retrieved, it is then checked
against the information contained in the reference and determines
whether or not it should locate the file at the specified URL codebase or

www.syngress.com

Figure 2.5 Steps 2 and 3 of the Location Process

from Step 1

Configuration File

Get Path Information

Does it have a ShadowCopy?

Get Binding Mode

Bind Redirect Name

Bind Redirect Originator

Bind Redirect Version Information

Bind Redirect use Latest Version?

Assembly Name

Assembly Originator

Assembly Version

Does it have a codebase?

Yes, access it at the
location defined.

No, assume it is in the local
path or in the PrivatePath.

Step 3

Step 2

153_VBnet_02 8/16/01 11:54 AM Page 49

50 Chapter 2 • The Microsoft .NET Framework

via location probe. In the case of a codebase, the URL is referenced and
the file’s version, name, culture, and originator are retrieved to determine
a match. If any of these fails, the location process stops.The only excep-
tion is if the version is equal to or greater than the version needed. If it is
greater or equal to and all the other references check out, the location
process proceeds to Step 4. If no URL is listed for a codebase, the CLR
will probe for the needed assembly under the root directory.

Probing is a bit different and more thorough than looking at the
URL but definitely more lax in verifying references.When probing
begins, it checks within the root directory for a file with the assembly
name ending with *.MCL, *.DLL, or *.EXE. If it’s not found in the
root, it continues to check all the paths listed in the PrivatePath attribute
of AppDomain of the configuration file.The CLR also checks a path
with the name of the assembly in it.Again, if an error is found, the loca-
tion process stops, however if it’s found and verified, it proceeds to Step 4.

4. Use the global assembly cache and QFE. The global assembly
cache is where global assemblies that are used throughout multiple pro-
grams are found.All global assemblies have a shared name so that they
can be located through a probe. Quick fix engineering, or QFE, refers to a
method in which the latest build and revision are used. It’s done this way
to allow greater ease for software vendors to provide patches by recre-
ating just one assembly instead of the whole program. If the assembly
was found and the QFE is off, the runtime double-checks in the global
assembly cache with a QFE for the particular assembly; if a greater
revision/build is found, that version takes the place of the one found
while probing.

5. Apply the administrator policy. At this point, any versioning policies
are applied (versioning policies are stored in the admin.cfg file of the
Windows directory) and the program is run with the policies applied.
The only major impact this policy has occurs if an administrator policy
initiates a redirect to a version. If this happens, the version must be
located in the global assembly cache before the redirect occurs.The run-
time assumes that since the redirect is administrative, the user manually
and consciously set it and that the user already has supplied the necessary
file in the global assembly cache.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 50

The Microsoft .NET Framework • Chapter 2 51

Private Assembly Files
Private assembly files are normally single applications, that reside in a directory
without needing to retrieve any information or use resources from an assembly
that is located outside its own folder.This does not mean that the private assembly
can’t access the standard namespaces, rather it simply means that they do not use
or require any other external applications to properly function.These types of
assemblies are useful if the assembly will be constantly reused and does not rely on
any other assembly. Private assembly files are not affected by versioning constraints.

Shared Assembly Files
Shared assembly files are generally reserved for multiassembly applications and
store commonly used components, such as the graphical user interface (GUI)
and/or frequently used low-end components.These assemblies are stored in the
global assembly cache, and the CLR does enforce versioning constraints.
Examples of a shared assembly are the built-in .NET Framework classes.

A shared assembly, as you might have guessed, is the exact opposite of a pri-
vate assembly.A shared assembly does stretch outside the bounds of its directories
and requires resources that are found within other assemblies. Shared assemblies
are utilized heavily when dealing with modular applications. For example, a GUI
that is used between several applications can be stored as a shared assembly or a
commonly used database routine.

Understanding Metadata
When you create your assembly, two things happen:Your code is transformed
into MSIL, and all the relevant information contained in the code (types, refer-
ences, and so on) are noted within the manifest as metadata.The CLR then
inserts the metadata into in-memory data, and uses it as a reference in locating
what is needed according to the program.This road map provides a large part of
interoperability, since the CLR doesn’t actually need to know what code it’s pro-
grammed in; it simply looks at the metadata to find out what it needs and where
it’s going.The metadata is responsible for conveying the following information to
the CLR:

■ Security permissions

■ Types exported

■ Identity

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 51

52 Chapter 2 • The Microsoft .NET Framework

■ External assembly references

■ Interface name

■ Interface visibility

■ Local assembly members

The Benefits of Metadata
The items in metadata are placed within in-memory data structures by the CLR
when run.This allows metadata to be used more freely with faster access time.
This system enhances the self-describing functions of .NET assemblies by having
readily available all the items that the assembly requires.This also allows for other
objects (per the metadata, of course) to interact with the assembly.

Metadata also allows interoperability by creating a layer between the
assembly’s code and what the CLR sees.The CLR uses the metadata extensively,
thus removing the burden of operability from the CPU/language.The CLR
reads, stores, and uses the metadata through a set of APIs, most notably the man-
aged reflection and reflection emit services.The layer abstraction causes the runtime
to continue optimizing in-memory manifest items without needing to reference
any of the original compilers and enables a snap-in type of persistence that allows
CLR binary representations, interfacing with unmanaged types, and any other
format needed to be placed in-memory.

You might have been surprised when you saw that the metadata allows
unmanaged types to show up; however, this does not impact the CLR in any
way. Unmanaged metadata APIs are not checked nor do they enforce the con-
straints present. However, the burden of verifying unmanaged metadata APIs is
placed solely on the compiler.

NOTE

PEVerify is a command-line tool enclosed with the .NET Runtime SDK
that checks for you the CLR Image within the PE’s manifest during devel-
opment. Use it if you wind up migrating VB 6.0 code and have doubts as
to its portability or performance.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 52

The Microsoft .NET Framework • Chapter 2 53

Identifying an Assembly with Metadata
Metadata identifies each assembly with the following: name, culture, version, and
public key.The name used is the textual name of the assembly or the name you
gave it when you created it.The culture simply references the cultural settings
used such as language, time zone, country/region, and other localization items.
The public key used is the same one generated by the assembly.

Types
In unmanaged code (i.e.,VB 6.0), we referred to types as objects.Types, like
objects, contain data and logic that are exposed as methods, properties, and fields.
The big differences between the two lie in the properties and fields; properties
contain logic in order to verify or construct data, whereas fields act like public
variables. Methods are unchanged.Types also provide a way to create two different
representations with different types by looking at the two different types as part
of the same interface—in other words, they have similar responses to events.

Currently two types are available to .NET users: value types and reference
types. Reference types describe the values as the location of bits and can be
described as an object, interface, or pointer type.An object type references a self-
describing value, an interface type is a partial description that is supported by other
object types, and the pointer type is a compile-time description of a machine-
address location value.

When dealing with classes, the CLR uses any method it deems fit, according
to the Common Type System. Metadata has a special mark for each class that
describes to the CLR which method it should use.Table 2.3 lists the layout rules
that metadata marks for each class.

Table 2.3 Class Layout Rules

Class Layout Rules

AutoLayout CLR has free reign over how the class is laid out; this
shows up more often on the inconsequential classes.

LayoutSequential CLR guides the loader to preserve field order as defined,
but offsets are based on the field’s CLR type.

ExplicitLayout CLR ignores field sequence and uses the rules the user
provides.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 53

54 Chapter 2 • The Microsoft .NET Framework

Defining Members
Members are the methods, fields, properties, events, and nested types that are found
within a type.These items are descriptions of the types themselves and are
defined within the metadata.This is one of the reasons that access of items
through metadata is so efficient.

Fields, arrays, and values are subvalues of a value representation. Field sub-
values are named, but when accessed through an index they are treated as array
elements.A type that describes the values composed of array elements creates a
true array type with values of a single type. Finally, the compound type is a value
of a set of fields that can hold fields of different types.

Methods are operations that are associated with a particular type or a value
within the type. For security purposes, methods are named and signed with the
allowed types of arguments and return values. Static methods are methods that are
tied directly to the type; virtual methods are tied to the value of the type.The
CLR also allows the this keyword to be null within a virtual method.

Using Contracts
The signature that methods use is part of a set of signatures referred to as a con-
tract.The contract brings together sets of shared assumptions from the signatures
between all implementers and users of the contract, providing a level of check
and enforcement.They aren’t real types but rather are the requirements that a
type needs to be properly implemented. Contract information is defined within
the class definition.

Class contracts are one of the most common.They are specified within a class
definition and in this case defined as the class type along with the class definition.
The contract represents the values and other contracts supported by the type and
allows inheritance of other contracts within other types.

An interface contract is defined within an interface. Just like the class definition,
an interface definition defines both the interface contract and the interface type.
It can perform the functions that a class contract can, but it cannot describe the
representation of a value, nor can it support a class contract.

A method contract is defined within a method definition. Just like a normal
method, it’s an operation that’s named and specifies the contract between the
method and the callers of the method. It exerts the most control over parameters,
specifying the contract for each parameter in the method that it must support
and the contracts for each return value, if there is one.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 54

The Microsoft .NET Framework • Chapter 2 55

A property contract is defined within a property definition.The property con-
tract specifies the method contract used for the subset of operations that handle a
named value, including the read/change operations. Each property contract can
be used only with a single type, but a type can use multiple property contracts.

An event contract is defined in an event definition. It specifies method contracts
for the basic event operations (such as the activation of an event) and for any
operations implemented by any type that uses the event contract. Like the prop-
erty contract, each event contract can be used only with a single type, but a type
can use multiple event contracts.

Assembly Dependencies
An assembly can depend on another assembly by referencing the resources that
are within the scope of another assembly from the current assembly scope.The
assembly that made the reference has control over how the reference is resolved,
and this gives the assembly mapping control over the reference onto a particular
version of the referenced assembly.When you depend on an external assembly,
you can choose to let the CLR assume that the files are present in the deployed
environment or will be deployed with the corresponding assemblies. Such an
assumption can be pretty large or problematic, but the CLR is smart enough to
know what to do if it’s not there.

Unmanaged Assembly Code
There are two things that you can do as far as unmanaged code goes—you can
export COM components to the framework or you can expose .NET compo-
nents to COM.

To export a COM into .NET, you will need to import the COM type
library, but remember that a COM library file can be either the standard TLB
file, a DLL file, or an EXE file. Convert the code into metadata by using either
Visual Studio.NET or the Type Library Importer tool.Visual Studio.NET will
automatically convert the COM library into a metadata type library while the
Type Library Importer tool uses a command-line interface that lets you adjust a
couple more parameters than Visual Studio.NET. Define your newly created
COM metadata type in your assembly and compile it with the /r flag pointing to
the dll containing the unmanaged types. Most programmers suggest that an
assembly that works with COM be deployed into the Global Assembly Cache.

If the need should arise to expose .NET components to COM you can, but
it is not recommended since you will lose all of the features the .NET framework

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 55

56 Chapter 2 • The Microsoft .NET Framework

has given your code. In fact, if you can avoid it completely for now, do so and
just upgrade your code to .NET or rewrite it completely.

First determine which types are needed for the export.The classes you are
planning to export must match the following criteria:

■ Must have a Public Constructor

■ All methods, properties, and events must be public

■ Classes need to implement interfaces implicitly

■ All managed types must be public

Since .NET won’t expose anything that is not public, it will not export any-
thing that is not public. If you have an error with an exported .NET component
that has a missing class, file name, or run-time initialization error, you may want
to go back to your .NET source and figure out if you have fulfilled all of the
above requirements.

The tricky part now is using the System.Runtime.InteropServices namespace.
There are 3 COM classes within this namespace that are used to set the values
needed for your particular COM export and the rest of the classes give your
assembly COM-like attributes. Once your assembly has been properly checked
and assembled, compile it and export it using the TypeLibraryExport.Exe tool.

Now that you’ve prepared the file, you will need to register the exported
assembly(ies) with COM. RegASM.exe (Register Assembly) is a command-line
tool that can register the assembly(ies) needed into the Microsoft System
Registry so your export will have its own CLSID. Once the exported item has
been registered, you can proceed to use this new object within your application.

Reflection
The concept of reflection is available to the user via the System.Reflection name-
space. In essence, reflection reflects the composition of other .NET code back to
us. It can discover everything that is vital within the assembly, such as the classes,
events, properties, and methods exposed by the assembly.We can then use this
information to clone an instance of that assembly so that we can use the classes
and methods defined there.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 56

The Microsoft .NET Framework • Chapter 2 57

NOTE

You might have used reflection in VB 6.0 via TypeLib.DLL; however,
TypeLib was limited in that it had to create the “clones” using the IDL
description provided by COM, which can give inaccurate or incomplete
clones. Since all the information for “cloning” is available directly from
the manifest, we don’t have to worry about that anymore.

Using reflection can theoretically provide access to nonpublic information
such as code, data, and other information that is normally restricted due to isola-
tion. .NET provides a built-in check system of rules to determine just what you
can get using reflection. If you really have to use nonpublic information, you
need to use ReflectionPermission. ReflectionPermission is a class located within
Object.CodeAccessPermission namespace and gives access to all the nonpublic
information when requested by a reflection.This class can theoretically also give
someone the ability to view your code, so do not use this class if you can avoid it!
You definitely will not want to use this ability on Internet applications. By default
and without needing permission, reflection can access or perform the following:

■ Public types

■ Public members

■ Module/assembly location

■ Enumerate assemblies and modules

■ Enumerate nonpublic types (have to be in the same location as the
assembly using reflection)

■ Enumerate public types

■ Invoke public, family access (of calling code class), and assembly access
(of calling-code class) members

Attributes
More a C++ concept than a VB one, an attribute allows you to add descriptive
declarations that behave similarly to keywords.You can use attributes to annotate
types, methods, fields, properties, and other programming elements.They are
stored within the metadata and can help the CLR understand the description of

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 57

58 Chapter 2 • The Microsoft .NET Framework

your code.Attributes can describe the way that data is serialized, describe security
characteristics, or limit JIT compilation for debugging purposes. Perhaps one of
the most versatile of the metadata items, attributes can even add descriptive ele-
ments to your VB code to affect its runtime behavior.A simple attribute may be
used like this:

Public Class <attribute()> ClassName

In this example, the class ClassName is described by the attribute attribute().
This means that when the CLR hits this class, it will alter its behavior according
to what attribute() says.

Ending DLL Hell
Everyone knows what DLL Hell is: It’s the situation that occurs when an older
or newer DLL file overwrites the previous copy after the installation of a new
application (usually a newer DLL that is not backward compatible). Registry set-
tings are changed; some are added, some are removed, and some are altered.
GUIDs could change and, at the blink of an eye, all these things create a situation
where one DLL file prevents your application from working. In order to prevent
DLL Hell, the .NET Framework takes the following steps:

■ Application isolation is enforced.

■ “Last known good” system from Windows NT systems is enforced.

■ Side-by-side deployment is permitted and backed up by isolation.

■ File version information is recorded and enforced.

■ Applications are self-describing.

Side-by-Side Deployment
Side-by-side execution allows two different versions of the same assembly file to
run simultaneously.This is an advantage of the isolation provided to each
assembly. Side-by-side deployment removes the dependency on backward com-
patibility that often causes DLL Hell. Side-by-side execution can be running
either on the same machine or in the same process.

Side-by-side deployment in the same process can be the most strenuous to
code for; you have to write the code so that no processwide resources are used.
The extra work pays off in that you can run multiple components and objects in
the same thread, allowing for greater process flexibility and usage.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 58

The Microsoft .NET Framework • Chapter 2 59

Side-by-side deployment on the same machine puts less stress on the code
writer but still has its quirks.The biggest point to look out for when coding this
way is to write in support for multiple applications attempting to use the same
resource; you can work around this by removing the dependency on the resource
and allowing each version to have its own cache.

Versioning Support
Versioning is the method .NET uses with assemblies that have a shared name; it
tells the CLR the version of the particular assembly. Each assembly has two types
of version information available: the compatibility version and the informational
version.The compatibility version is the first number, which the CLR uses to deter-
mine identities.The informational version allows for an extra string description of
the assembly that the CLR doesn’t really need.

The version number looks like your typical version—a four-part number that
describes, in order, the major build version, the minor build version, the build,
and the revision. If there are any changes to the major or minor versions, the
assembly is used as a separate entity and isolated.The build and the revision sig-
nify a build compatible to the present assembly, which means that this new ver-
sion contains a bug fix or patch.

The major and minor numbers are used to perform incompatibility checks.
In other words, compatibility is weighed against the major and minor numbers,
and any difference in either of these two numbers tells the runtime that it is a
new release with many changes and should be treated accordingly.The build
number tells the runtime that a change has been made, but does not carry a high
incompatibility risk. It’s been my experience that relying on the build number at
times is very bad practice, especially if the minor change involves your types. In
fact, whenever you change anything, such as how a class is referenced, you should
treat it as a major/minor revision unless you absolutely take all the necessary steps
to make the class backward compatible.

When you do create a backward-compatible class, try to create it as a bug fix
or patch and define the change in the QFE.That way, the runtime assumes back-
ward compatibility is in place, since there should be no major changes (again,
such as class references), and uses it accordingly unless it is explicitly told not to
use it by a configuration file.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 59

60 Chapter 2 • The Microsoft .NET Framework

Using System Services
System services combine everything that the runtime makes available, such as
exception (error) handling, memory management, and console input/output
(I/O). Some of the topics discussed here might not be new to some VB program-
mers, especially those who have had some exposure to Java or C/C++.

The big change that VB programmers can look forward to is how exception
handling is approached.The way we used to do it involved thorough use of the
debugger and then praying for the executable to not throw an arcane runtime
error. Now we can actually catch any errors thrown and handle them properly.
This also means that we have a better method for tracing error messages.

Memory management really hasn’t changed significantly; only the way it’s
implemented has changed. Instead of programmers having full control over object
instantiation and destruction, the CLR takes over that task. However, we do have
the ability now to create standard command-line programs—something that VB
never had before.

Exception Handling
.NET introduces the implementation of a try/catch system through its new
Exception object. Some of you may be already familiar with this concept from
previous JAVA work.A simple try/catch statement can look like the following.

Try

{

Thiswillcrash();

}

Catch(error_from_Thiswillcrash)

(

//react to the error thrown by Thiswillcrash()

}

So, in essence, a try/catch set will place the function or sub within a try
wrapper that will monitor any error messages. If an error message matches
error_from_Thiswillcrash then the catch wrapper generates the appropriate response
to the error.This will give programmers more flexibility in determining errors
and how they want to handle the error instead of letting Windows do it and
hoping for the best.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 60

The Microsoft .NET Framework • Chapter 2 61

Within a DLL file you have a standard file read and file write system.
However, instead of just generating a failure error if the file that needs to be read
is not found, you would rather just display a message that says “this file is being
created” and then creates the file without the user even knowing that an error
occurred.A simple way of doing a try/catch for this situation may appear like the
following:

Try

{

FileReadDisplay();

}

Catch(File_not_found_error)

{

//display message "This file is being created"

//create file that matches needed defaults

//display message "A new default file has been generated.

//Please reset your defaults."

}

The try/catch system is part of the Exception class.While it’s a pretty neat
ability to finally have in VB, the Exception class also brings with it some extra
goodies for debugging, including StackTrace, InnerException, Message, and HelpLink.

StackTrace
Stacks haven’t changed over the years; a stack is still a special type of data structure
in which items are removed in the reverse order in which they are added (last in,
first out, or LIFO).This means that the most recently added item is the first one
removed. StackTrace allows you trace the stack for errors. It is most useful in
dealing with constant errors along loops and within a try/catch statement.
StackTrace is useful when it is defined before a try statement and when it ends
after the catch statement.

InnerException
An InnerException can store a series of exceptions that occur during error han-
dling.You can then format the series of exceptions into a new exception that
contains the series. It’s almost like a waterfall view, because an exception is

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 61

62 Chapter 2 • The Microsoft .NET Framework

thrown, which in turn throws another exception. Using InnerException, the first
exception would be stored within the last exception and so on, giving the devel-
oper an ample road map to locating the starting point of an error.

Message
Message stores a more in-depth error description.This is extremely useful when
used in conjunction with InnerException.

HelpLink
Using HelpLink, you can set a specific URL or URN within a try/catch block to
point to an article or help file that has more details on the error generated.

Garbage Collection
Memory usage and clean-up have always been valuable features of VB, mainly
due to VB’s preventive method of initializing and destroying its objects. Garbage
Collection is .NET’s method for handling object creation and destruction as well
as cleanup and preventive maintenance. Garbage Collection does not rely on ref-
erence counting, as VB 6.0 and previous versions do; it has its own unique system
for detecting and determining which objects are no longer in use. In this sense,
.NET is smart enough to know when a file is being used and when it needs to
be removed.We delve into a full overview of Garbage Collection in the Relying
on Automatic Resource Management section later in this chapter.

Console I/O
We finally have the ability to create console programs in VB! Much of this ability
comes from .NET’s Microsoft Intermediate Language (MSIL) system. Console
applications are those little programs that pop up a DOS box and run from the
command line. Command-line applications can be used in middle-tier situations,
in testing a new class, or even for creating DOS-based functionality for a utility
tool.We have this ability thanks to the System.Console namespace. (We discuss
namespaces later in this chapter.) Here’s a brief example of a simple command-
line VB application:

Import System.Console

Sub Main()

Dim readIN as String

WriteLine("This is a line!")

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 62

The Microsoft .NET Framework • Chapter 2 63

ReadIN = ReadLine()

WriteLine(ReadIN)

End Sub

The console would print This is a line! with a carriage return at the end
automatically, giving us one line to write whatever we want.After a carriage
return is detected, what we wrote is stored within the variable ReadIN and then
displayed via WriteLine.

Microsoft Intermediate Language
Once your assembly is in managed code, the CLR in turn translates the code to
the MSIL. MSIL is a type of bytecode that gives .NET developers the necessary
portability, but it is also key to the system’s interoperability, since it provides the
JIT compiler with the information it needs to create the necessary native code.
MSIL is platform independent.

MSIL also creates the metadata that is found within an assembly. Both the
MSIL and metadata are stored within an extended and modified version of the
PE (which is more a combination between PE’s syntax and the Common Object
File Format, or COFF, object system). MSIL’s flexibility allows an assembly to
properly define itself and declare all it needs for self-description.

The Just-In-Time Compiler
Without the just-in-time (JIT) compiler, we wouldn’t have any functioning .NET
programs.The JIT turns the MSIL code into the native code for the particular
platform on which it’s running. Each version of .NET for each individual plat-
form also includes a JIT for that specific platform architecture. For example, an
x86 version of .NET can compile .NET code from a non-x86 architecture
because the JIT on the x86 machine translates the MSIL into x86-specific code,
since the MSIL contains no platform-specific code.

JIT’s method of code compilation is literally just in time—it compiles the
MSIL code as it’s needed.This method guarantees faster program loading time
and less overhead in the long run, since JIT compiles what is needed when it’s
needed. MSIL, when created and referenced, creates a stub to mark the methods
within the class being used. JIT compiles just the stubbed code and replaces the
stubs within the MSIL to the location of the compiled code address.

There are currently two flavors of JIT: normal JIT and economy JIT. Economy
JIT is geared toward intensive CPU/RAM usage systems, such as Windows CE

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 63

64 Chapter 2 • The Microsoft .NET Framework

platforms. Economy JIT differs from normal JIT in that, in order to make the best
of the intensive CPU/RAM usage situation, it replaces the stubs in the MSIL with
the actual compiled code, not a reference to its address. Microsoft currently claims
that economy JIT is less efficient than normal JIT for this reason. However, a
decent benchmark exam of these two compilers has yet to be done.

Using the Namespace
System to Organize Classes
We’ve already seen an example of namespaces in the previous code example, but
what are they? Namespaces are references that we place within the code that point
to the location of the object or class that we need to use within the .NET
Framework. In the previous code example, we used the System.Console name-
space.This naming scheme is used only for organizational purposes, but it is vital
that you understand it.

A namespace is basically a hierarchical system created to organize intrinsic
classes that provide the basic functions that come with .NET. Each class is kept
within a namespace that suits its use; for example,Web-related classes are kept
within the System.web namespace. Each namespace can contain namespaces, pro-
viding more functionality for each namespace.The system namespace is the root
namespace on all .NET machines.

VB 6.0 users are already familiar with this concept from COM as the
PROGID (the name of the component and class within COM) component.class-
name.VB 6.0 users are also familiar with COM’s limitations, such as PROGID
naming not allowing more than one level in depth and that its name was global
to the computer. .NET, however, allows for multiple namespaces, classes, inter-
faces, and other valid types declared within it.The following example displays a
sample namespace that contains multiple assemblies and an assembly that is stored
within a namespace:

MyNamespace.namespace.class

MyNamespace.enum

MyNamespace.interface.class

MyNamespace.Namespace.class

Here we have the MyNamespace base namespace with multiple namespaces
that in turn contain all the needed operations, functions, and procedures to pro-
vide necessary services. Each namespace can have classes that have the same
name; for example, Assembly3 and Assembly5 can both have a count class. However,

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 64

The Microsoft .NET Framework • Chapter 2 65

within a single namespace there cannot be any duplicate class names. Namespaces
can also be local or global; local namespaces can be seen only by the current
application, and global namespaces can be seen on the entire machine.

The Common Type System
The Common Type System (CTS) gives the CLR a description of the types that
are supported and used and how they are presented in metadata.The type in
CTS represents the type system, which is one of the more important parts of
.NET for cross-language support.The type provides the rules and logical steps
that a language compiler employs to define, reference, use, and store information.
If you are using any CLR-compliant compiler outside of the .NET Framework,
it must use the CTS system to properly create the assembly.The type system that
the CTS uses contains classes, interfaces, and value types.

A class is now contained within a type. In fact, the term type is sometimes
used (although sometimes erroneously) with the same meaning as object to reflect
.NET.The term still has the same functionality as in any other object-oriented
programming (OOP) language. It can define variables, hold the state of objects,
perform methods and events, and create, set, and retrieve properties. Every time
an instance of a .NET class is created, it is treated as an object; you can use it in
the same style that you would use objects in VB 6.0, by accessing its properties,
events, and fields.Table 2.4 displays the characteristics of a class.Table 2.5 displays
the characteristics of the members.

Table 2.4 Class Characteristics

Class Characteristics

Sealed Class derivations are prohibited.
Implements Interface contracts are fulfilled by this class.
Abstract This class can’t be instantiated on its own; in order to use it,

you must derive a class from it—just like abstract classes in
C/C++.

Inherits This means that the class being defined will inherit the
characteristics (i.e., properties, fields, methods) of the class
that is written next to it. You can use the same characteristics
or override them.

Exported This class can be viewed outside the assembly.
Not-Exported This class cannot be viewed outside the assembly.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 65

66 Chapter 2 • The Microsoft .NET Framework

Table 2.5 Member Characteristics

Members Characteristics

Private Defines accessibility as permitted only within the same
class or a member of a nested class within the same
class.

Family Defines accessibility as permitted within the same class
as the member and subtypes that inherit it.

Assembly Defines accessibility as permitted only from within the
assembly in which the member is implemented.

Family or Assembly Defines accessibility as permitted only by a class that
qualifies as a family or an assembly.

Public Defines accessibility as permitted from any class.
Abstract A nonimplemented member; as with C/C++, you have

to derive a class from it in order to implement it.
Final A method with the final statement cannot be over-

ridden; this helps prevent any unintentional overrides
that can damage functionality.

Overrides Used by virtual methods; it replaces the predefined
implementation from the derived class.

Static A method that is declared static exists without needing
to be instantiated and can be referenced through all
class instances.

Overloads An overloaded method has the same name as another
method and the same code, but its parameters, order of
parameters, or calling convention may be different. This
is useful for adding last-minute functionality to a
method that you might only need once.

Virtual Used to create a virtual method in order to have the
functionality provided by Overrides.

Synchronized Limits usage of implementation to one thread at a time.

NOTE

The Virtual Execution System is tied in with the CTS concept. In fact,
it’s a special execution engine that was created just to ensure that the
tenants of the CTS are implemented.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 66

The Microsoft .NET Framework • Chapter 2 67

www.syngress.com

Abstract Classes?
If you’ve never used C/C++, abstract classes might be a foreign concept
for you. An abstract class can be defined as a skeleton class that has no
actual code within it—simply a declaration of what a class that can be
derived needs to have within its structure to be considered a derivative
of the skeleton. In other words, the flesh on the bones is added later.

Abstract classes are useful when you need to create some sort of
base class that needs to be reused but have no need for it later—similar
to a blueprint. For example, take the abstract class fruit_eater:

Abstract class fruit_eater

{

Private Me_eat As Integer

Me_eat = 1

Public Property Eat() As Integer

Get

Return Me_eat

End Get

End Property

End Class

Public class monkey_boy

Inherits fruit_eater

Public Property me_do_eat() as String

If Eat = 1 Then

'code goes here to tell you that monkey_boy eats

fruit!

End If

Developing & Deploying…

Continued

153_VBnet_02 8/16/01 11:54 AM Page 67

68 Chapter 2 • The Microsoft .NET Framework

Type Safety
Type safety limits access to memory locations to which it has authorization. So, if
we have Object A trying to reference the memory location of Object B that is
within the memory area of Assembly C, Object A will not be allowed access.
Even if Object A tries to access a memory location that is accessible by its
assembly and does not have permission, it will be denied.An optional verification
process can be run on the MSIL to verify that the code is type safe. It’s optional
because it can be skipped based on permissions given to the code.

Type-safe code tells the runtime that it can go ahead and isolate the code,
since it’s not going to need anything outside its boundaries. Even if the trust
levels are different within a type safe code, it can execute on the same process.
Code that is not type-safe might cause crashes in the runtime or even shut down
your whole system, so be careful with it. Remember, we’re working with a beta
runtime, and it can be touchy!

Relying on Automatic
Resource Management
We are now getting to the nuts and bolts of .NET. So far, we’ve discussed
enhancements and changes in semantics. However, memory management in
.NET is radically different. Previously, we used the deterministic finalization
system, in which we declare that the code ran on the class initialization and ter-
mination plus had control over where a class was terminated. Deterministic final-
ization had its drawbacks, because if the programmer forgot to declare the class
empty (null, in some cases) or simply forgot to run the termination event, we’d

www.syngress.com

End Property

End Class

Using the abstract class fruit_eat, we set a requirement that class
monkey_boy must have to say that monkey_boy eats fruit. This can be
further expounded to another class, animal_kingdom, that can use
fruit_eat to organize between herbivores and carnivores within its
kingdom of wild animals and monkey_boys.

153_VBnet_02 8/16/01 11:54 AM Page 68

The Microsoft .NET Framework • Chapter 2 69

have a memory leak or worse when control over the project terminated.VB’s
system of destroying classes once the class count reached zero caused some prob-
lems when the last instance of a class was referenced by the last instance of
another class, and neither class would technically reach zero, so no cleanup was
done.

This outdated memory management system is referred to as reference counting.
A count is kept within each object, usually in its header, of how many references
there are for the object. Each application (or client, as it is referred to in COM
circles) that is referencing an object states when it is referencing the object and
when it is releasing the object.As new objects are instantiated, the count (or
number of objects in the count) is incremented and decremented when the
object is either overwritten or recycled.

The burden of doing the actual cleanup of the object, however, was not on
the application.All the application did was merely issue the destroy command to
the object, and the object then had to free itself from the reference count.When
an object was not properly deallocated (destroyed), we had an instance of a
memory leak. Reference counting also had a limited growth size, because objects
became bloated (made bigger artificially) in order to store the reference count,
and of course cyclic objects generated the previously mentioned nonzero refer-
ence count.

.NET replaces all this with automatic resource management.The runtime is now
smart enough to know when and how to handle memory allocation, dealloca-
tion, and usage.A major drawback is that we can’t control when an object or a
class is terminated, and therefore we have no knowledge of when the termination
takes place.This is a very valid point and, quite honestly, the only noticeable
drawback because it won’t release the memory and so we encounter a dead refer-
ence. However, most of the time this won’t matter, because Garbage Collection
will eventually get to it. Now let’s see how .NET handles memory and how this
relates to Garbage Collection.

The Managed Heap
When a program is run in .NET, the runtime creates the region of address space
it knows it needs but does not store anything on it.This region is the heap (also
referred to as the free store or freestore). .NET controls the heap and determines
when it’s time to free an object. Figure 2.6 presents an illustration of the
following pointer interaction process:

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 69

70 Chapter 2 • The Microsoft .NET Framework

1. A pointer is created for the allocated space (heap) that keeps track of the
next available free area on the allocated space that the runtime can use
for storage.

2. As the application creates new objects, the runtime checks to see if the
space currently being pointed to can handle the new object. If it can’t, it
dynamically creates the space.

3. Then the object is placed on the heap, its constructor is called, and the
new operator returns the address block of our newly created object.

www.syngress.com

Figure 2.6 Pointer Interaction with a Managed Heap

Address
Space

Initializing the Space
and Pointer

Pointer

Allocating Space and
verifying Space is correctAddress

Space

Space
Requested

Returning Space and
placing Object on heap

APPLICATION

Pointer

Pointer

Address
Space

OBJECT

153_VBnet_02 8/16/01 11:54 AM Page 70

The Microsoft .NET Framework • Chapter 2 71

NOTE

When an object/type is over 20,000 bytes, a special large heap is created
to store them. This special heap does not go through compression when
Garbage Collection is called. Compression occurs during the generation
process, described in a later section in this chapter.

Garbage Collection and the Managed Heap
As mentioned, .NET handles the managed heap by using Garbage Collection. In
its purest sense, Garbage Collection is an algorithm designed to determine when
the life cycle of an object has ended. In order to determine if an object is at or
near its end, Garbage Collection analyzes the root of the object. Roots (also
known as strong references), much like the actual roots found in nature, act as road
maps to where vital resources, such as objects, are stored. Global or static pointers,
local variables that are on a thread stack, and CPU registers containing pointers
to the heap are all considered roots.All the roots that are visible are stored in a
list created and updated by the JIT and CLR.

Once Garbage Collection starts, it assumes that all the roots available to the
heap are null.This makes the Garbage Collection begin a verification process in
which it goes through each root recursively and starts to make a graph that con-
tains all the references available and any linked references (i.e., Object A references
Object B).This step is repeated once more to make sure that everything is in place
by assuming that if it’s a duplicate object, it’s already on the list and thus a legiti-
mate object, meaning that the graph it just built is correct.The final step of this
verification process is that Garbage Collection starts to trace the root of each
object to determine if the root is coming from the program that is going to use
the current address space.Any objects without roots are considered null or no
longer in use and are treated as garbage, which is an accurate assumption since no
two applications share the same address space, and are promptly removed from the
heap.You can also manually invoke Garbage Collection. It’s not necessary to do
that since Garbage Collection works automatically, but it’s useful for those times
that you find an object that needs to be destroyed immediately (such as an object
that needs to be reset by destroying it and recreating it immediately).You can
manually invoke Garbage Collection as follows:

System.GC.Collect()

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 71

72 Chapter 2 • The Microsoft .NET Framework

This code automatically starts Garbage Collection. However, it eventually cre-
ates overhead if used repeatedly, so it’s best to use it sparingly. Roots also provide
the fix to memory leaks and stray resources.The runtime uses the roots to deter-
mine when an object or resource is no longer in use, enabling Garbage
Collection to clean them up. Now that we know how Garbage Collection
works, let’s take a look at just what the Garbage Collection namespace offers (see
Table 2.6).

Table 2.6 The Garbage Collection (GC) Namespace

Property/Method
Type Method Description

Properties—public MaxGeneration Lists the generations that
static the system can support.

TotalMemory This method displays the
total byte space of alive
objects and can occasion-
ally overlap objects that
will be released soon.
This method is used fre-
quently for high-usage
areas, especially the areas
that contain expensive
and/or limited resources,
such as CE.

Methods—public Collect An example of an over-
static loaded method; it forces a

collection of all available
generations. Can be useful
in building your own
garbage collection system
for your particular appli-
cation by analyzing avail-
able generations. You can
then use this information
to force any objects into a
disposal.

GetGeneration Another overloaded
method; it returns the
specific generation that
an object is in.

www.syngress.com

Continued

153_VBnet_02 8/16/01 11:54 AM Page 72

The Microsoft .NET Framework • Chapter 2 73

KeepAlive A method that assists in
migrating VB 6.0 code to
VB.NET. Using KeepAlive,
you can tell GC that this
object does not get recy-
cled, even if there are no
roots to it from the rest of
the managed cod by
sending GC a “fake” alive
response.

RequestFinalizeOnShutdown This method is an imple-
mented workaround to a
bug in the beta1
Framework; the .EXE
engine usually shut downs
without calling a finalize
routine. This method
causes all finalization that
needs to be done on
shutdown.

SuppressFinalize This method simply tells
the system to not finalize
a object. Very useful for
helping GC “skip” prefi-
nalized objects (objects
that have been manually
finalized) and thus keeps
GC from wasting time on
something that’s not
there.

WaitForPendingFinalizers A really buggy implemen-
tation of a good idea. This
method suspends the cur-
rent running thread until
all finalizers in the queue
are run. However, since
running a finalizer almost
always kicks in a GC, this
method causes a circular

www.syngress.com

Table 2.6 Continued

Property/Method
Type Method Description

Continued

153_VBnet_02 8/16/01 11:54 AM Page 73

74 Chapter 2 • The Microsoft .NET Framework

loop that will keep
waiting for finalizers as
new finalizers are created.
This method would be
much more useful if it
could target generations
instead.

Methods—public Equals Checks to see if the object
instance (all of these being evaluated is the
methods are in- same instance as the cur-
herited from rent object.
System.Object
namespace)

GetHashCode Returns the hash function
for a specific type.

GetType Returns the type from an
object.

ToString Returns a string to
represent the object.

Methods—protected Finalize Allows cleanup before GC
instance (all of these gets to it. However, the
methods are in- CLR can decide to
herited from “ignore” this command,
System.Object as when the root is still
namespace) active or it’s considered a

constantly used resource.
MemberwiseClone Creates a copy of the

current object’s members.

We can use the methods and properties inherent to the Garbage Collection
namespace to formulate a workaround to Garbage Collection having full control
over the disposal of objects. (Remember, the runtime controls the memory allo-
cation through Garbage Collection; that includes the destruction of objects.) An
example of this code would be:

Imports System

'class/module/assembly code here to do whatever you want

www.syngress.com

Table 2.6 Continued

Property/Method
Type Method Description

153_VBnet_02 8/16/01 11:54 AM Page 74

The Microsoft .NET Framework • Chapter 2 75

'please note that this is just an example and is non-functioning.

' there is a very good functional example of this similar process

' available in the .NET SDK Samples under the GC/VB folder of the

' SAMPLES directory.

'now that we have the objects / resources set, let's create a typical

' Dispose class.

Public Class DisposeMe

Inherits Object

Public Sub Dispose(objName as String)

'objName would be received by previously using the

'ToString Public Instance Method and storing the value in a string.

Finalize

GC.SuppressFinalize(objName)

End Sub

Protected Overrides Sub Finalize()

' no clean-up code needed; this will cause Finalize to be run

End Sub

End Class

'note the use of SuppressFinalize to keep the GC from repeating itself.

Congratulations! We’ve just resolved one of the basic problems of Garbage
Collection.With this example, we can successfully control manual termination
of objects and resources. It’s best to reserve this type of workaround for intensive
resources.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 75

76 Chapter 2 • The Microsoft .NET Framework

www.syngress.com

Don’t Use a Raw Finalize Method!
Garbage Collection allows a small emulation of the Class_Terminate
event via the finalize method. However, the finalize method does not
supercede the authority of the Garbage Collection/CLR, and it may not
be instantly implemented if the Garbage Collection/CLR assume that the
resource/object is still needed or in use. It could very well be a couple of
calls too late before it’s shut down. This is especially frustrating when
you need to remove an object for program flow. Finalized objects:

■ Are promoted to older generations causing unnecessary
heap usage

■ Have longer initialization times
■ Are out of your control as to when and where they are

actually terminated
■ Cause any other objects that are associated with them to be

finalized, adding more strain to the heap
■ Can prolong the lifetime of other objects that are referenced

from the finalized object

For these reasons, it is better to avoid using finalize by itself. If you
determine that you must use it, make sure that you avoid all actions that
could interfere with the finalize code, such as creating an instance of the
finalized object after you run the finalize method, thread synchroniza-
tion operations, and any exceptions from the finalize method.

Resurrection is a side-effect of finalization. Sometimes we’ll be pre-
sented with a situation in which an object has been finalized but there is
still a pointer to it, meaning that Garbage Collection assumes it’s alive
when it’s been already finalized. A typical scenario is to finalize an object
in order to create a new instance of the same object; if the first object is
still there in finalization, the pointer points to the old object, and the
object, while in finalized stage, never gets cleaned out properly because
it’s got a reference from the application. It’s important that if you finalize
something, you set a flag or a check routine to make sure that it’s gone
before you try to do anything else concerning that object type.

Debugging…

153_VBnet_02 8/16/01 11:54 AM Page 76

The Microsoft .NET Framework • Chapter 2 77

Assigning Generations
Garbage Collection uses an ephemeral garbage collector, which describes the life-
time of an object in generations. Using this system, the garbage collector makes
the following logical assumptions:

■ Newer objects have shorter lifetimes.

■ Older objects have longer lifetimes.

■ Newer objects are created around the same time and have strong
relationships.

■ Compacting a portion of the heap is faster than compacting it
completely.

Let’s look at a new heap. Once the heap is created and the first set of objects
are instanced, they are created and set as Generation 0.As a new set of objects is
created, Garbage Collection checks to see which objects from Generation 0 still
exist (see Step 1 in Figure 2.7).Those that do exist are compacted, moved above
Generation 0, and become Generation 1 (see Step 2 in the figure).As the new
Generation 0 enters the same process, so does Generation 1.Any remaining
members of Generation 1 become Generation 2, and those that survived
Generation 0 become 1 (see Step 3 in the figure).Then the new Generation 0 is
created.At this point, the process continues, but there can be no higher genera-
tion than 2; any survivors from any subsequent Generation 1 members are placed
in Generation 2 with the previous Generation 1 members that survived.This also
means that a complete heap compacts portions at a time, thus increasing overall
speed.

Objects within Generation 0 are checked more frequently than the other two
generations due to .NET’s philosophy that new objects are more likely to be the
first to be removed. In other words, the longer an object is alive, the more likely
it is to stay alive.

Utilizing Weak References
Another innovation that stems from the roots concept is weak references; a weak
reference is a weak link to an object in memory that has been or is in the final-
ization process. It acts like a root will be collected by Garbage Collection the
next time it runs.A strong reference, on the other hand, represents the primary
object creation.Without a strong reference, you can’t really create a weak one.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 77

78 Chapter 2 • The Microsoft .NET Framework

Weak references can provide a workaround when you are dealing with
memory-intensive objects and avoid the cost of constantly recreating and reini-
tializing objects. Imagine an object that traverses a database and stores a set of
sorted fields. If the database is small enough, it can rest in memory without
problem. However, if the database is large, we run the risk of over loading our
resources every time we have to create a new one. Using a weak reference, we
can bypass having to create a new object and redoing the sort by keeping the
items we need on standby.You can then recreate the strong reference by pointing
to the weak reference.

www.syngress.com

Figure 2.7 Generations

Generation 0

Step 2
Objects within Generation 0 that
are still in use are moved up to
Generation 1. New objects are
placed within Generation 0.

Generation 1

Step 3
Objects within Generation 0 that are still in
use are moved up to Generation 1. Objects
that are still in use within Generation 1 are
moved up to Generation 2. This process
is repeated and no new Generations
are created over Generation 2.

Object in use

Object in use

Object not in use

Generation 0

Step 1
Objects within Generation 0 are
evaluated to see which ones are
still in use.

Generation 0

Generation 1

Generation 2

Object 01

Object 02

Object 03

Object 01

Object 02

Object in use

Object not in use

Object 04

Object 05

Object 06

Object in use

Object in use

Object not in use

Object 07

Object 08

Object 09

Object 04

Object 05

Object in use

Object in use

Object in use

Object in use

Object not in use

Object 01 Object in use

153_VBnet_02 8/16/01 11:54 AM Page 78

The Microsoft .NET Framework • Chapter 2 79

Security Services
Security services are not to be confused with the security concepts offered by
.NET. Security services provide a type of check and balance within code, meta-
data, and MSIL. Security services ensure that the CLR gets what it expects, that
it’s getting it through either the same developer or a trusted source, and that
future references to items usually denied access to due to isolation can be granted
access.

In .NET, the Virtual Execution System (VES) handles all the security
checking.Type safety is enforced through the VES by matching the same strong
types in metadata with the corresponding MSIL (local variables and stack slots).
You can look at it as a technical diagram; it draws a very strong line pointing
from the metadata to the MSIL and makes sure that everything matches up to
the correct declaration and memory space.

The VES also covers versioning safety. Since the VES lines everything up, it
also goes ahead and verifies that all the information that’s being checked also
passes the version check.The VES also makes sure that the CLR will see what it
gets—in other words, that the CLR will work within the assumptions it made
about the code.

However, in order to make an assumption about the code, the CLR must be
sure that the code is a proper executable.Again, the VES intervenes by providing
the only three methods that a code can use to become executable: class loader,
legacy-code-based platform invoke, and, for migration purposes, an unmanaged COM
interop. Using the legacy-code platform invoke and the unmanaged COM interop
can cause some performance issues, so it’s best to avoid them altogether when
writing or migrating code and to stick to the class loader.The class loader con-
nects implementations to the information about the implementation within a
metadata.The VES also uses the class loader to determine who is trying to access
a type and thus takes the advantage to determine accessibility.

In addition, the VES has access through the CTS, to the permissions that are
stored within metadata to access methods. It checks each type against the permis-
sions and marks each type that has permission with a stub in the loader (the JIT

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 79

80 Chapter 2 • The Microsoft .NET Framework

and the linker also use VES to do the same) that tells the CLR to enforce the
permissions to which the stub points.This is called declarative security.

NOTE

Even though the CLR is impressive in terms of detection algorithms, it
has a drawback in that it’s still simply a logical system. It can’t tell when
someone might trick it (although the CLR is very stringent, thus making
it hard to trick). To prevent that, we can use imperative security; that is,
we can set the rules in our code.

Framework Security
Code access security and role-based security are the two types of security provided by
the.NET Framework itself.They are mechanisms that are geared toward a keep it
simple mentality regarding how to decide what a user can do.The keep-it-simple
idea is based on consistency, and providing easy transitions from code-based to
role-based security and back.The fundamentals that give the .NET security its
robustness are permission, principals, and security policy.

Code access security, as you might have noticed, provides varying degrees of
trust for an application. It can change these degrees according to the information
that the assembly provides, such as developer, version, and the like, since this
information is stored in the code.When the process of determining if a particular
code can access, the runtime checks the current call stack of the code looking for
the permission, however if it can’t find permission, it throws an exception.

Role-based security makes an authoritative decision based on the principal
value from the current thread making the request.The role(s) listed within the
principal value are then evaluated, and the action/ability requested is given or
denied.

Financial software programmers and database coders might be already familiar
with the concept of role-based security. Usually, in these situations, when a client
requests access to a certain part of the system or resource, a check is run to deter-
mine from what role the client making the request comes. Let’s say that a
member of the group Alpha is trying to access a resource located with a member
of the Omega group.Alpha starts the connection and Omega picks off the first
principal from the connection thread.The principal is then analyzed for roles, and

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 80

The Microsoft .NET Framework • Chapter 2 81

Omega determines that the Alpha workgroup does not have permission for all
the resources—just two of them. Omega allows the connection but limits Alpha’s
request to the two resources. If Alpha tried to obtain a resource outside those
two, the request would be denied.

Granting Permissions
Permission is the basic building block of security. Some view permission logically
as a response given to a query in order to gain access, while others look at it as a
key fitting into a lock. Both views are equally correct. Permissions in .NET are
used via requests, grants, and demands.

A code can request permissions to see if it can access a file. If it doesn’t fall
under those permissions, you could have a function grant permission to the code
that’s making the request. If a code with the permissions ready comes along, you
might want to implement an added layer of permission called demand. In other
words, while the code might have the basic permissions needed in order to satisfy
the need, the code can also demand that (a) specific permission(s) be present.
Both code access security and role-based security have a list of permissions (see
Table 2.7).

Table 2.7 Code Access Security and Role-Based Security Permission Lists

Code Access Security
Permissions Description

DnsPermission Provides access to a Domain Name System.
EnvironmentPermission Provides access to the ability of read/write/query

environment variables. Write access also includes
the ability to create, remove, and write.

FileDialogPermission Provides access to files acquired via a file dialog
box.

FileIOPermission Provides access to perform low-level (through
stream) read, write, append, or create directories.

IsolatedStoragePermission Provides access to an area that is attributed to a
specific user within a part of the code identity.

ReflectionPermission Used in conjunction with System.Reflection to
have permission to find out information about a
type at runtime.

RegistryPermission Provides access to registry and the read, write,
create, delete registry functions; applies to keys
and values. If you truly want to make people

www.syngress.com

Continued

153_VBnet_02 8/16/01 11:54 AM Page 81

82 Chapter 2 • The Microsoft .NET Framework

who use your .NET code happy, use the .NET and
don’t use the registry anymore. This permission
is really more a migration step.

SecurityPermission Provides the ability to do actions that are
normally not allowed, such as calling into
unmanaged code and skipping the verification
process. Use this with caution; it can lead to
holes in your system that can be used to access
other parts of it.

SocketPermission Doesn’t really grant any ability; either accepts or
creates any attempted connections at a given
transport address. Using this permission in con-
junction with SecurityPermission for executables
can cause some bad things to happen.

UIPermission Provides the ability to use the functionality
provided by the user interface.

WebPermission Just like SocketPermission, it either accepts or
creates any attempted connections from/to a
Web address.

Role-Based Security
Permissions Description

PrincipalPermission Demands that the identity of an active principal
match. (See the Principal section for more
information.)

Gaining Representation through a Principal
Have you ever wanted a go-between to plead your case to the program to get
access? A principal provides just that function. Depending on the situation, a prin-
cipal provides the permission level needed on your behalf to enter.The CLR lets
the principal in, but it’s not letting you in, because the CLR only allows you to
do what the principal is supposed to.

A generic principal is your run-of-the-mill representation that you can use
to find out what someone that’s not unauthenticated can see.Although this is
not practical in an everyday program, it is very useful for testing and debugging

www.syngress.com

Table 2.7 Continued

Code Access Security
Permissions Description

153_VBnet_02 8/16/01 11:54 AM Page 82

The Microsoft .NET Framework • Chapter 2 83

situations and is extremely helpful when trying to determine situations in which
a permission shows up that you didn’t plan for.

Custom principals are created on the fly by an application to suit a current
need or requirement.They extend the basic usability of a generic principal but
are dependant on having the proper authentication modules and types given to
them by the application.This dependency gives the custom principal an element
of security since it can’t work without being given what it needs to work.

NOTE

A special class of principal—the Windows Principal—represents strictly
Windows users. It uses this impersonation to get roles that are available
for that particular user.

Security Policy
The rules that the CLR follows are referred to collectively as the security policy.The
local administrator determines these configurable rules. Once an assembly is
attempting to load, the security policy is checked to see what permissions the CLR
can grant the assembly. It determines various possibilities and then, if it passes, pro-
vides the needed permissions or simply does not allow the program to run.

Three levels specify security policy: the local machine policy, the application
domain policy, and the user policy.The runtime uses all three of these policies to
filter out the final security policy that will be placed on the assembly and thus
determines its permissions. Both the user and the application domain policy
specify the set of permissions that are allowed, and then this set of permissions is
compared to the machine policy.The permissions that are not filtered out
become the security policy.

Application Domains
An application in .NET runs in a domain that’s managed by a host.This host can
be a shell host (launches .EXEs from a shell), a browser host (runs code from the
site), a server host (ASP.NET; runs code that handles requests on a server), and a
custom-defined host.When one of these create the application domain, for
example, the shell host—which would be Windows—sets the policy that the
code must deal with under that domain.The policy generated cannot be added
to but can be made more flexible by the host.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 83

84 Chapter 2 • The Microsoft .NET Framework

After an application domain policy is set, the new policy applies only to
assemblies that are loaded after the creation of the new policy.Any previous
policy holders will have their previous policy covered and won’t have to use the
new one unless reloaded. Once the main assembly is loaded and the first refer-
ence to another assembly is made, the loader kicks in, places the assembly into
the appropriate application domain, and then returns the information (referred to
as evidence) that proves it can be trusted (will return versioning information to
verify) to the runtime.Table 2.8 displays the evidence that is/can be returned.

Table 2.8 Evidence

Application Directory Where the Application Resides

Custom An evidence created by the user or system defined;
great for making 100 percent that sure it’s the
correct evidence.

Hash Returns the hash encrypted in MD5 or SHA1.
Publisher The AuthentiCode signature provided by the code.
Site Location of origin.
Strong Name Assembly’s strong name.
URL URL of origin.
Zone Zone of origin—for instance, Internet Zone. Matches

the zones listed in your Properties box for IE under
the Security tab.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 84

The Microsoft .NET Framework • Chapter 2 85

Summary
VB.NET is the first true version of VB released with a complete redesign after
VB 4.0 came out.All the limitations that Visual Basic programmers have found in
the past, such as being limited to windowed applications, are now completely
gone.Visual Basic programmers can now take part in the console programming
world and use the tricks associated with that world to create better programs and
optimize batch files.

With the interoperability that .NET provides, programmers can use any lan-
guage to overcome any of VB’s language shortcomings.Any custom class written in
any language, such as LISP, can be used and referenced by an assembly written in
VB.NET and vice versa; C/C++ developers who would like to use some of VB’s
more robust functionality for windowed applications can now simply build the
GUI out of VB and the implementation in C/C++ with no problems whatsoever.

The fuel for this new interoperability comes from .NET’s CLR and MSIL.
The CLR compiles any MSIL-generated code for our use without having to
worry about what compiler was used to create it.The new deployment system,
assembly, creates a standard way of looking at deployable files and removes our
dependence on the registry and DLLs by including a road map of what it needs
within the metadata.To top everything off, the burden of providing security is
removed (somewhat) from the developer and placed in the hands of the CLR.

Solutions Fast Track

What Is the .NET Framework?
.NET provides developers with new possibilities for creating
applications.

The CLR changes the way that programs are written, in the sense that
VB developers won’t be limited to the Windows platform.

Introduction to the Common Language Runtime

The CLR is the heart of the .NET Framework. It provides a lot of the
functionality that .NET uses.

CLR will provide the function of translating the application from its
internal code to code within the native environment.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 85

86 Chapter 2 • The Microsoft .NET Framework

Managed code will be able to get the most of the new .NET features
from the CLR.

Using .NET-Compliant Programming Languages

Programming for .NET is not limited to the Microsoft standard lan-
guages.Any compiler that follows the Common Type System and other
requirements for .NET can be created for any programming language.

.NET’s new interoperability allows us to use each language’s strengths to
counteract weak areas.

Different programming languages will have the same method of
communication within each other, ensuring true interoperability.

Creating Assemblies

The new deployable unit for .NET is an assembly. It is more like a
logical DLL file than a true executable file.

All the information that the CLR needs to properly run an assembly is
located within the assembly itself.

Each assembly file consists of the internal code, the manifest area, and
the metadata contained within the manifest area.

Understanding Metadata

Metadata contains the map that .NET uses to layout objects in memory
and how they are used.

The manifest area within the assembly contains the metadata.

Using System Services

More control is given to exception handling through the try/catch
system.

The automatic resource management system for .NET is smart enough
to know when objects are in use and when they need to be removed.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 86

The Microsoft .NET Framework • Chapter 2 87

This takes the burden off the programmer, but the programmer can
always opt to declare when an object should be removed.

Console applications are now within the reach of VB programmers
through the intrinsic System.console namespace.

Microsoft Intermediate Language

MSIL is the bytecode that the just-in-time (JIT) compiler utilizes to
create native code for the assembly file.

MSIL is platform-independent.

The code within a .NET application is converted to MSIL.

Using the Namespace System to Organize Classes

A namespace provides an organizational hierarchical system for classes.

Each class that specifies to a specific function is stored within its
respective namespace.

The System namespace is the root namespace of all namespaces in .NET.

The Common Type System

The Common Type System is the way that types are supported within
the runtime.

The CTS also specifies how types can interact with each other and how
they are displayed as metadata.

The CTS provides the rules that types must follow in order to work
with .NET.

Relying on Automatic Resource Management

The managed heap system replaces the reference count system.

The object cleanup is referred to as Garbage Collection. .NET controls
when Garbage Collection runs and when an object is removed.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 87

88 Chapter 2 • The Microsoft .NET Framework

The burden of object cleanup is placed more within .NET than on the
developer.

Security Services

Permissions are the rights needed to use a resources.There are many dif-
ferent types of permissions that can be used in any event and are pri-
marily used within code access security.

The principal acts as a go-between for you to get the permissions
needed.There is only one type of principal. Principals are used within
role-based security.

Q: I’ve heard that there has been a significant change in VB.NET since Beta 1.
Will this affect the Framework?

A: No.The changes being done to VB.NET are actually changes to allow
backward compatibility with VB 6.0 semantics.They do not truly affect the
portability or the CLR.

Q: What are the changes to VB.NET in Beta 2?

A: The changes are as follows:

■ VB.NET will default TRUE values to –1 again instead of 1. Just as in
VB,VB.NET also applies to explicit (using Cint() and so on) and
implicit conversions (giving an integer the value of the Boolean).

■ And/Or/Not/Xor will return to being bitwise operators instead of pure
logic.This removes BitAnd, BitOr, and BitNot operators from VB.NET.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_02 8/16/01 11:54 AM Page 88

The Microsoft .NET Framework • Chapter 2 89

■ And/Or/Not/Xor will be returned to VB 6.0 order of operator
precedence.

■ AndAlso and OrElse will be introduced to create the “short-circuit”
behavior once used by And/Or/Not/Xor.

■ Arrays will now be declared using an upper bound, as in VB 6.0.

Q: Do I have to use Visual Studio.net or a Microsoft-endorsed editor to create
my VB.NET files?

A: No.With the implementation of VBC.EXE, you can use any editor you want
to write the code, without suffering any bugs or problems.

Q: Is it better to learn and rewrite my existing VB 6.0 applications in VB.NET
or to make the necessary changes to my VB 6.0 application to run on
VB.NET?

A: That’s a subject of debate. It all depends on the size of your code. Naturally,
smaller programs will be easier to convert to VB.NET; even if you do convert
to .NET, you might still miss out on the advantages VB.NET has over VB 6.0.
On the other hand, learning and rewriting a complete program in VB.NET
can be time consuming. Keep these considerations in mind when deciding
what you should convert and what you should rewrite.

www.syngress.com

153_VBnet_02 8/16/01 11:54 AM Page 89

153_VBnet_02 8/16/01 11:54 AM Page 90

Installing and
Configuring VB.NET

Solutions in this chapter:

■ Editions

■ Installing Visual Studio .NET

■ The New IDE

■ Customizing the IDE

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 3

91

153_VBnet_03 8/15/01 11:21 AM Page 91

92 Chapter 3 • Installing and Configuring VB.NET

Introduction
Prior to beginning Visual Basic .NET installation, you should make some prelim-
inary checks first.You must verify that you meet the system requirements for
installation.When you install Visual Studio .NET, it will also install the MSDN
for Visual Studio .NET, which contains valuable information on .NET develop-
ment.You can also install sample projects that help you learn .NET. If you aren’t
sure whether you need a component during installation, you can always add
components later.

The Integrated Development Environment (IDE) has some changes, but it
should be familiar to those of you who have used Visual Basic 6.0 and Visual
Studio.All projects, regardless of the programming language, will be developed in
the same IDE now.When you start Visual Studio .NET, you no longer choose
between tools such as Visual Basic or Visual C++; you just start Visual Studio.To
keep in line with the new Internet strategy,Visual Studio starts with a home
page. It contains links for various items, and you can customize it to your liking.
You will see some new project options available. If you have used Visual Interdev
6.0, you are already familiar with the task list that is now available.The tabbed
child windows feature makes navigation between windows easier.The new IDE
makes development much easier, as we will see.

A new feature of the IDE is that it can be customized to your liking.You can
customize the home page for the links you prefer, create a profile that will con-
tain some preset defaults for different types of programmers, and choose from
several windows layouts and keyboard schemes. In this chapter, you will learn
how to install Visual Studio .NET, explore the new features of the IDE, and learn
how to customize the IDE to fit your needs.

Editions
Currently the Beta 2 version of Visual Studio .NET includes only the compo-
nents that will be found in Visual Studio .NET Professional Edition. Microsoft
plans to release at least two other editions, named Visual Studio .NET Enterprise
Architect and Visual Studio .NET Enterprise Developer.Visual Studio .NET
Enterprise Developer will include a host of tools to assist developers with the
process of building custom applications to use on the .NET platform including
modeling features, core reference applications, and testing capabilities.Visual
Studio .NET Enterprise Architect will include tools to simplify the job for

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 92

www.syngress.com

architects of XML-based Web services. Neither of the Enterprise editions are
widely available as of the printing of this book.

Installing Visual Studio .NET
You can install Visual Studio .NET on Windows 2000 and Windows NT 4.0.You
can execute code in Windows 98 and higher. Be aware that this product is still
under development; installing it on a production or development machine is not
advisable.There is also no guarantee that the applications built using Visual Studio
.NET Beta 2 will work the same way in the released version.Also, it is not advis-
able to create and deploy production applications using Visual Studio .NET Beta
2.Visual Studio .NET Beta 2 is designed for evaluation and academic purposes
and fit for installation only on test machines.

Visual Studio .NET Beta 2 should successfully install and interoperate
with existing Microsoft products including Visual Studio 6.0 and Visual Interdev.
However, certain issues might arise, including security issues. Make sure that
you read the release notes in Readme.htm, located in the root of Visual Studio
CD1.You can look for the latest information in the Beta 2 Web site at
http://beta.visualstudio.net.

Visual Studio .NET Beta 2 requires that a specified number of Windows
components be present on the machine before it is installed.The first step in the
installation process is to install the following Windows components:

■ Windows 2000 Service Pack 2

■ Microsoft Windows Installer 2.0

■ Microsoft FrontPage 2000 Web extensions client

■ Setup runtime files

■ Microsoft Internet Explorer 6.0 and Internet tools

■ Microsoft Data Access Components 2.7

■ Microsoft .NET Framework

Some of these system components, such as the .NET Framework, are still in
beta stages.Visual Studio .NET requires that the user be an Administrator on the
local machine. Given that the user is required to log on as an Administrator,
potential security issues may arise that could be exploited maliciously. Because
this is a beta version of the product, the installation might not complete success-
fully (or be aborted midway), and in these situations the password could remain

Installing and Configuring VB.NET • Chapter 3 93

153_VBnet_03 8/15/01 11:21 AM Page 93

94 Chapter 3 • Installing and Configuring VB.NET

in the registry. If this happens, the administrator password becomes easily acces-
sible.The minimum hardware requirements for installing Visual Studio are listed
in Table 3.1.

Table 3.1 Minimum Hardware Requirements for Installing Visual Studio

Hardware Type Minimum Requirement Recommended

Processor Pentium 2 processor with Pentium 3 processor with a
a speed of 450 MHz speed of 600 MHz

Memory 128MB 256MB
Hard Disk Space 3GB 3GB
Video Settings 800 x 600, 256 colors High Color 16-bit
CD-ROM Required Required

Exercise 3.1: Installing Visual Studio .NET
The three phases for installing Visual Studio .NET are as follows:

■ Phase 1 involves installing Windows components.

■ Phase 2 involves installing Visual Studio .NET.

■ Phase 3 involves checking for service releases.

Installing Visual Studio is not a difficult task. In this exercise, we walk through
the steps necessary for installation:

1. To start the installation, insert the Visual Studio .NET CD-ROM. If
installation does not start automatically, double-click setup.exe to start
the installation. Setup launches the initial screen shown in Figure 3.1.

2. Click Windows Component Update to bring up the End User
License Agreement screen, shown in Figure 3.2.

3. Click the I accept the agreement button to accept the user agree-
ment, and the screen shown in Figure 3.3 appears.This screen lists the
required Windows components for running Visual Studio .NET.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 94

Installing and Configuring VB.NET • Chapter 3 95

www.syngress.com

Figure 3.1 Installing Windows Components

Figure 3.2 End User License Agreement

153_VBnet_03 8/15/01 11:21 AM Page 95

96 Chapter 3 • Installing and Configuring VB.NET

4. Click Continue, and the screen shown in Figure 3.4 appears. Installing
windows components requires rebooting the machine several times.
Setup gives you an option to enter your password to do an unattended
install. Setup uses the password to automatically log the user in after
every reboot. Checking the Automatically log on check box enables
the two text boxes.Type the password in the first text box. Retype the
password for confirmation in the Confirm Password textbox.

5. After you specify the password, click Install Now! to begin the installa-
tion of Windows components.The setup program installs the compo-
nents shown in Figure 3.3 and automatically reboots the system when
necessary.This marks the end of the first phase of installation. Figure 3.5
shows the screen that appears after all the necessary Windows have been
successfully installed.

6. The next step is to start installing Visual Studio .NET, which constitutes
the second phase of the entire installation procedure.After you click the
Done hyperlink, setup shows you the same screen you saw in Figure
3.1, but this time the second link is enabled, and the first and third
hyperlinks are disabled. Figure 3.6 shows you the beginning of the
second phase of installation.

www.syngress.com

Figure 3.3 Windows Components

153_VBnet_03 8/15/01 11:21 AM Page 96

Installing and Configuring VB.NET • Chapter 3 97

www.syngress.com

Figure 3.4 Automatic Logon

Figure 3.5 Windows Component Update Summary

153_VBnet_03 8/15/01 11:21 AM Page 97

98 Chapter 3 • Installing and Configuring VB.NET

7. Click Visual Studio .NET, and the setup program copies the files
necessary for installation and displays the screen shown in Figure 3.7.

www.syngress.com

Figure 3.6 Second Phase of Installation

Figure 3.7 Beginning Visual Studio .NET Setup

153_VBnet_03 8/15/01 11:21 AM Page 98

Installing and Configuring VB.NET • Chapter 3 99

8. After entering the product key and your name, click the I accept the
agreement button. Click Continue to continue to the next part of
the current phase, which is selecting the features you want to install.
Figure 3.8 shows the available selections.

9. After you select the features to install, click Install Now! to start the
installation.The last phase of the installation, which is checking for ser-
vice releases, kicks in after the Visual Studio .NET installation is com-
plete.This involves checking for any service packs. Because this is a beta
release, this option is of little significance.

Installing on Windows 2000
Internet Information Server (IIS) and FrontPage Server Extensions must be pre-
sent on the Windows 2000 machine before you can install Visual Studio .NET
Beta 2. IIS is installed by default on Windows 2000 Server and Advanced Server
but not on Windows 2000 Professional. So make sure that IIS is configured
before you install Visual Studio .NET on a machine running Windows 2000
Professional.

www.syngress.com

Figure 3.8 Selecting VS.NET Features

153_VBnet_03 8/15/01 11:21 AM Page 99

100 Chapter 3 • Installing and Configuring VB.NET

FrontPage Server Extensions are configured on a Windows 2000 machine
only if the operating system is installed on the NTFS file system.You must install
FrontPage Server extensions if the Windows 2000 operating system is installed on
a FAT16 or FAT32 file system.After making sure that the required components
are installed, insert the Visual Studio .NET Beta 2 CD to begin the installation.

The New IDE
Visual Studio .NET, like Visual Studio 6.0, lends itself to automation by exposing
a very rich programming model.The new programming model supported by
Visual Studio .NET goes beyond the extensibility model supported in Visual
Studio 6.0, which has two extensibility models. One was used to automate the
Visual Basic 6.0 environment, and the other was to automate the Visual C++
environment. Microsoft Visual Basic 6.0 extensibility model allowed the devel-
oper to automate mainly the project environment.The Visual C++ environment
allowed the developer to exploit only the document and text editor.

Visual Studio .NET not only brought together all the development environ-
ments but also added a host of objects to the extensibility model. It provides direct
access to developers and tool writers to the underlying components and events
that drive the IDE.The developer can customize the look and feel of the IDE,
enhance its functionality, and integrate the IDE with other Microsoft applications.

You can customize the Visual Studio .NET IDE in two ways: with built-in
customizations and user-defined customizations. Built-in customization takes the
form of the customizable toolbox, customizable toolbar, and so on. User-defined
customizations take the form of known features such as add-ins, wizards, macros,
and so on.These features are some of the programmable components of the IDE.
The following sections cover these components in detail.

Integrated Development
Environment Automation Model
The automation capabilities of Visual Studio .NET give the developer absolute
control of the IDE.The developer can customize the IDE to his specific needs,
automate repetitive tasks, and virtually control the way the IDE works.To enable
this flexibility, the new IDE programming model consists of numerous objects.
These objects provide direct access to various windows such as the command
window, output window, and tasklist window, as well as the code editor and the

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 100

Installing and Configuring VB.NET • Chapter 3 101

tasklist events.The various objects are grouped under the following categories
depending on their functionality:

■ Add-in objects Add-ins are program modules that are created to
perform repetitive tasks within the IDE.Add-ins are discussed in the
following sections.

■ Project collection objects The Project collection objects store details
of a project that is created in the IDE.The project collection objects can
contain Visual Basic projects, C# projects, or Visual C++ projects.

■ Commands objects A command object represents a command in the
Visual Studio environment.

■ Build objects The Build objects allow a programmer to control the
build environment of Visual Studio .NET.

■ Events objects The Events object is responsible for providing access to
all events that are raised within the IDE.Thus, the programmer can use
this object for performing custom processing based on the occurrence of
an action.

■ Debugger objects The Debugger object is used to manipulate the
debugger, such as setting the next breakpoint, querying the breakpoints
hit, the status of the current program being debugged, and so on pro-
grammatically.

■ Properties objects The Property object is a single instance in a collec-
tion of Property objects.

■ Window configuration objects The Window configuration object
holds information on the layout and the way in which windows within
the IDE are configured.

■ Code objects The Code objects are essentially a collection of objects
that allows a programmer to manipulate the contents in the code editor.

Each of these high-level objects consists of a set of objects, collections, and
interfaces, each catering to a specific functionality.The top level Events object
contains the following objects:

■ BuildEvents The BuildEvents object provides events that are fired
when a solution is built.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 101

102 Chapter 3 • Installing and Configuring VB.NET

■ CommandBarEvents The CommandBarEvents object causes a click
event to occur when you click on a control in the command bar.

■ CommandEvents The CommandEvents object provides command
events for automation clients.

■ DocumentEvents The DocumentEvents objects provides events that
fire whenever an action is performed on a document.The events that are
fired are DocumentClosing event, DocumentOpened event,
DocumentOpening event, and DocumentSaved event.

■ Development Tool Environment (DTE) Events The DTEEvents
object provides events that are fired depending on the changes hap-
pening to the environment.The events that are fired are ModeChanged
event, OnBeginShutdown event, OnMacrosRuntimeReset event, and
OnStartupComplete event.

■ FindEvents The FindEvents object fires a single event that occurs
when you do a Find operation on files. It fires the FindDone event.

■ OutputWindowEvents This object fires three events whenever any
change happens to the output window.The events are PaneAdded event,
PaneClearing event, and PaneUpdated event.

■ SelectionEvents Whenever you make changes to a selection, a single
event in the SelectionEvents object is fired.The event name is
OnChange event.

■ SolutionEvents The SolutionEvents object fires eight different events
when changes are made to a solution.The events are AfterClosing event,
BeforeClosing event, Opened event, ProjectAdded event,
ProjectRemoved event, ProjectRenamed event, QueryCloseSolution
event, and the Renamed event.

■ TaskListEvents The TaskList events object provides events that respond
to changes made to the TaskList.The events are TaskAdded event,
TaskModified event,TaskNavigated event, and TaskRemoved event.

■ WindowEvents The WindowEvents object provides events that are
fired when changes are made to the windows in the environment.The
events are WindowActivated event,WindowClosing event,
WindowCreated event, and WindowMoved event.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 102

Installing and Configuring VB.NET • Chapter 3 103

■ VBProjectEvents, CsharpProjectEvents, and VCProjectEvents
These are late-bound properties of the Events object.They are available
when a project is opened in Visual Studio .NET.

For example, you can use the BuildEvents object to do processing whenever a
build process begins or whenever a build process ends.The SolutionEvents object
provides the AfterClosing, BeforeClosing, Opened, ProjectAdded,
ProjectRemoved, ProjectRenamed, QueryCloseSolution and the Renamed
events.These events provide a flexible way for programmers to customize the
Visual Studio .NET IDE to suit their requirements.

The integration of Visual Basic into the IDE means that both Visual Basic and
Visual C++ can now use the same extensibility model.This is unlike the pre-
vious versions of Visual Studio where Visual Basic 6.0 had its own extensibility
model that neither had as many as objects nor fired as many events.

www.syngress.com

Exception Handling
Visual Basic .NET introduces a new type of exception handling called
structured exception handling, besides supporting unstructured excep-
tion handling. Unstructured exception handling is implemented with the
help of On Error Goto, and the new structured exception handling
involves the use of Try, Catch, and Finally statements.

Structured exception handling provides a more powerful and a
comprehensive way to handle errors. It uses a predefined construct that
allows you to code, filter errors, and perform cleanup operations. The
Try block contains code that can potentially raise errors, the Catch block
has code that will trap the exceptions, and the Finally block is the final
step in setting up an exception handler. If an error occurs in the Try block
during execution of code, Visual Basic .NET evaluates each of the Catch
statements to match the exception that was generated. If a match is
found, the control is transferred to the first line of the Catch statement
that matches this exception. If no Catch statement is found, the control
is transferred to the outer Try…Catch…Finally block, if one was pre-
sent. If no external block was found, then the control is transferred to
the calling procedure, and a matching Catch statement is searched for.
If that is also not present, then a message box containing the error is

Debugging…

Continued

153_VBnet_03 8/15/01 11:21 AM Page 103

104 Chapter 3 • Installing and Configuring VB.NET

Add-Ins
The easiest way for developers to customize the development environment is to
use DTE extensions called add-ins. The term DTE extension refers to a collec-
tion of tools—such as add-ins, wizards, and so on—that extend the power of the
development environment.Add-in is the generic term for a program that is cre-
ated to perform tasks within the IDE, often in response to events.An add-in is
typically used to automate repetitive tasks and extend the functionality of the
development environment.

An add-in is a compiled application that is loaded and used by the IDE.They
can be invoked through the Add-in Manager, command window, during IDE
startup, or during the Visual Studio .NET startup from a command line.An add-
in is represented as a COM object or a .NET assembly that implements the
IDTExtensibility2 interface.The IDTExtensibility2 is an interface object that
provides five methods acting as events in a Visual Studio .NET environment.
They are fired when add-ins are loaded and unloaded in an environment, when
an environment is shut down, and so on.The five methods are as follows:

■ OnAddInsUpdate Method This event is fired when an add-in is
loaded or unloaded in an environment.

■ OnBeginShutdown Method This event is fired when the environ-
ment is shut down.

■ OnConnection Method This event is fired when an add-in is loaded
in the environment.

■ OnDisconnection Method This event is fired when the add-in is
unloaded from the environment.

■ OnStartupComplete Method This event is fired when the environ-
ment is ready.

www.syngress.com

displayed. Alternately, you can handle errors more gracefully by speci-
fying a Catch statement without any reference to an exception. In this
case, this Catch statement becomes a generic error handler and will be
called for all unhandled exceptions. The Finally statement is the last
statement to be executed in a structured exception-handling scenario.
This block normally contains code that releases connections to
databases, closing files, and so on.

153_VBnet_03 8/15/01 11:21 AM Page 104

Installing and Configuring VB.NET • Chapter 3 105

You can create a Visual Studio .NET add-in by using Visual Basic,Visual
C++, or C#.Add-ins created using Visual Studio .NET can be hosted in a
variety of Microsoft applications.

Visual Studio .NET provides an Add-in Wizard that helps you create an add-
in template. Once created, the add-in appears in the Add-in Manager.The Add-in
can then be configured to load during startup and/or when invoked from the
command line. Exercise 3.2 lists the various steps involved in creating the add-in
using the Add-in Wizard.

Exercise 3.2 Creating an
Add-In Using the Add-In Wizard

1. The Add-in Wizard is invoked when you choose the Visual Studio .NET
add-in template.You can find the template when you choose New
Project from the File menu and choose Extensibility projects project
type.After entering a name for the add-in and clicking OK, the Add-in
Wizard starts—Figure 3.9 shows its initial screen.The wizard collects
information from the user and creates the basic code for an add-in.

2. You can create add-ins in any of the languages supported by Visual
Studio .NET:Visual Basic, C#, and Visual C++. Figure 3.10 prompts the
user to choose the programming language with which the add-in will
be created.

www.syngress.com

Figure 3.9 The Initial Add-In Wizard Screen

153_VBnet_03 8/15/01 11:21 AM Page 105

106 Chapter 3 • Installing and Configuring VB.NET

3. Figure 3.11 lists the various hosts in which you can load the add-in.An
application host is an application that supports the execution of an add-
in. So, in this example, all of the applications listed here can execute the
add-in.

4. Figure 3.12 prompts the user to enter a name and a description for the
add-in.The name that you enter here appears when you click the Add-in
Manager submenu from the Tools menu.You can also type in a short
description.

www.syngress.com

Figure 3.10 Choosing the Programming Language

Figure 3.11 Selecting an Application Host

153_VBnet_03 8/15/01 11:21 AM Page 106

Installing and Configuring VB.NET • Chapter 3 107

5. Figure 3.13 displays the configurable options for the add-in.You can
specify whether you want the wizard to automatically create an entry in
the Tools menu for this add-in; specify that this add-in does not have a
user-interface and can be invoked from the command-line; specify that
the add-in must be loaded whenever the IDE starts; and finally, define
the accessibility of the add-in.You can use the last option to specify
whether the add-in is available to all users or only to the user who
installs it.

www.syngress.com

Figure 3.12 Entering a Name and Description

Figure 3.13 Configurable Options

153_VBnet_03 8/15/01 11:21 AM Page 107

108 Chapter 3 • Installing and Configuring VB.NET

6. Figure 3.14 shows the screen that allows you to configure the About
option for your add-in.You can use this option to display the name of
the application, the version number, and the author of the add-in.

7. Figure 3.15 shows you the last screen of the wizard.This screen merely
summarizes all the options that you have configured. Click Finish to
complete the wizard.

www.syngress.com

Figure 3.14 Configuring the About Option

Figure 3.15 Summary

153_VBnet_03 8/15/01 11:21 AM Page 108

Installing and Configuring VB.NET • Chapter 3 109

Wizards
As shown in the preceding section, a wizard is a user assistance tool that helps to
accomplish a task that is either complex or requires experience.The wizard typi-
cally consists of a series of dialog boxes that elicit information from the user in an
organized manner.After the wizard collects all the necessary information, it goes
about completing the task by implementing a method or methods using the
information the user provides. Before you can implement a wizard, you need to
add a reference to EnvDTE assembly.The EnvDTE assembly implements a lot of
interfaces, one of which is the IDTWizard interface.The IDTWizard interface
has only one method, called the Execute method.When you create a wizard by
implementing the Execute method of the IDTWizard interface, the necessary
code to complete the task is written as part of the Execute method.The Execute
method takes in four parameters:

■ A pointer to the DTE object.

■ A handle to the wizard’s parent window.

■ An array of parameters that allow you to specify options such as
WizardType, the directory where the solution files will be stored, the
directory where the solution will be installed, and so on.

■ An array of custom parameters.

You can also create a template wizard so that it is available for future use.A
template wizard, after it is created, is added to the Add Project or the Add Item
dialog boxes.

Macros
Macros are code snippets that you can invoked through a menu or a shortcut key,
and you use them to automate repetitive tasks.Visual Studio .NET has a Macro
IDE that lets you create, debug, and execute macros.The user interface for the
Visual Studio .NET macro IDE is similar to the IDE for other development tools
except that the Project Explore,Task List, Command Window, Properties
Window, Class View, Dynamic Help,Toolbox, Object Browser and Web browser
are designed specifically for the Macros environment.The macros that you code
in the Visual Studio .NET macros IDE are written in Visual Basic .NET. Using
the Macro IDE, developers can automate routine tasks and extend the function-
ality of the IDE, such as turning line numbers off and on, stripping tab spaces,
saving and loading a view, and so on.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 109

110 Chapter 3 • Installing and Configuring VB.NET

The Visual Studio .NET Macro IDE also has the macro recorder that allows a
user to automatically record macros.The macro recorder records the keystrokes
when it is in the recording mode. Once recording stops, the keystrokes are trans-
lated into code and stored.This provides an excellent learning tool for novice
users.To begin the macro recording, select Macros from the Tools menu and
then select Macro Recorder.The Recorder toolbar appears on the screen.The
Recorder toolbar has buttons to pause, stop, and cancel recording.You can also
control this operation from the Macros option in the Tools menu.

After you record and store a macro, you can run it from either the Macros
IDE or the Visual Studio .NET command window.You can also place them on a
menu and run them from there. Every time you record a new macro, the macro
gets recorded as a temporary macro.This macro is not saved unless you save it
explicitly by choosing the Save Temporary Macro option in the Macros sub-
menu, which is under the Tools menu.The temporary macro is available until
you record the next macro or close the current session with the IDE.

Home Page
The Visual Studio .NET start page is a central location for various features. From
here you can do the following:

■ Create a new project.

■ See a list of recently opened projects by clicking on the Get Started
option.

■ Find information about the new features in Visual Studio .NET and
check for Visual Studio .NET updates by clicking on the What’s New
option.

■ Set preferences through the My Profile option.

■ Get online help through the Search Online option.

■ Get information on the latest happenings through the Headlines
option.

■ Get detailed information on hosting your solutions through the Web
Hosting option.

■ View the latest news on the MSDN online library including all
announcements related to seminars and technical presentations by
clicking on the Headlines option.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 110

Installing and Configuring VB.NET • Chapter 3 111

■ Interact with various developers and other experts in the field through
the Online Community option.

The start page also serves as a Web browser for the IDE.You can configure
this Web browser to be docked, hidden, or floating.

The What’s New, Online Community, and Headlines options can periodically
receive updates from the Internet.The updates are received whenever you click
on any of these options when connected to the Internet. If you are not con-
nected, the last updated information is available.You can also customize what you
see in these pages by configuring the filter that is available. For example, two fil-
ters are available to see Visual Basic–related information.The Visual Basic Related
and Visual Basic options allow you to view only information and news related to
Visual Basic. Note that the filter setting also affects what topics you view if you
have MSDN installed.

The My Profile option allows you to customize various options of the IDE.
These options set your working preferences in the IDE.The My Profile options
consist of the following configurable parameters:

■ Profile The profile option is used to set the keyboard scheme and
layout of windows and to filter MSDN help. If you change either one or
all of the options mentioned in the previous paragraphs to suit your
needs, the profile option is reset to custom. If you choose Visual Basic
Developer as your profile, the corresponding keyboard scheme, window
layout, and the MSDN filter are set to those options that resemble Visual
Basic 6.0.

■ Keyboard Scheme The keyboard scheme lists the various shortcut key
combinations that are available for various options such as running a
solution, debugging, turning on or turning off breakpoints, and so on. If
Visual Basic developer was chosen as the profile, the keyboard scheme is
automatically set to the layout similar to Visual Basic 6.0. For example,
the function key F5 is used to run a project in Visual Basic.The same
key can now be used in Visual Studio .NET because the keyboard layout
is now the same as in Visual Basic 6.0.This allows you to leverage
existing knowledge and does not require you to learn new keyboard
configuration.

■ Window Layout The Window Layout configuration allows you to
configure the toolbar, solution explorer, server explorer, and so on to the
layout similar to previous versions of Visual Basic or Visual C++. If you

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 111

112 Chapter 3 • Installing and Configuring VB.NET

choose Visual Basic 6.0 as the option for Window Layout, then the IDE
places the Server Explorer window on the left of the IDE and auto-
hides it.The toolbox is docked on the left.The properties window and
Dynamic Help window are tab-docked at the bottom.The Solution
explorer and Class-view window are tab-docked on the right and on the
top of Properties window.

■ Help Filter The Help filter lets you configure the topics that are rele-
vant to your scope.This feature was available in the earlier versions of
MSDN as well. Note that this option does not apply to the content
shown in the Dynamic Help window. By choosing Visual Basic or Visual
Basic Related in the Help filter, you can view all topics related to Visual
Basic documentation as well as topics relating to Visual Database tools,
source code control, and the .NET Framework Software Development
Kit (SDK).

■ At Startup Show This option indicates what should appear when you
start Visual Studio .NET.The choices that you can choose from are
Visual Studio Home Page, Most Recent Solution, Open Project Dialog,
New Project Dialog, or an Empty IDE.

When you check the Open links from within the start page in a new
window, the topics or links that you view from the Visual Studio Start Page are
opened in a new window.When you click on the Get Started hyperlink, it dis-
plays the Get Started option in the Visual Studio .NET home page.

Figure 3.16 shows you the IDE after Visual Basic has been chosen as the
layout. Note the position of Server Explorer,Toolbox window, Solution explorer,
Class view, Properties, and the Dynamic Help window.

Project Options
The project options that are available in Visual Basic .NET are different from the
previous versions of Visual Basic.WebClasses and DHTML applications have been
removed and changes have been made to the Standard EXE,ActiveX EXE, and
ActiveX DLL projects.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 112

Installing and Configuring VB.NET • Chapter 3 113

The list of new projects is shown when you want to create a new project or
when you want to add a new project to your existing project.A project template
is associated with each project icon that you choose.This, in turn, determines the
output type and the other project options that are available for this project.The
project types that are available in Visual Basic .NET are distinctly different from
those in Visual Basic 6.0.Table 3.2 shows the various project types available in
Visual Basic .NET.

Table 3.2 Project Templates in Visual Basic .NET

Project Type Description

Windows Application A Windows Application project type is used to
create a windows-based application that has the
Windows forms as the primary tool for user inter-
face. This template creates a project with a
default form with a set of related references to
libraries present in the System namespace.

www.syngress.com

Figure 3.16 Visual Studio .NET Start Page Configured for Visual Basic

Continued

153_VBnet_03 8/15/01 11:21 AM Page 113

114 Chapter 3 • Installing and Configuring VB.NET

Windows Control Library A Windows control library is similar to the ActiveX
control project found in Visual Basic 6.0. The
template creates an empty container and refer-
ences the related libraries in the System name-
space. You can build the user interface for the
control, with the help of existing controls, in the
empty container. Once the controls are built, you
can use them along with the existing controls
provided by the IDE.

Class Library A project type for creating classes to use in
Windows-based applications. This template
creates a project with a default class with refer-
ences to libraries in the System namespace. The
default interface that Visual Studio .NET provides
is that of a blank screen. The user-interface is
created by dragging and dropping controls from
the toolbox.

ASP.NET Web Service A Web service is typically a middle-tier business
functionality that is exposed through the HTTP
protocol. This project type allows you to create a
Web service.

ASP.NET Web Application A Web application project is primarily used to
create Web pages that serve as the user interface.

Web Control Library A Web control library project is used to create
controls for Web applications. The template
creates a Web control template with default prop-
erties. You can then customize the control to your
requirements.

Console Application This project type is used to create applications
that do not have a user interface. They are
typically invoked from the command prompt. A
console application project contains a module
with only subroutine called Sub Main.

Windows Service A windows service project is used for creating
services for Windows. A window service project
template consists of a blank screen similar to that
of a class library. The template also creates a
module called user services, which contains the
basic framework that will help you get started on
coding windows services.

www.syngress.com

Table 3.2 Continued

Project Type Description

Continued

153_VBnet_03 8/15/01 11:21 AM Page 114

Installing and Configuring VB.NET • Chapter 3 115

New Project in Existing A wizard for creating a project in an existing
Folder folder. The wizard allows you to create an empty

project in an existing folder. The wizard queries
the user for the name of the folder in which the
project is to be created and creates an empty
project in the specified folder. You can use the
Import Folder Wizard when you already have an
existing project configured for a specific function-
ality, and you merely want import it to your
existing solution.

Empty Project An empty project for creating a Windows applica-
tion. The empty project template creates an empty
project. You can then add necessary references,
Windows forms, and other project items as neces-
sary. The difference between an Import Folder
Wizard template and an Empty Project template
is that the Empty Project template creates the
specified folder if it does not exist, whereas an
Import Folder Wizard requires that a folder be
present.

Empty Web Project An Empty Web Project template is similar to an
empty project. The only difference is that it allows
you to create a Web application instead of a local
application.

Visual Studio .NET supports a variety of file types and their related file
extensions.Visual Studio .NET uses two file types to store settings specific to
solutions.The file types are SLN and SUO.The SLN file is the Visual Studio
solution and it organizes projects, project items, and solution items into the solu-
tion by providing the environment with references to their locations on disk.The
SLN file is analogous to a Visual Basic group (VBG) file found in Visual Basic
6.0.The VBG file is created if the application contains one or more projects. It
also acts as a logical container to various miscellaneous files that are opened out-
side the project group.The SUO file contains the solution user options and stores
all of the options that are associated with the solution.This helps in restoring the
customizations each time the project is opened.

www.syngress.com

Table 3.2 Continued

Project Type Description

153_VBnet_03 8/15/01 11:21 AM Page 115

116 Chapter 3 • Installing and Configuring VB.NET

Toolbox
The Toolbox window is organized into various tabs and contains a host of user
controls for use in Visual Studio .NET.You can open the Toolbox window by
choosing Toolbox from the View menu.The controls in the Visual Studio
.NET IDE have been categorized under different headings. Each heading is
represented by a tab in the Toolbox window.Thus, the toolbox contains the
following tabs:

www.syngress.com

Debugging Various Projects
Visual Studio .NET introduces new project types that allow you to build
applications that can take advantage of the .NET framework. The intro-
duction of these new project types also means that you can employ
some new techniques while debugging these project types. This fol-
lowing list discusses some of the project types and the procedure to
debug these project types:

■ You can debug Windows Application projects by choosing
Start from the Debug menu.

■ Class Library Projects are very similar to DLLs. Because DLLs are
hosted by an application, you need to debug the host applica-
tion as well. If the host application is a managed-code appli-
cation, you will be able to debug the DLL as part of the
application. But if the host application is an unmanaged-code
application, you need to attach a debugger to the process.

■ Windows Controls projects are similar to class library pro-
jects. They cannot be debugged during design-time. A
Windows control is usually added to a Windows form. Once
the control is instantiated, you can set breakpoints in your
code to debug the control.

■ Console Application projects have special debugging mecha-
nisms. Console application projects may require the use of
command-line parameters to start the debugger. You can
specify command-line parameters in the application’s property
pages. Once specified, these are stored with the solution.

Debugging…

153_VBnet_03 8/15/01 11:21 AM Page 116

Installing and Configuring VB.NET • Chapter 3 117

■ Windows Form Controls

■ Data Controls

■ System Controls

■ HTML Controls

The toolbox has the unique feature of context-sensitivity in relation to the
designer. So, if you are designing a Web form, only the HTML Controls tab is
displayed. Or, if you are designing a Windows form, only the Windows Form
controls are displayed.This reduces a lot of clutter and facilitates ease of use.

Two tabs are displayed by default when you open the IDE: the General tab and
the Clipboard Ring tab.You can customize the toolbox window by adding more
tabs. Each tab in the Toolbox window, even the ones you create, has an item called
the Pointer, indicated by an arrow that points diagonally to the left.The purpose of
this item is to return the cursor to its original state. For example, suppose you
choose to add a Listbox to a Windows form.You then changed your mind to
include a ComboBox instead of a Listbox. Because you have already selected a
Listbox, you will have to place the Listbox on the form, delete it, and then choose
the ComboBox.You can do this more efficiently by clicking on the Pointer
button. So in this situation, before placing the Listbox control on the form, click on
the Pointer button to return the cursor to its original state, and then choose the
ComboBox control. Figure 3.17 shows you the picture of a toolbox.

www.syngress.com

Figure 3.17 Toolbox Window

153_VBnet_03 8/15/01 11:21 AM Page 117

118 Chapter 3 • Installing and Configuring VB.NET

You can customize the appearance of the toolbox and its items by using
various methods:

■ Add and remove tabs In order to add a new tab, right-click on a tab
and choose Add Tab from the shortcut menu.A textbox is displayed at
the bottom of the toolbox window. Give a suitable name for the tab.The
new tab appears as the last tab in the Toolbox window. Once added, you
can use the new tab to store items. Note that the pointer item is auto-
matically added to the new Toolbox.

■ Add and remove items contained in the tabs Right-click on the
tab that you want to customize. Choose Customize Toolbox from the
shortcut menu.This displays a tabbed window displaying various control
classes with each class containing different controls.The various classes
are COM controls, Modeling shapes, General shapes, and .NET frame-
work components. Each control is displayed with a checkbox alongside
it.You can check to add a new control to the tab. If a control already
exists in the tab, the control is already checked.You can uncheck it to
remove the control from the tab.

■ Rename tabs and items Right-click on the tab that you want to
rename and choose Rename from the shortcut menu.Type the new
name in the textbox and press Enter.

■ Choose to display all tabs and hide unwanted tabs You can choose
to display all tabs or let the IDE decide which tabs to display depending
on the context. If you choose to display all tabs, right-click on any of the
tabs and choose Show All Tabs.This option toggles on or off.

■ Choose the type of view for items displayed in the tabs You can
choose to configure how the items on the tab are displayed.The options
that are available are Compact View and List View. In Compact View, the
items are displayed without their names. Use this option if you are
familiar with controls and can identify the control just by looking at it.
The List View option displays the controls with their associated text..To
change the view, right-click on the tab and choose List View.This is a
toggle-on-or-off option. If a tick mark is displayed, the current view is
that of a List View.

■ Sort items in the tab The items in the toolbox can be sorted alpha-
betically.You can do this by right-clicking on the items area and
choosing Sort Items Alphabetically.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 118

Installing and Configuring VB.NET • Chapter 3 119

■ Reposition the items in the tab You can reposition items displayed
in the toolbox by clicking on an item and choosing Move Up or Move
Down.The action of moving up or down depends on the view. If a
compacted view is selected, the Move Up option moves the item to the
left and the Move Down option moves the item to the right.

The toolbox normally contains the following tabs if Show All Tabs is chosen:

■ XSD Schema The XSD Schema tab contains items that are used
when creating schemas.

■ Dialog Editor The Dialog Editor contains items such as Button, text
box, list box, and so on.These items pertain to those that are normally
used in a dialog box.

■ Web Forms Web form controls contain controls such as hyperlink,
ImageButton, and so on.

■ Components The Components tab contains controls that allow access
to system operations.The following controls are part of the components
tab: FileSystemWatcher, EventLog, Directory Entry, Directory Searcher,
Message Queue, Performance Counter, Process, Schedule, Service
Controller, and Timer.

■ Data The Data tab contains controls that can be bound to data.You use
these when you connect to a database and retrieve data from it. Some of
the controls that are a part of the Data tab are DataSetView, DataView,
SQLConnection,ADOConnection, and so on.

■ Win Forms The Win Forms tab contains controls that are normally
used in Windows forms.

■ HTML The HTML tab contains controls that are used to format a
HTML page.

■ Clipboard Ring The Clipboard Ring tab is similar to the clipboard
functionality offered by an operating system. In this case, the clipboard
ring stores code that was either cut or copied within the IDE. Each item
is stored in the Clipboard Ring tab. Once stored, you can place the
cursor in the appropriate position in the code editor window and
double-click on the appropriate item in the clipboard ring tab. So, for
example, if you have a subroutine that you frequently refer to, you can
code it for the first time and then copy it. Once copied, it is stored in

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 119

120 Chapter 3 • Installing and Configuring VB.NET

the Clipboard Ring tab. Subsequently, whenever you want to reference
the procedure in code, you only have to double-click to paste it in the
code-editor window.

■ General The General tab is provided to the programmer as a matter of
convenience.You can store frequently-used or user-created controls in
the General tab.

Child Windows
Visual Studio .NET contains various tools and options that allow you to con-
figure windows present in the IDE.Windows are displayed in the IDE in two
ways: Multiple Document Interface (MDI) mode and Tabbed Document mode.
In the MDI mode, the IDE provides a parent window that is a container for all
other windows.All windows that are opened are opened within the context of
this container. In the tabbed document mode, all windows are tabbed.You can
choose the appropriate document by clicking on the corresponding tab.This is
the default mode that Visual Studio .NET uses.You can configure the IDE to
choose a specific mode by choosing General under the Options submenu in
the Tools menu. Figure 3.18 shows you the IDE that uses the tabbed mode.

Figure 3.19 shows you the IDE when it is configured to use the MDI mode
to arrange windows.

It is interesting to note the changes made to the menu items related to
arranging windows of the Window menu.When the IDE is configured to use the

www.syngress.com

Figure 3.18 Tabbed Mode

153_VBnet_03 8/15/01 11:21 AM Page 120

Installing and Configuring VB.NET • Chapter 3 121

MDI mode, the menu items in the Window menu change from Tile Horizontally
and Tile Vertically to New Horizontal group and New Vertical group. Choosing
the new Horizontal or new Vertical group splits the existing screen vertically or
horizontally and places the active tab in the new pane. Figure 3.20 is an exten-
sion of Figure 3.18 after a new horizontal group is selected.

www.syngress.com

Figure 3.19 MDI Mode

Figure 3.20 Tabbed Mode with a New Horizontal Group

153_VBnet_03 8/15/01 11:21 AM Page 121

122 Chapter 3 • Installing and Configuring VB.NET

Window Types
The IDE consists of two types of windows:

■ Tool windows

■ Document windows

Tool windows are those that are listed in the View menu.They are defined by
the current application.You can configure the tool windows to show or hide
automatically, link with other tool windows, dock against the edges of the IDE,
and float over other windows.

Tool windows can be made dockable or undockable by selecting or dese-
lecting the Dockable option. Docking is a term used when two or more windows
are combined.This option is available on the shortcut menu when you right-click
on the tool window.When you make a window dockable, it floats over other win-
dows or it snaps to the side of the application window.When a tool window is in
an undocked state, it appears as a document window.A document window appears
a child window if the IDE is in a MDI mode, or it appears as a tabbed window if
the IDE is configured to use the tabbed window option. Figure 3.21 shows you
the illustration with the Toolbox window set in a docking state.

www.syngress.com

Figure 3.21 Docked Toolbox Window

153_VBnet_03 8/15/01 11:21 AM Page 122

Installing and Configuring VB.NET • Chapter 3 123

Arranging Windows
The IDE allows you to arrange tool windows and document windows in such a
way that it maximizes the viewing area.You can dock or hide tool windows, tab
dock windows, or even tile document windows.

In order to dock or hide tool windows, select Dockable from the Window
menu and drag the window toward the edge of the IDE window until you see a
superimposed outline of the window in the location you want.You can also
move the tool window without letting the window snap into its place. In order
to achieve this, press the CTRL key as you move the window. In order to hide the
window, you can right-click on the tool window and choose the Auto Hide
option. Or, if the window is already docked, you can hide the window by
clicking on the push-pin option on the window. If the push-pin is pointing
down, then the Auto Hide is disabled; if it is pointing horizontally, the Auto Hide
option is turned on.

In order to tile document windows, if the IDE is configured to use the
tabbed document mode, select a tab and drag it below or above the current doc-
ument title.A rectangular outline appears on the area in which it will be placed.
Alternatively, you can do the same by selecting the New Horizontal Group or
New Vertical Group from the Window menu. If the IDE is in the MDI mode,
you can choose the Tile Horizontally or the Tile Vertically option from the
Window menu.

Task List
The TaskList window allows you to organize and manage your development pro-
cess.You can associate this to a TODO list, which you might have to complete a
set of tasks.You can display the Task List window by selecting TaskList Window
under the Other Windows submenu on the View menu.The task list window
can help you do the following:

■ Locate build and compile errors

■ Mark items as completed as you complete each task

■ Add user notes in the solution

■ Filter task list according to the predefined views

■ Sort entries in the TaskList by Priority, Category, Checked, Description,
File, or Line

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 123

124 Chapter 3 • Installing and Configuring VB.NET

Figure 3.22 shows a sample TaskList window.The advantage of using tasks is
that you can double-click on a task that is listed in the task list window, and the
IDE directly takes you to the document and the line for editing.You can add
tasks by adding a comment in your code, followed by the token TODO:. Once
added, the corresponding task is listed in the TaskList window.You can also con-
figure the TaskList window to display a custom token.You can use a custom
token to represent a user-defined situation in a solution. For example, you might
want to add a custom token with the name FUTURE.This could represent fea-
tures of your application, which will not be implemented in the current version
but might be implemented in future versions. So, you can mark portions of code
that will be implemented in the future with this custom token.This also serves as
a reminder when this project is revised for later editions. Exercise 3.3 guides you
through the process of setting up a custom token.

Exercise 3.3 Setting Up a Custom Token
1. Click on the Tools menu and choose Options. In the Options window,

click on the Environment tab and choose the Task List option.

2. Type a name of the custom token in the textbox that is present below
the Name: caption.

3. Click on Add to add it to the list of tokens.You can also set the priority
of the token to High, Normal, or Low.

TaskList Views
You can configure the TaskList to displays tasks according to predefined views. In
order to do this, right-click on the window and choose the Show Tasks option.
This option lists various views that you can configure to view the tasks relevant
to the current situation.Table 3.3 lists the various views.

www.syngress.com

Figure 3.22 TaskList Window

153_VBnet_03 8/15/01 11:21 AM Page 124

Installing and Configuring VB.NET • Chapter 3 125

Table 3.3 TaskList Views

Category Description

Previous View The Previous View option restores the view that was in
effect before the current view. For example, if your previous
view was set to All and the current view is set to Comment,
choosing Previous View restores the view to list all tasks for
the current project.

All Displays all the tasks for the current project. No filter is
applied.

Comment The Comment view displays comments in the code that
includes the standard comment tokens and custom com-
ment tokens. Any change made to the comment token in
the form of editing or deleting has an immediate effect on
the TaskList view. You can remove a comment item from the
TaskList window by removing the comment from the code.

User You can add a user task manually by entering it in the
column that has the Click here to add a new task text. These
can be checked off as completed when you complete them.

Shortcut The shortcut is used to point to the code in the solution that
you frequently refer to. For example, if you have declared a
number of constants in your solution, and you frequently
refer to it, you can mark the first line where declarations
start and refer to it as you code. In order to add a TaskList
shortcut, select the line of code that you want as a shortcut.
Select Bookmark from the View menu and choose Add Task
List Shortcut from the Bookmark submenu. Once added,
the TaskList window displays the shortcut if the current view
is set to All or if the current view is set to Shortcut.

Policy The policy view lists errors thrown by the Template
Description Language. The Template Description language is
the notation used to write the policy files of Visual Studio
Enterprise Templates. These policies define the structure of
an enterprise application. You can choose to view policy
messages by selecting Policy from the Show Tasks shortcut
menu. In order to remove the policy message from the
TaskList window, fix the problem and reopen the solution.

Current File Lists all tasks for the file currently in view. There is a slight
difference between the All and the Current File views. The
All view shows you all views in all the files, the Current File
shows you all tasks in the current file only.

www.syngress.com

Continued

153_VBnet_03 8/15/01 11:21 AM Page 125

126 Chapter 3 • Installing and Configuring VB.NET

Checked The Checked option shows you all tasks that have been
checked off as completed.

Unchecked The Unchecked view shows you all tasks that have not been
checked.

Locating Code
The IDE provides you with several options that allow you to browse through
documents to locate lines of code.These features make working with the IDE
easy, particularly when you have a solution that contains numerous files con-
taining many lines of code.You can bookmark various lines of code and navigate
through the bookmarks using the Next bookmark and Previous bookmark
commands. In addition, you can annotate code by adding a standard comment
token or a custom comment token and adding shortcuts to a line of code.You
can also scroll through the documents that have been edited in the current
session by using the Forward and Backward toolbar items.

Annotating Code
Annotating code is the process of adding user information to the code.
Annotating code usually takes the form of comments.Visual Basic .NET allows
you to annotate code by adding standard comment tokens and custom tokens,
which are listed in the TaskList window.When you double-click on a task listed
in the TaskList window, the IDE automatically takes you to the code location.
Note that comment tokens in HTML or CSS or XML markup are not displayed
in the Task List.Annotating code has various advantages:

■ It makes the code more readable. But you must exercise caution here.
Too much annotation might make it look like more of a story, thus
defeating the main purpose of making the code self-describing.

■ It makes it easier to view changes made to the code over a period of
time, if the programmer indicates what has been changed.

■ It also helps to understand the programming logic used by a programmer.

In order to add a comment link to the TaskList window, enter the comment
marker for Visual Basic .NET, which is an apostrophe (‘).Then begin the

www.syngress.com

Table 3.3 Continued

Category Description

153_VBnet_03 8/15/01 11:21 AM Page 126

Installing and Configuring VB.NET • Chapter 3 127

comment with one of these tokens:TODO, HACK, or UNDONE.You can then
write the comment text after this token. Once you add this to your code, the
TaskList view is automatically updated. If you do not see this in the TaskList
window, check out the filter settings.

You can also create custom tokens other than the default tokens of TODO,
HACK, or UNDONE.These custom token also serve as personal markers. In
order to do this, select Options from the Tools menu. Select Environment and
then choose task list. In the Comments token text field, type the name of the
token and click Add.You can also set the priority of the token to Normal,
Low, or High.

Another form of annotating code is to include shortcut to code. In order to
add a TaskList shortcut, select the line of code that you want as a shortcut. Select
Bookmark from the View menu and choose Add Task List Shortcut from
the Bookmark submenu. In order to remove the shortcut, choose the Remove
Task List Shortcut from the Bookmark submenu.

Solution Explorer
The Solution Explorer in Visual Studio .NET is the equivalent of the Project
Explorer found in the previous versions of Visual Studio.The Solution Explorer
organizes the files contained in the current solution. Figure 3.23 shows you an
illustration of the Solution Explorer.

The main purpose of a Solution Explorer is to manage files contained in a
solution.The Solution Explorer also helps you move and copy files within a solu-
tion, select multiple files to perform a single operation related to the selected
files, and assign a project in a multiple-project environment as a startup project.

The Solution Explorer provides a limited set of toolbar buttons that allow
you to perform specific operations on the object that is currently in view. For
example, if you are working on a form, the Solution Explorer will display five dif-
ferent toolbar buttons.The purpose of each toolbar button, shown in Figure 3.23,
is as follows:

■ Clicking on the first toolbar button opens the code editor for the form.
This is identified by the icon with some lines in a window.

■ Clicking on the second toolbar button displays the form designer.This is
identified by the icon that has two boxes in the window.

■ Clicking on the third toolbar button refreshes the Solution Explorer’s
view.This is represented by two arrows following each other.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 127

128 Chapter 3 • Installing and Configuring VB.NET

■ Clicking on the fourth toolbar button displays all the files that are con-
tained in the solution. Normally, only the forms, classes, and references
are displayed. Miscellaneous files, such as object and debug files, are not
displayed by default.This is identified by a series of small file icons.

■ Clicking on the last toolbar button displays the properties for the
selected object, if a property page is available.Thus, when either a solu-
tion or a project in the solution has the focus, you can click this button
to bring up the properties for that object.This is represented by a tabbed
dialog box.

Solution Explorer allows the user to perform many file and project related
management tasks. Some of the most common tasks include moving and copying
items, setting up a startup project, selecting multiple items, assigning a project, in
a multiproject environment, to be a startup project, and so on.

You can perform common file operations, such as move or copy, on the files
present in the Solution Explorer. Moving and copying files, in this context,
merely refers to referencing the name of the file. So, when you click on a form
and drag it onto the code editor window and drop it, the physical path of the
form is displayed in the position it was dropped.You can perform other file
operations as follows:

www.syngress.com

Figure 3.23 Solution Explorer

153_VBnet_03 8/15/01 11:21 AM Page 128

Installing and Configuring VB.NET • Chapter 3 129

■ Opening files You can open files from Solution Explorer by merely
double-clicking them.You can also change an item’s default editor by
right-clicking the item and choosing Open With… from the shortcut
menu.

■ Multiple Selection You can select multiple items from a single project
or across multiple projects in a single solution. If you need perform the
same operation to a set of files, you can multiselect all these items and
perform the operation only once. For example, if you want change the
properties of two or more items or exclude only these items from the
project. Note that when you select multiple items, the commands avail-
able are the ones that are common to both the items.

■ Startup Project You can set a project, in a multiproject solution, to
be a startup project.This is the same as in the previous versions of Visual
Studio.The Solution Explorer displays the name of the startup project
in bold.

Properties Window
The Properties window, shown in Figure 3.24, lets you set properties for user
controls and other objects present in the form or a designer. Note that the
Properties Window displays only design-time properties. Runtime properties are
not displayed in the Properties Window.

www.syngress.com

Figure 3.24 Properties Window

153_VBnet_03 8/15/01 11:21 AM Page 129

130 Chapter 3 • Installing and Configuring VB.NET

The dropdown listbox that you see on top of the Properties box lists the var-
ious controls that are on the form, including the form itself.When you select
multiple objects in a form or in a designer, the dropdown listbox does not display
anything.The properties that will be displayed are the ones that are common to
all selected objects.

The first toolbar button that you see below the listbox is the Categorized
button.This is represented by the plus and minus signs.When you click on this
button, the properties window lists all properties and its values for the selected
object after grouping it by category. Each category is a grouping of logically
related properties. For example, a Windows form’s properties can be categorized
as follows:

■ Accessibility

■ Appearance

■ Behavior

■ Data (Bindings)

■ Design

■ Focus

■ Layout

■ Misc

■ Window style

The second toolbar button lists all the properties alphabetically.This is repre-
sented by the letter Z below the letter A followed by a down arrow.When you
click on this button, all properties are sorted in alphabetical order.The third
toolbar button is used to display the properties of the document.The properties
are displayed for the object that is currently selected.

Form Layout Toolbar
The form layout toolbar contains various options to align controls on the form.
This toolbar is very helpful in building an attractive user interface.Table 3.4 lists
the various toolbar buttons and their descriptions.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 130

Installing and Configuring VB.NET • Chapter 3 131

Table 3.4 Form Layout Buttons

Toolbar
Button Description

Align the selected controls to the grid

Align all the selected controls to have the same left coordinates

Align all the selected controls to have the same center coordinates

Align all the selected controls to have the same right coordinates

Align all the selected controls to have the same top coordinates

Align all the selected controls to have the same middle
coordinates
Align all the selected controls to have the same bottom
coordinates
Make all selected controls to be of the same size

Make all selected controls to be of the same height

Make all selected controls to be of the same width

Size selected controls to grid

Configure selected controls to have the same horizontal spacing

Increase the horizontal spacing between the controls

Decrease the horizontal spacing between the controls

Remove the horizontal spacing between the controls

Configure selected controls to have the same vertical spacing

Increase the vertical spacing between the controls

www.syngress.com

Continued

153_VBnet_03 8/15/01 11:21 AM Page 131

132 Chapter 3 • Installing and Configuring VB.NET

Decrease the vertical spacing between the controls

Remove the vertical spacing between the controls

Center controls horizontally

Center controls vertically

Bring the selected control to front

Move the selected control to back

Hide/Show Code Elements
The code editor in Visual Studio .NET gives you the option of outlining code.
This feature reduces clutter in your code editor and allows you to see only the
current code you are working with. Outlined code is not deleted—it is merely
collapsed.You can identify outlined code by a rectangular box containing three
dots. Outlining code is an effective way to work only with relevant subroutines
or functions.

The Collapse… or Expand… option in the shortcut menu allows you to
hide or show code elements by selecting the contents of the procedure or func-
tion. If the code is collapsed, you see a rectangular box containing three dots after
the name of the function. In order to expand the code, you can either double-
click the rectangular box, click on the plus sign found in the left corner of the
code editor, or choose Expand… from the shortcut menu. In order to collapse
the code, choose the contents of the procedure or function and choose
Collapse… from the shortcut menu.

Figure 3.25 shows the part of the code editor window with some collapsed.
Note the plus sign on the margin and the ellipsis (…) at the end of the sub-
procedure. Figure 3.26 shows you the subprocedure after it has been expanded.

www.syngress.com

Table 3.4 Continued

Toolbar
Button Description

153_VBnet_03 8/15/01 11:21 AM Page 132

Installing and Configuring VB.NET • Chapter 3 133

Web Forms
The Web forms technology is used to create Web pages that contain program-
ming logic embedded besides code that creates the user interface.Web applica-
tions that are created using this technology can exploit the new features of
browser independence, event manipulation, and enhanced scalability, to name a
few.Another advantage of using Web forms is that various development languages
support it. Highlighted text is similar to the MSDN.

Applications built using Web forms are spread over two layers: the user-inter-
face layer and the business logic layer.The user interface consists of a Web form
containing user controls to accept input.The business logic for the Web form
consists of code that interacts with the form in the backend.The programming
logic is written in Visual Basic .NET or C#.When the form is executed, the Web
forms application dynamically produces the HTML output for your page.Web
applications built using Web forms have the following characteristics:

■ The Web forms technology involves isolating all application logic to the
server.This leaves the client free to be designed so that it can run on any
browser without worrying about coding for specific browsers.

■ The Web forms technology provides the facility of handling events.The
object model supports events on the client-side as well as on the server.

■ The Web forms framework introduces enhanced state management.The
Web forms framework saves the state of the forms and the controls using
a state bag, session object, and an application object.A state bag is an
extensible data structure that stores various values.This is an important

www.syngress.com

Figure 3.25 Code Editor with Collapsed Code

Figure 3.26 Code Editor with the Same Code, Now Expanded

153_VBnet_03 8/15/01 11:21 AM Page 133

134 Chapter 3 • Installing and Configuring VB.NET

aspect because every time a page is refreshed, any form-specific values
could be lost.

■ Client forms created using the Web forms framework require only the
services of a browser to run. No other component is necessary.

Intellisense
The Intellisense technology has been around for a long time.The advantage of
Intellisense is that you do not have to remember the properties and methods that
are associated with the object. In Visual Studio .NET, the Intellisense technology
has been beefed up to automatically list classes across various namespaces.

The editor provides the completion on various keywords.The editor also fil-
ters tokens with respect to the current context. For example, if you are inside a
subroutine and you type End followed by a space, the code editor quickly recog-
nizes the context and displays Sub as a member in the drop down listbox.
Another example is the usage of the Option keyword.You can use the Option
keyword with Compare, Explicit, and Strict.When you type the Option keyword
followed by a space, a listbox containing the three choices appears.

The code editor also supplies completion on Enum and Boolean keywords.
When a statement refers to a member of an enumeration, Intellisense automati-
cally displays a list of all the members in the enumeration.The same holds good
for a Boolean statement as well.When a statement refers to a Boolean,
Intellisense automatically displays true or false. Some of the options available
under Intellisense are the following:

■ Member Listing Intellisense displays the list of members related to the
class or the specific namespace.

■ Parameter Info The parameter info option displays a list of parameters
that are required for the subroutine or the function and the return type
if the method happens to be a function.The Intellisense feature bold-
faces the current parameter to indicate the current parameter that you
are working with. Intellisense has been upgraded to support over-
loaded functions as well. For overloaded functions, you can select which
parameter list you want to view.

■ Word Completion Intellisense does a word completion when you have
entered the minimum number of characters to resolve any ambiguity.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 134

Installing and Configuring VB.NET • Chapter 3 135

■ Quickinfo The quickinfo feature of Intellisense displays the signature
of the function or a subprocedure. For example, if you type in msgbox
and then select the QuickInfo option from the Intellisense submenu,
the IDE displays the list of parameters that are required by the Msgbox
function.The Intellisense submenu is a part of the Edit menu.

Customizing the IDE
The Visual Studio .NET environment allows you to customize various settings to
suit your needs.You can configure the code editor, customize the start page, cus-
tomize shortcut keys, customize toolbars, and so on.All these allow you to work
more easily with the Visual Studio .NET environment.

Customizing the Code Editor
You can customize the code editor to change the settings that apply to the gen-
eral actions and view of the code editor.You can do so by setting various options
in the Text Editor folder, found under the Options submenu in the Tools
menu.The folders under Text Editor allow you to tailor the settings on a per-
language basis.You can also customize the settings in such a way that it applies to
all languages.This is done by choosing the All Languages folder.

For example, you can configure the editor to set some Visual Basic–specific
commands.You can configure the editor to automatically insert the end con-
structs.This way, if you type in an If construct and press the enter key, the End
If statement is automatically inserted.

Customizing Shortcut Keys
Shortcut keys are assigned to menu items so that they can be invoked by a com-
bination of keystrokes.This saves you time by not accessing the menu each time
you want to use a particular command.Visual Studio .NET contains various key-
board mapping schemes.These schemes represent the various shortcut key com-
binations that are specific to Visual Basic 6.0,Visual C++ 2.0,Visual C++ 6.0,
and Visual Studio 6.0. If you choose any of the predefined schemes, the appro-
priate shortcut key combination is assigned to the commands. For example, if the
Visual Studio .NET IDE is configured to use the Visual Basic 6.0 keyboard-map-
ping scheme, the Step Into option in the Build menu is assigned the F8 func-
tion key.Whereas, if you choose the Visual C++ 6.0 keyboard mapping scheme,
the same option is assigned the F11 function key. Besides the predefined keyboard

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 135

136 Chapter 3 • Installing and Configuring VB.NET

mapping schemes, you can configure custom keyboard schemes to assign various
shortcut key combinations.A list of all available commands is available in a listbox
displayed below the Show Commands Containing text box.You can invoke this
option by choosing Keyboard option from the Environment tab.This window
is displayed when you choose Options from the Tools menu. Choose a com-
mand for which you want to assign a shortcut key.You can scope the shortcut
key to be applicable throughout the IDE or only to specific editor. If you choose
Global, the shortcut key is applicable to the entire IDE. Shortcut keys are a com-
bination of text key and a nontext key.The nontext keys are Ctrl, Alt, and Shift.
When assigning a shortcut key, place the cursor in the Press Shortcut Key(s)
textbox and press a nontext key and a text key.You can then click on Assign and
click OK.

Customizing the Toolbars
You can configure the toolbars to suit to your requirements.You can move the
toolbar to new location by clicking and dragging it.You can also create a new
toolbar, add new commands, or remove existing commands from a toolbar.
Exercise 3.4 allows you to add a new toolbar to the existing set of predefined
toolbars. Once added, the new toolbar is available for use just as any other pre-
existing toolbar is.

Exercise 3.4 Adding a New
Toolbar to the Existing Set

1. Choose the Customize submenu from the Tools menu, or right-click
on the menu bar and choose Customize from the shortcut menu.

2. The Customize window has three tabs, which represent the Toolbars,
Commands, and Options.The Toolbars tab displays the list of default
toolbars provided by Visual Studio .NET along with a checkbox.You
can select a toolbar by checking the appropriate checkbox.You can
create a new toolbar by clicking on the New… button available in the
Toolbars tab.

3. After you click the New… button, a dialog box appears prompting the
user to type a name for the toolbar.After typing the name of the new
toolbar, click OK to dismiss the dialog box.The newly added toolbar is
selected by default and is added to the list of existing toolbars.The new
toolbar is displayed as a floating toolbar in the IDE.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 136

Installing and Configuring VB.NET • Chapter 3 137

You can also add commands to the existing toolbars. For example, you might
want to add debugging commands to the standard toolbar. Exercise 3.5 outlines
the procedures for adding commands to the existing toolbar.

Exercise 3.5 Adding Commands to Toolbars
1. Choose the Customize submenu from the Tools menu, or right-click

on the menu bar and choose Customize from the shortcut menu.

2. Select the Commands tab from the Customize dialog box.The
Commands tab contains two listboxes that displays various categories of
commands and the commands available in each category.

3. Choose the appropriate category from the Categories listbox relevant to
the task that you want to accomplish.The Commands listbox is auto-
matically updated to reflect the relevant commands available in the
selected category.

4. Click on the specific command that you want to assign to the new
toolbar and drag and drop it onto the new toolbar.

Customizing Built-In Commands
You can program Visual Studio commands in such a way that you can invoke
them from the command window.These are the actual commands that are exe-
cuted when you choose an option from the menu. For example, if you want to
open a new project, select the File menu, choose New… from the submenu, and
choose Project.The Visual Studio .NET IDE has commands built in for each of
the menu items. So, in this case, the IDE executes the following command to
actually accomplish the operation:

File.NewFile

You can accomplish the same operation by opening the command window and
typing this command at the command prompt. In other words, the IDE has encap-
sulated a host of commands and provided the menu as the user-interface object.
This also means that the IDE hosts a lot of other commands that have not been
coded as items in the menu.Table 3.5 lists some of the unadvertised commands.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 137

138 Chapter 3 • Installing and Configuring VB.NET

Table 3.5 Unadvertised Commands

Visual Studio .NET
Built-In Command Description

File.AdvanceSaveOptions The advanced save options allows you to set the
encoding format and also allows you to con-
figure line endings. Line endings differ for var-
ious operating systems. In Windows, line endings
are denoted by a carriage return and a line feed,
whereas in Unix it is denoted only by a linefeed.

Edit.DeleteToEOL Deletes the current line fully from the current
cursor position to the end of line.

Edit.DeleteToBOL Deletes the current line fully from the current
cursor position to the beginning of line.

Edit.DocumentStart Moves the cursor to the beginning of the
document.

Edit.DocumentEnd Moves the cursor to the end of the document.

Creating an alias helps you avoid typing a lengthy command. So, every time
you invoke the specific command, type in the name of the alias and press Enter
to invoke a command.The alias command helps you to create an alias for a com-
mand.The syntax for the alias command is as follows:

Alias <custom name> <command>

Exercise 3.6 shows this process.

Exercise 3.6 Creating an Alias
1. In the command window, specify the alias command according to the

syntax by providing a custom name and the actual command that you
want to alias.The Intellisense features kicks in as soon as you provide the
custom alias, indicating the available commands that you can alias. For
example, the following statement creates a custom alias to run the pro-
ject (the appropriate Visual Studio command is Debug.Start):

>alias RunProj Debug.Start

2. After you enter the command, press Enter to create the command.The
status bar displays a message that the command is created.

3. The following command deletes an alias.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 138

Installing and Configuring VB.NET • Chapter 3 139

>alias RunProj /delete

You can also list the currently stored aliases by typing the alias com-
mand.The alias command without any additional parameters lists the
currently configured aliases.You can also view the definition for a single
alias by typing the alias followed by the custom alias name.You can clear
the command window by typing cls.The alias cls is a custom alias for
the command Edit.ClearAll.

Customizing the Start Page
Visual Studio .NET allows the programmer to customize the start page to
include any information that is of interest to the programmer. However, you must
complete a few prerequisites before the customizations can take effect.The pre-
requisites are the following:

■ Make sure that a folder called Custom is present under <Microsoft Visual
Studio.NET root folder>\Common7\IDE\HTML\StartPageTabs\1033.
The Microsoft Visual Studio .NET root folder is the folder where you
have installed Microsoft Visual Studio .NET.This is normally under the
Program Files folder, which is located on the C drive. So, if you had
installed Microsoft Visual Studio .NET under C:\ProgramFiles, the
Custom folder must be created under C:\Program Files\Microsoft Visual
Studio.NET\Common7\IDE\HTML\StartPageTabs\1033 folder.

■ The content presented in the start page is actually a collection of XML
files that adhere to specific XDR (XML Data-Reduced) schema.As
long as the file that you create complies with the schema, the content is
sure to be displayed on the start page.The .XDR file is located in
<Microsoft Visual Studio .NET root folder>\Common7\IDE\HTML\
1033.You can then create the XML file containing the required content
and save it in under <Microsoft Visual Studio .NET root folder>\
Common7\IDE\HTML\StartPageTabs\1033. Once this is done, you
can refresh the start page if the IDE is already open or open the IDE to
view the newly created link.

The following code segment shows you how to customize the start
page that contains links to external Web sites:

<?xml version="1.0" encoding="UTF-8"?>

<Tab Name="Tech Links" ID="vs_techlinks">

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 139

140 Chapter 3 • Installing and Configuring VB.NET

<Application Links" ID="vs_techlinks.app">

<Pane ID="MainPane">

<Title>External .NET Resources</Title>

<HRule/>

<LItemEx>

<LItem URL="http://www.microsoft.com/net">Microsoft's .NET

site</LItem>

</LItemEx>

</Pane>

</Application>

</Tab>

The <Tab> element identifies a tab in the start page. In this case, the
tab is titled Tech Links.The ID attribute is used to differentiate one tab
from another. One of the child elements of the <Tab> element is the
<Application> element.The <Application > element identifies the con-
tent that is contained in the tab.The ID attribute serves the same pur-
pose as before.The right-hand side of the start page is called a pane and
is associated with a <Pane> element.The <Title> child element is used
to specify a title for the pane.The <HRule/> element is used for the
purposes of formatting.The <LItemEx> is group element that contains a
list of <LItem> elements.The <LItems> elements are used when you
want to specify links. Because we are trying to link to external sites, we
use the <LItems> elements.

This is a very basic example that shows you how to customize a start
page. Further enhancements are limited only by the creativity of the indi-
vidual and the support provided by the schema. Figure 3.27 shows you
the IDE with the start page configured with the help of the XML file.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 140

Installing and Configuring VB.NET • Chapter 3 141

Accessibility Options
The Accessibility options available in Visual Studio .NET allows users to work
with ease.The user interface can be configured in the following ways:

■ Increasing the text size of code and menu options

■ Changing the color of toolbar items, window text, and so on to make it
more bright or dark depending on the requirement

■ Changing the size of icons present in the toolbars to large icons

■ Making the toolbars buttons more accessible by assigning text to the
corresponding toolbars buttons

■ Assigning shortcut key combinations to facilitate entry of frequently
used text or graphics

www.syngress.com

Figure 3.27 Customized Start Page

153_VBnet_03 8/15/01 11:21 AM Page 141

142 Chapter 3 • Installing and Configuring VB.NET

Summary
Visual Studio .NET is available in three different versions:Academic, Professional,
and Enterprise editions.You can install Visual Studio .NET on all Microsoft
Windows operating systems except on Windows 95.Visual Studio .NET IDE pro-
vides a new and a comprehensive extensibility model to automate its environment.
The IDE now hosts Visual Basic,Visual C++, and the new programming language
C#.Visual Basic .NET and Visual C++ share the same extensibility model.

Visual Studio .NET allows a programmer to work with different objects, such
as add-ins, wizards, and macros.You can create a Visual Studio .NET add-in using
Visual Basic,Visual C++ or C#.A wizard is a user-interface object that helps the
user complete a complex or difficult task.A macro is a collection of code snippets
that you can invoke with a combination of keys.The Visual Studio .NET start
page is a central location for various features provided by the IDE.You can cus-
tomize the Visual Studio .NET home page to your requirements by creating an
XML page containing user-specific content.Visual Basic .NET introduces new
project templates that outrun the options provided by the earlier versions of
Visual Studio.A toolbox window contains various tabs that contain Visual Basic
controls.Visual Studio .NET introduces the task list, which allows you to track
the compiler errors, syntax errors, and upgrade errors. Custom tokens allow you
to configure the task list to your requirements.The code editor offers the
expand/collapse feature.Visual Studio .NET also introduces a new technology
called Web forms that allows creation of Web pages that can respond to events.

Solutions Fast Track

Editions

Visual Studio .NET Beta2 currently is available only in what will be
released as the Professional format. Microsoft plans on releasing
Enterprise Developer and Enterprise Architect versions soon.

Installing Visual Studio .NET

You can install Visual Studio .NET on Windows 2000 and NT 4.0.You
can’t install it on Windows 95, 98, or ME, although for code execution
Windows 98 and higher will be supported.

www.syngress.com

153_VBnet_03 8/15/01 11:21 AM Page 142

Installing and Configuring VB.NET • Chapter 3 143

Visual Studio .NET and Visual Studio 6.0 can co-exist on the
same machine.

The New IDE

Visual Studio .NET IDE introduces a new extensibility model.

All development tools are included in the IDE.

Customizing the IDE

You can configure the IDE to suit the development tool that you
are using.

Dynamic help displays help that is context sensitive.

Q: Can Visual Studio .NET and Visual Studio 6.0 co-exist on the same machine?

A: Yes, they can. But please be advised that Visual Studio .NET is in beta stages
and you should not install it on development boxes.

Q: Does this version of Visual Studio .NET work on Windows 95?

A: No, it does not work on Windows 95.

Q: Can I develop Web applications using Visual Studio .NET on Windows 98?

A: No.You can develop Web applications only if Visual Studio .NET is installed
on Windows NT 4.0 or Windows 2000. Besides, you also need the Internet
Information Server installed.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_03 8/15/01 11:21 AM Page 143

153_VBnet_03 8/15/01 11:21 AM Page 144

Common Language
Runtime

Solutions in this chapter:

■ Component Architecture

■ Managed Code versus Unmanaged Code

■ System Namespace

■ Common Type System

■ Garbage Collection

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 4

145

153_VBnet_04 8/14/01 12:13 PM Page 145

146 Chapter 4 • Common Language Runtime

Introduction
As part of the .NET Framework, all .NET applications will execute using the
same runtime environment.This is referred to as the Common Language
Runtime (CLR). It is the driving force behind putting Visual Basic on the same
footing as Visual C++, for example, as a powerful object-oriented language.The
CLR will improve performance and ease the usage of components created in dif-
ferent languages via cross-language integration.

The CLR controls or manages the execution of a program.When you
develop code using VB.NET, the code will be compiled for use under the control
of the CLR.This is called managed code.This allows your code to take full advan-
tage of the .NET Framework. If you develop code with previous versions of
Visual Basic, you will create unmanaged code. It will not be able to utilize the
power and benefits that the CLR brings.

The CLR (see Figure 4.1) is the heart of the .NET platform.The CLR offers
such a radical change from the old runtimes, it is no wonder that .NET is often
referred to as a revolution, and not an evolution, of the current Visual Studio
development platform. It introduces a whole slew of new and exciting features
for developers. In this chapter, we discuss some of the fantastic features of the
.NET platform and the vital role the CLR plays in implementing them,
including the following:

■ Component architecture

■ Managed code versus unmanaged code

■ System namespace

■ Common Type System

■ Garbage collection

Every object is now inherited from within a common entity known as the
System namespace and specifically, the System.Object class.This is the base founda-
tion for all of your objects.Almost all of your system functionality is now
included in the System namespace.This will ease development because you won’t
have to go digging through documentation looking for the correct Windows API
call to perform a task.All tasks will be available from within the System name-
space.The System namespace also contains data types.This feature allows a
common type system for all languages, which gives a standard for passing data
between components developed in different languages.We’re sure most of you

www.syngress.com

153_VBnet_04 8/14/01 12:13 PM Page 146

www.syngress.com

have had the wonderful experience of passing data with the Windows API or a
COM component written in Visual C++.

Objects will be handled differently in .NET than what you are used to.You
will notice differences in how they are allocated and deallocated.A glaring
change is the absence of reference counters, which removes the need for the
AddRef and Release mechanisms of COM objects and allows components to use
less memory and load faster.This is accomplished with the Garbage Collector,
which monitors the objects and determines when they are no longer needed and
releases them automatically, thereby eliminating the circular reference problem.

Components written in .NET will have many advantages over COM com-
ponents. One of a programmer’s biggest headaches will be alleviated.You will no
longer have to register your components in the Registry.You will also be able to
utilize different versions of the same COM component on the same machine.
However, you will still need to use COM components—they will not disappear
overnight. COM Services will allow you to access COM components from
within your .NET applications.

Common Language Runtime • Chapter 4 147

Figure 4.1 The Common Language Runtime

Common Type System

Metadata

Virtual Execution System

■ Provides support for types and operations on those types

■ Describes and references the types defined by the CTS

■ Provides the common interchange mechanism

■ Loads and runs programs written for the CLR

■ Uses metadata to execute managed code

■ Performs services such as garbage collection

153_VBnet_04 8/14/01 12:13 PM Page 147

148 Chapter 4 • Common Language Runtime

Component Architecture
One of the most powerful capabilities that we have come to love about Visual Basic
is the capability to easily create components. Reusable code in the form of dis-
tributable binaries has been a key player in the success of Visual Basic to date. It has
allowed programmers to reduce code redundancy, increase productivity, and provide
more scalable applications. Luckily, Microsoft is well aware of the success compo-
nent development has brought to its league of programmers and has only enhanced
what component development offers in their new component architecture.

Clearly, the new object-oriented features of VB.NET will be quickly
embraced in the design of components.The capability to provide constructors,
inheritance, overriding, and overloading gives VB developers a real step up in
code reuse and extensibility (not to mention bragging rights that we are a true
OO language now, as well).This tends to go without saying. In addition, how-
ever, one of the key benefits of designing components under the new .NET plat-
form is that we are finally escaping from DLL Hell.Yes, that’s right! No more
versioning problems, confusion over which compatibility to set when compiling,
registering and unregistering of components, and just general headaches causing
keep-you-up-’til-dawn deployment issues.Those days are over, and we recom-
mend you close the door on them. But do not lock it and toss the key just yet.
COM is not dead by any means, and we discuss later in the chapter how .NET
can communicate with your existing COM objects.With that said, you may be
wondering how this is all possible.

Components created under the .NET platform are compiled into executables
called assemblies, which serve as the building blocks of all .NET applications.
Assemblies are reusable, versionable, self-describing entities that alleviate the
deployment and maintenance problems often encountered with COM. Each
assembly contains an assembly manifest, which is the name given to the self-
describing information located therein.This makes perfect logical sense.Why store
information about a component outside of the component—as was the case with
COM utilizing the registry, type libraries, and so on—when the information can
be self-contained. Keeping everything in one central package makes it clear where
information will be located and where you need to go to find it.The assembly
manifest contains the following information describing the assembly itself:

■ Assembly’s identity Its name and version number.

■ File table Describes any other files that make up the assembly,
including other assemblies, graphics files, text files, and so on (these

www.syngress.com

153_VBnet_04 8/14/01 12:13 PM Page 148

Common Language Runtime • Chapter 4 149

other file types included can be correlated to items you might have
included in resource files used in previous versions of Visual Basic).

■ Assembly reference Lists all external dependencies, such as DLLs and
other files that your assembly depends on to execute, but that you did
not create yourself.

The CLR can use the information contained within the assemblies at run-
time to determine what dependencies the application may have and where to
look for those dependencies.

In addition to alleviating the problems encountered with versioning and
maintaining compatibility, the CLR provides another huge revolution to the idea
of component scalability and increased productivity via true language interoper-
ability. Originally, COM was created to allow for a standard by which its com-
piled binaries could be language neutral and used in any other language that
understood—and could implement—COM. COM had defined a standard for
defining interfaces to describe components that allowed for language interoper-
ability…so they said. If you have ever wanted to call a Visual Basic ActiveX DLL
from a C++ client application, you know that doing so really isn’t all that simple.
You would need to go into the IDL code for the component and do a little
reworking to generate a type library that could be used and understood by the
calling application.

So it works, sort of. However many of you out may have often thought,
“Can’t this be done more efficiently? There has to be an easier way.”Well, either
Microsoft has a team of mind readers, or they themselves thought the same thing.
Regardless of how true language interoperability came about, we can now rejoice
that it has.The CLR offers a cross-language integration scheme that cannot be
matched, and a big player behind this integration is the introduction of metadata.

Metadata is essentially binary information that describes just about every
aspect of your code. It contains information about every type defined and refer-
enced within your code and assemblies.Therefore, at execution time, the CLR
can extract this information, store it into memory, and, thus, reference this
memory at any time to determine information about your classes, defined types,
which classes are inherited from whom, and so on.The big plus in all of this is
that previously, information about the syntax of components, or their interfaces,
was the only thing stored. Metadata allows the semantics, or meanings, of these
interfaces to be stored. By ensuring that this kind of information is made avail-
able to the runtime, you can maintain type compatibility between languages,
object management, and all aspects for implementing cross-language integration.

www.syngress.com

153_VBnet_04 8/14/01 12:13 PM Page 149

150 Chapter 4 • Common Language Runtime

Now, all the code that runs within the CLR is called managed code, and it is
this concept that allows for true language interoperability. Okay, so what does this
all mean already? Take our earlier scenario where a C++ coder wanted to use the
capabilities of a pre-existing Visual Basic component.We have noted that it wasn’t
a simple matter of setting a reference and then being able to use the component.
Under .NET, all the languages producing managed code can interoperate with
one another. For example, you write a class in Visual Basic that a C++ coder can
then inherit in his own class. Say a C# programmer on your development team
has created a fully functional assembly, which you need to be able to use on your
portion of the project. No problem, simply import the namespaces you want
from it and start working with the classes it defines. It’s just that simple. In a
world where there is growing diversity in technology and growing diversity in
technical skill sets, the .NET platform and its CLR create an embodiment of
uniformity that allows developers from varying backgrounds to come together
and work side by side in a seamless environment.

Managed Code versus Unmanaged Code
By now you have probably seen the term managed code thrown around as part of
the new .NET lingo. Simply put, managed code is code that runs within the
CLR, or rather, is managed by the CLR.All languages targeting to run in .NET
will produce managed code that will run under control of the CLR.Visual Basic,
C++, and C# code will all be managed by one runtime, which does away with
the multiple runtimes required previously (depending on which language you
developed with). Now you can develop your applications using multiple lan-
guages and have to worry only about distributing a single runtime to manage all
of that code.This managed code gives the CLR the information it needs to pro-
vide many of its core services.When we talk about the benefits of managed code,
we are, essentially, also speaking about the benefits of the CLR and the .NET
platform as a whole.

So what does this really mean to you as a developer? We still have a runtime,
right? Was there anything really wrong with the previous VB runtime (other than
it being a bit bloated)? To answer this question, let’s look at a fictitious analogy to
demonstrate the benefits of having this global commonality. Suppose that a
trucking agency delivers large shaped objects in the form of triangles, squares, and
rectangles.They have built trailers shaped the same size as each of these large
objects for transportation.A triangular trailer ships the triangles, a square trailer
ships the squares, and a rectangular trailer ships the rectangles. Imagine that they

www.syngress.com

153_VBnet_04 8/14/01 12:13 PM Page 150

Common Language Runtime • Chapter 4 151

experience a sudden increase in demand for triangles, but they don’t have enough
trucks to deliver them. Unfortunately, the triangles do not fit in either the square
or rectangular trailers, so the trucking agency is unable to keep up with the
demand. Now imagine a new shape, the hexagon, is created.The trucking agency
must develop new trailers to accommodate this new object because none of the
previous trailers can carry it.

Ok, so what does this have to do with managed code under a common run-
time, namely the CLR? The CLR provides a common ground for all languages
targeting the .NET platform. It can be thought of as a large spherical trailer that
can carry any of the other shapes in our analogy.VB, C++, and C# can all be
managed by the same runtime. In fact, any language targeting to run under the
.NET platform will be managed by the CLR.A new language can be con-
structed for inclusion into .NET, and the runtime is unchanged.This gives the
platform extensibility that did not exist in previous versions of Visual Studio.

A key to all of this arises from the fact that the CLR provides an Execution
Engine that creates what is known as the Virtual Execution System (VES).The
VES is essentially what handles and maintains all of this managed code.The VES
loads managed code at runtime, and by inspecting the metadata of that code, per-
forms all of the wonderful tasks that make .NET so fun and easy to use. Some of
the more important tasks that the VES performs are the following:

■ Converting MSIL code into native code

■ Garbage collection

■ Security services

■ Profiling and debugging services

■ Thread management and remoting

With the structured, self-describing information stored in the metadata, and
an execution system that can use that information, we now have a simple model
for language interoperability.All languages that produce managed code can com-
municate with other languages that also produce managed code. Now, you may
be saying,“Yes, but other languages—via binaries such as COM—could already
use code in different languages.”This is true, but as we have noted previously, the
process is neither as simple, nor as intuitive, as it is under .NET. Inheriting from a
class written in C# from Visual Basic will appear no different than if the inherited
base class had been written in Visual Basic itself.

www.syngress.com

153_VBnet_04 8/14/01 12:13 PM Page 151

152 Chapter 4 • Common Language Runtime

After all of this talk about managed code, it seems rather intuitive that corre-
sponding unmanaged code must exist. Indeed, it does.Whether you know it or
not, you are already very familiar with unmanaged code.All the code you have
written prior to .NET is referred to as unmanaged. Essentially, unmanaged code is
simply a term referring to code that is not managed, and thus, is not targeted to
be under the control of the CLR.

As we have mentioned, all code you have written to this point has been
unmanaged (in the sense that it is not managed by the CLR, but it is obviously
being managed by something). Under .NET, you can’t write unmanaged code
except with C++.The only type of code you can create with VB.NET and C#
is managed code.

Unmanaged code does not benefit from all of the great features that are
accessible with managed code.You lose seamless language interoperability, as well
as the other features the CLR provides for you under .NET, such as automatic
memory management via Garbage Collection (more on this in the Garbage
Collection section). But, you have been living without these features for some
time now and getting by just fine. Hopefully by now, however, you are beginning
to see the true power and potential that the new .NET platform will be offering
you as a developer.

You’re asking yourself,“What about all of the unmanaged code we developed
under COM? Surely we aren’t expected to port all of this perfectly functioning
code over to .NET to be able to utilize it.” Have no fear, your assumption is cor-
rect. Microsoft has provided the runtime with a pair of wrapper classes to allow
managed and unmanaged entities to work with one another seamlessly.The client
will think they are calling the object within their own respective environment
regardless of where the object actually originated. Let’s take a brief look at how
this works.

Interoperability with Managed Code
Managed code and unmanaged code may want to communicate with each other
in two different ways. For example, either a .NET client will want to call upon a
method of a COM object, or a COM client will want to call upon a method of
a .NET object. Each case uses a different wrapper class to handle the communi-
cation between the managed and unmanaged objects.These are referred to in
.NET as COM Interop wrappers.

When a .NET client wants to talk to a COM object, the runtime creates a
Runtime Callable Wrapper (RCW).The RCW is responsible for resolving the

www.syngress.com

153_VBnet_04 8/14/01 12:13 PM Page 152

Common Language Runtime • Chapter 4 153

differences between the managed .NET client and the unmanaged COM server.
The RCW acts as a proxy that marshals calls between the client and server. In
essence, the RCW is a translator, which can convert method calls and return
types unfamiliar to the client or server into something they can understand. For
example, the .NET client may send across a value of type String (which is now
an Object in .NET, as is everything else), which the RCW would interpret and
translate into a BSTR type for the COM server to understand, and vice versa.

When the roles are reversed, and a COM client wants to call a .NET server
object, then the runtime creates a COM Callable Wrapper (CCW).The CCW
functions similarly to the RCW except that it marshals method calls and values
going the other direction.You can think of a RCW as a Spanish to English trans-
lator whereas a CCW is a English to Spanish translator.They perform comple-
mentary roles to ensure proper communication between two entities in both
directions: sending and receiving.

In addition, Microsoft’s push to COM+ since the release of Windows 2000
was a foreshadowing of their .NET initiative. COM+ was created with .NET in
mind (or maybe it was the other way around).At any rate, COM+ will still pro-
vide the services we have come to depend on for providing things such as trans-
action support, object pooling, and queuing. Managed components and
unmanaged components will both be able to happily coexist under the services
provided by COM+, and they will have the capability to communicate seamlessly
via the automatic creation and implementation of the callable wrappers.

System Namespace
Although all of that general technical stuff discussed previously is important, most
developers are interested in the language itself.We keep referring to all of these
new features and benefits that VB.NET brings to us, so let’s take a look at some
of these features and begin to familiarize ourselves with the changes the new
platform introduces into our programs code-wise.

It has been stated before and we state it again here: Everything in VB.NET is
an Object. For anyone who has ever had some exposure to Java, the concepts
presented herein will strike a nerve of familiarity. In VB.NET, Microsoft has
introduced the idea of namespaces. Namespaces organize all of the objects that
are defined within an assembly.The assembly can contain multiple namespaces,
which in turn can contain other namespaces. Under VB.NET, all objects derive
from the System namespace (see Figure 4.2).The System namespace
contains all the fundamental classes that define most of the common data types,

www.syngress.com

153_VBnet_04 8/14/01 12:13 PM Page 153

154 Chapter 4 • Common Language Runtime

events, interfaces, and exceptions.All other objects derive from the System.Object
class, which implements all of these base features.Any classes you write will also
depend on the System.Object class, which you will extend to provide the func-
tionality you want your class to offer.This results in a hierarchical structure of
object inheritance that clearly defines the true object-oriented nature of the
.NET platform.Another huge bonus is the fact that a lot of those hard-to-use,
messy API calls have been replaced with more intuitive objects complete with
properties and method calls. Let’s take a look at some common subcomponents
of the System namespace that you may be using when writing code under the
.NET platform and see how this new framework replaces the independent func-
tions you are accustomed to working with.

www.syngress.com

Figure 4.2 System Namespace

Contains Object class and Namespaces shown
below as well as many others

System.Object Class

GetType() As Type
ToString() As String

Finalize()
etc...

SYSTEM.DRAWING
NAMESPACE

SYSTEM.IO NAMESPACE

FileStream Class StreamReader Class
Other Classes

All Other Classes Under .NET

Method1(...)
Method2(...)

etc...

Graphics Class
Other Classes

and
Namespaces

153_VBnet_04 8/14/01 12:13 PM Page 154

Common Language Runtime • Chapter 4 155

File I/O
Probably one of the most familiar tasks for Visual Basic developers is simple file
I/O. Reading and writing to a file is something we have all done a lot of for a
multitude of purposes. Under VB.NET, file I/O is encapsulated in the System.IO
namespace. Let’s take a look at a simple example of reading from a file with
VB.NET.To make the example clearer, we first look at the code in current
versions of Visual Basic, and then we compare it to how it might look under
.NET.This example simply opens a file for reading, reads in a single line, and dis-
plays it in a message box to the user:

Sub Main()

Dim sBuff As String

Open "C:\Temp\Sample.txt" For Input As #1

Line Input #1, sBuff

MsgBox sBuff

Close #1

End Sub

Simple enough. Now let’s take a look at its VB.NET equivalent:

Imports System.IO

Module TestMod

Sub Main()

Dim oFile As FileStream = New FileStream _

("C:\Temp\Sample.txt", FileMode.Open, FileAccess.Read)

Dim oStream As StreamReader = New StreamReader(oFile)

MsgBox(oStream.ReadLine)

oFile.Close()

oStream.Close()

End Sub

End Module

www.syngress.com

CD File
4-1

153_VBnet_04 8/14/01 12:13 PM Page 155

156 Chapter 4 • Common Language Runtime

The first order of business here is the importing of the System.IO namespace.
VB.NET uses the Imports statement to include namespaces that contain classes
you will want to utilize in your code.Within the System.IO namespace are the
two classes we are using in the example, namely FileStream and StreamReader.
The FileStream class allows us to open a stream to a file, and the StreamReader
class allows us to read from that stream. Notice the capability to declare and ini-
tialize an object using its constructor all on the same line.This is another won-
derful convenience introduced into Visual Basic under .NET.This example
should give you confidence knowing that the logic necessary to work with files
has not changed, only its syntax has, which you will become familiar with once
you get started coding with it on a regular basis.

Drawing
Anyone who has ever done heavy, intensive graphics work with the Graphics
Design Interface (GDI) Windows API in current versions of Visual Basic knows
that it is not the most fun, nor the easiest, code to work with and manage.This is
a perfect example of where the .NET platform has done a terrific job of encap-
sulating difficult to learn/read/use API functions into more comprehensive,
reusable objects. Classes for working with graphics have been included in the
System.Drawing namespace.The new functions provided in this namespace have
often been referred to as the GDI+ functions.The Graphics class in the
System.Drawing namespace is where most of the magic happens. For example, in
a simple WinForms application, you could draw a blue line on your form using
code like this:

Protected Sub btnDrawLine_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Dim G As Graphics = Me.CreateGraphics()

G.DrawLine(New Pen(Color.Blue), New Point(10, 10),

New Point(50, 50))

End Sub

Or you could draw a curved red line connecting several points:

Protected Sub btnDrawCurve_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

Dim G As Graphics = Me.CreateGraphics()

www.syngress.com

CD File
4-2

CD File
4-3

153_VBnet_04 8/14/01 12:14 PM Page 156

Common Language Runtime • Chapter 4 157

Dim pts(3) As Point

pts(0).X = 10

pts(0).Y = 10

pts(1).X = 40

pts(1).Y = 40

pts(2).X = 70

pts(2).Y = 50

G.DrawCurve(New Pen(Color.Red), pts)

End Sub

Working with graphics is just that easy.Although you have a lot of new
syntax changes to digest, they all share the common property of working with
objects.This sort of commonality will only speed the process of familiarizing
yourself with the new look and feel of Visual Basic.

Printing
The familiar Printer object has been replaced by the System.Drawing.Printing
namespace. Recall earlier we mentioned that a namespace can contain other
namespaces.Well, here is an example.The System.Drawing.Printing namespace is
contained within the System.Drawing namespace, which we discussed in the pre-
ceding section. Here is a small example showing how you might print a simple
text string to the printer:

Imports System.Drawing

Imports System.Drawing.Printing

Module TestMod

Private WithEvents oPrint As PrintDocument

Sub Main()

Try

'instantiate PrintDocument object and call Print method

oPrint = New PrintDocument()

oPrint.Print()

Catch e As Exception

MsgBox("Error printing file: " & e.ToString)

www.syngress.com

CD File
4-4

153_VBnet_04 8/14/01 12:14 PM Page 157

158 Chapter 4 • Common Language Runtime

End Try

End Sub

Public Sub oPrint_PrintPage(ByVal sender As Object, _

ByVal e As System.Drawing.Printing.PrintPageEventArgs) _

Handles oPrint.PrintPage

'this event fires for each page printed

'you will handle all printing logic here

Try

e.Graphics.DrawString("Print test", New Font("Arial", 10), _

New SolidBrush(Color.Black), 100, 100)

Catch ex As Exception

MsgBox("Error: " & e.ToString)

End Try

End Sub

End Module

In this example, you are also getting a glimpse of structured error handling
provided in VB.NET.You might think that this is a lot of code to simply output a
single line to the printer, but the extra work required here is well worth the ben-
efits gained when you move to implementing more complex printing schemes.
Anyone who has ever struggled with providing rich and powerful printing capa-
bilities for their applications is going to love the functionality included within
this namespace. Carried over from the Printer object are the basic properties for
setting paper type, paper size, and so on.Two exciting new features are the capa-
bility to receive events from your print job, such as when the printing begins and
ends, and to provide full print preview capabilities.

Common Type System
We have already talked a bit about CLR’s cross-language integration capabilities.
Several parts help make up this seamless environment. One of the most important
parts, if not the most important, is the Common Type System (CTS).The entire
.NET framework is built on this type system that the CLR defines.We take a

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 158

Common Language Runtime • Chapter 4 159

moment here to discuss why this component of the CLR is so important for
ensuring proper language interoperability.

We briefly mentioned the CTS—also referred to as the Universal Type
System—earlier when we discussed the capability of interoperability between
managed and unmanaged code.The COM Callable Wrapper (CCW) was respon-
sible for ensuring that types transferred by the COM object be translated into a
type supported by the CLR.The CTS describes these types supported by the
runtime, and how those types can interact with one another. Simply put, a type is
a semantic definition describing an entity that can accept certain values and cer-
tain operations on those values.

Previously, each language had its own definition of types it supported, which
was often not consistent across separate languages. For example, if you have ever
taken a C++ DLL function declaration and tried to figure out how to port the
types in its formal parameter definitions to those types supported by Visual Basic,
you will have a good appreciation of what a convenience a common type system
will provide.The CTS shines through in its definition of rules it places on lan-
guage compilers targeting the .NET platform. It provides rules that the compilers
must follow with respect to defining, referencing, using, and storing types.

Language compilers have always been responsible for maintaining information
about types of variables used throughout a program and storing information
about those types to perform a certain amount of type checking at compilation
time. In addition, the language defines sets of rules pertaining to what operations
are allowed on particular types of data. For example, assume that you had the
following code fragment in your current Visual Basic application:

Dim i As Integer

Dim s As String

i = 1

s = "Hello"

Debug.Print i + s

This will result in a run-time error that pops up informing you of a “Type
Mismatch.”This makes sense when you look at the operation the code is
attempting to perform. Logically, one would imagine that attempting to add an
integer to a string would cause an error. Remember, though, that the semantic
rules applied to these types are what determine whether this would raise an

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 159

160 Chapter 4 • Common Language Runtime

error or not. However, let’s look at the following C code that attempts a similar
operation:

int i = 1;

char s[5] = "Hello";

printf("%d", i + s);

Running this code will not raise an error at all. It outputs a large number and
continues on without a glitch.This is because C handles strings differently than
Visual Basic does. C really has no concept of the string data type, and it imple-
ments them as character arrays. Because arrays are treated as pointers in C, it
simply adds the integer value 1 to the number value of the array’s location in
memory (you can show this by outputting the value of &s as well).These two
languages clearly exhibit a difference in how they define encapsulating a string
into a type.To imagine these two languages coexisting with one another would
not be very feasible. Not only does one language exhibit a type that the other
does not, but their implementations of that particular type of data is also com-
pletely different.We can not have this kind of inconsistency if we want to achieve
efficient cross-language integration, and the CTS ensures that these sort of infrac-
tions would not occur.

The CTS defines the rules that the language compilers must abide by to
ensure strong type standardization.The fact that each language compiler must
treat types in a consistent manner is the basis on which the CTS exists and allows
for objects created in the different languages to correctly interact with one
another.The .NET platform provides a programming model that is based on the
CTS (see Figure 4.3).As mentioned previously, everything derives from the
System.Object class.The String and Array classes are direct descendants thereof,
and the other familiar primitive datatypes reside within, or inherit from, the
ValueType class.

Type Casting
Type casting, or the capability to change a variable from one type to another, is a
common practice in any programming language.The capability to convert values
from one type to another is essential to the usefulness and power of a program-
ming language.Type casting is similar to what it has always been in Visual Basic.
At times, you may be getting data from somewhere in one data type, but you
need to use it in a different context from within your code.A perfect example of
this is grabbing data from a text file.This data may be a set of delimited numeric

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 160

Common Language Runtime • Chapter 4 161

values that you need to perform some computations on.When you read the data
in, it will more than likely be read into a string that must then be converted to a
usable number.

VB.NET still supports all of the explicit type conversion functions you are
accustomed to, such as CStr, CDbl, CSng, and so on. However, note that all of
the primitive data types from previous versions of Visual Basic are now encapsu-
lated into objects with constructors and all (remember, everything is an object).
These objects provide their own internal mechanisms for providing type casting
and offer more capabilities than the standard type conversion functions you are
accustomed to.Again, those with any exposure to Java will feel right at home
seeing how this is implemented. For example, in current versions of Visual Basic,
we may take a string and wish to store it into an integer:

Dim i As Integer

Dim s As String

s = "12345"

i = CInt(s)

MsgBox i

www.syngress.com

Figure 4.3 .NET Type System

Object

String Array Value Type

Boolean

Char

DateTime

Double

Int32

Single

Byte

Currency

Decimal

Int16

Int64

TimeSpan

153_VBnet_04 8/14/01 12:14 PM Page 161

162 Chapter 4 • Common Language Runtime

We could perform the exact same operation in VB.NET, but let’s begin to
familiarize ourselves with our new OO language and its syntax:

Dim i As Integer

Dim s As String

s = "12345"

i = s.ToInt32

MsgBox(i)

Notice that everything here is left the same except for how we perform the
type conversion and the parentheses around the parameter in the call to our
MsgBox function.

Here, we are using the String object’s intrinsic type conversion method,
ToInt32, to perform the actual conversion to an Integer (note that Integer’s are
now 32 bits in VB.NET). However, let’s see how we can wrap up that code into a
more appealing VB.NET OO compliant syntax:

Dim i As Integer = New String("12345").ToInt32

MsgBox(i)

This snippet is not a very practical one, but it offers you an idea of what
working with the new syntax of VB.NET will be like.The main focus of this sec-
tion was to comfort you in knowing that the type conversion functions you have
become accustomed to are still there if you want to use them. Hopefully, how-
ever, you will try to quickly adopt the intrinsic type conversion functions of the
data types themselves as your preferred method.

www.syngress.com

Embrace Your Parameters
VB.NET is insistent upon enclosing parameters of function calls within
parentheses regardless of whether we are returning a value or whether
we are using the Call statement. It makes the code much more readable
and is a new standard for VB programmers that is consistent with the
standard that nearly all other languages adopted long ago.

Developing & Deploying…

153_VBnet_04 8/14/01 12:14 PM Page 162

Common Language Runtime • Chapter 4 163

Garbage Collection
Another huge transition in how you will code is the inclusion of Garbage
Collection under the CLR. Essentially, the CLR Garbage Collector monitors a
program’s resources looking for objects no longer in use when the available
resources are reduced to a certain limit. It then frees the memory of these unused
objects to allocate memory for other objects and tasks that will need it.This is
quite a change from the reference counting scheme implemented in COM.
Given this basic idea of what Garbage Collector is doing for us, let’s talk in a bit
more detail on how it all works and about the pros and woes you might face
with this new automatic memory management implementation.

The decision to move to automatic memory management did not come
about without a lot of heated debates. Many hardcore COM developers were
insistent upon maintaining the reference counting scheme.The most influential
reasons behind the move to implementing Garbage Collection was that it
increased performance, eliminated common reference counting errors resulting
from misuse, and did away with the circular reference problem. Some of these
issues you may feel have little relevance to you. Some of these issues you may
have never faced nor feel that you will ever encounter. So why this drastic
change in the way things work? Remember that one of the main features of the
.NET platform is language interoperability. By moving the task of memory man-
agement to the runtime to handle, we remove inconsistencies and errors that can
be introduced by the programmer.This allows programmers of different languages
under the .NET platform to concentrate on implementing objects with rich
functionality, without having to worry about implementing a scheme to manage
those objects. Oh, and of course, we do away with the circular references
problem.To better understand why this is so, we must look at how Garbage
Collection works under the CLR.

The CLR requires that all resources be allocated from the managed heap.
Unlike previous runtimes when you had to free objects from the heap explicitly,
Garbage Collector in the CLR does all of this for you automatically. It does this
via a rather complex algorithm.

Essentially, Garbage Collector provides a mechanism by which it can deter-
mine which objects are still being used and which are not.Those that are no
longer in use get collected.To help improve performance, Garbage Collector
implements generational garbage collecting. Generally speaking, a generation
simply categorizes objects on the heap into sections called generations.The idea
behind this is that the longer an object stays alive, the older the generation it will

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 163

164 Chapter 4 • Common Language Runtime

exist in. Research and experience shows that this is the usual trend. If an object is
relatively new, we assume it will have a short life span (no guarantee we will use
it for very long). However, if we see an object that is relatively old, for example, it
has already survived several collections, we may assume it will continue to last
even longer. Currently, Garbage Collector under the CLR supports only three
levels of generations: 0, 1, and 2. Generation 0 is where new objects are placed,
generation 1 is for those that have survived a single collection, and generation 2
is for those that have survived two or more collections. How does this improve
performance? Well, Garbage Collector performs a collection when generation 0
becomes full. It can then decide if it should perform a collection on all the
objects on the heap or just the newer ones located within generation 0. For
applications that may contain many objects in generations 1 and 2, this can
greatly reduce the overhead encountered during a collection.

Object Allocation/Deallocation
When a process is first initialized, the CLR reserves some contiguous space in
memory for the process, which has no storage allocated to it.This is the managed
heap.As objects are created via the New keyword, they are placed onto the heap.
This process continues until there is not enough memory left on the heap to
allocate memory for the next object requesting resources.At this point, a collec-
tion must be performed. Garbage Collector applies its algorithm for determining
which objects are no longer in use on the managed heap and disposes of them
accordingly.

In previous versions of Visual Basic, because we were in control of destroying
objects that we created, object deallocation was clearly defined.When writing

www.syngress.com

Collection of What?
In .NET, the term “collection” is often used to refer to the garbage col-
lecting mechanism. Of course, the Collection object we are familiar with
still exists, as well as the introduction of a Collections namespace that
introduces some useful data structures for you to use. Just remember to
take into account the context under which the term “collection” is used,
and you will be fine.

Developing & Deploying…

153_VBnet_04 8/14/01 12:14 PM Page 164

Common Language Runtime • Chapter 4 165

classes, you could write code in the Terminate event of the class and feel com-
fortable knowing that after the object was destroyed, the code in that event
would fire immediately.This is known as deterministic finalization. With the intro-
duction of Garbage Collector, this is no longer the case. Now we are dealing
with non-deterministic finalization—we can not predetermine the exact time when
the finalization for an object will occur.This probably raises a few brows. Many
developers have come to rely upon the Terminate event to perform other main-
tenance or cleanup routines within their applications.With the introduction of
Garbage Collector, the Terminate event has been replaced by the Finalize event.
The Finalize event does not offer the same functionality as the Terminate event
for reasons we have just talked about.Though both events fire when the object is
released from memory, we lose the deterministic characteristics that the
Terminate event and COM reference counting offered.

Now the main recommendation is to develop objects that do not require any
sort of cleanup.This is a nice consideration but it just isn’t possible in a lot of
cases. For example, you may create a class that holds an open, locking reference to
some sort of data file, and in the case of your object being terminated, you want
to ensure you release this hold on the file that you had. Previously, you would
just write the code necessary to release this resource in your class Terminate
event. Now, you may be tempted to do the same in the Finalize event, but in a
time critical application, where perhaps another object will be instantiated to use
this file before any collection is performed, you need a way to release this
resource much more quickly.Well, we all need to start practicing a new standard
of coding when it comes to situations like these.You will want to implement a
Close or Dispose method in your class that the client will call explicitly to
instruct your object to perform the cleanup operations required.You are not
limited to naming your cleanup routines either Close or Dispose, but this is the
convention Microsoft would like for you to use.

Close/Dispose
So how should these methods be implemented, exactly? Sticking to the recom-
mended conventions, you should use Close if you want to allow the object to be
able to be reopened or reused again in future operations. Continuing with the
earlier example, the Close method may close the file that your object had a lock
on, but remain “alive” for future use. On the other hand, the Dispose method
would be called to completely destroy your object.This is synonymous to setting
an object to Nothing in current versions of Visual Basic.

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 165

166 Chapter 4 • Common Language Runtime

Summary
In this chapter, we took an overall look at the new features offered by the .NET
platform, mainly through its inclusion of a common runtime.The idea of man-
aged code seems so straightforward and logical that it’s a wonder we haven’t
stumbled across an architecture like this sooner. Regardless of that perception, the
day has arrived, and developers across the globe can begin to prepare for, and take
full advantage of, this new realm of coding and design that lies ahead.

We discussed the benefits of managed code by the CLR throughout the
chapter, and saw how it will change the way you program.Automatic memory
management, self-describing components, and true language integration pave the
way for a more scalable, maintainable future in development.We also covered, in
brief, what will become of the COM era with this new birth of .NET.We made
it quite clear, or at least we hope, that COM is far from dead, and the team at
Microsoft, we believe, is aware of that fact.Thus, you know that you have some
means of “backwards compatibility” with regards to some of your pre-existing
components, if and when you make the full transition over to .NET.

We noted that everything derives from the System.Object class.We saw how
even our most primitive data types have been included in this true hierarchical
framework.A truly object-oriented language has been born with the release of
VB.NET, and we highly recommend that you embrace it as soon as you have the
opportunity. Becoming familiar with OO concepts and principles now has real
purpose and relevance to you as a Visual Basic developer.The syntax may take a
bit of time to become accustomed to, but hopefully by now you realize that once
you do become familiar with it, it will only speed up and ease your work and
improve your productivity.

To sum up, we have seen how the different components comprising this run-
time work together to provide a common type system and self-describing com-
ponents that allow for the runtime to offer us great new benefits, such as
cross-language integration and garbage collecting. Understanding how each of
these services work is important.The concepts of namespaces and providing a
truly hierarchical inheritance framework gives us a better understanding of why
Visual Basic had to become more object-oriented, and gives us a better under-
standing of the benefits and scalability this sort of framework offers to the
platform as a whole.

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 166

Common Language Runtime • Chapter 4 167

Solutions Fast Track

Component Architecture

Self-describing components allow for easy maintainability and
deployment.

Components developed under .NET will still be able to utilize the
benefits of the transactional services provided by COM+.

Managed Code versus Unmanaged Code

Managed code provides the information necessary for the CLR to
provide numerous services.

Managed code allows all languages that conform to the standards
required to run under the .NET platform to use a single shared runtime.

Unmanaged code does not benefit from all of the things that managed
code benefits from.

Microsoft has provided a means by which managed code and unman-
aged code can communicate, thus allowing integration of new, powerful
.NET applications with legacy components.

System Namespace

Almost all system functionality has been wrapped up within a single
entity called the System namespace.

The System namespace provides the Object class from which all other
classes derive.

The System namespace contains all the other classes and namespaces
that provide a means for developers to utilize objects to carry out almost
any task.

Common Type System

All languages producing managed code abide by a strong type
standardization.

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 167

168 Chapter 4 • Common Language Runtime

Use of types across different languages will no longer cause any
headaches.

Garbage Collection

The CLR performs automatic memory management in your
applications.

COM reference counting has been replaced by the Garbage Collection
algorithm.

Deterministic finalization is lost, and you must employ new methods to
code around this issue.

Q: Sometimes I may want to force a collection to occur. Can I do this or must I
rely on the system invoking a collection only when the managed heap
becomes full?

A: Yes you do have some control over Garbage Collection via the System.GC
class.To tell the runtime to perform a collection, you simply invoke its
Collect method:

GC.Collect()

This is an overloaded method in which you can also specify, as a
parameter, which generation you wish to be collected (either 0, 1, or 2).

Q: Okay, I can live with implementing a Close/Dispose method for my objects,
but I also want to implement a Finalize method to perform cleanup in case
the Close/Dispose method is not properly called. If the Close/Dispose
method is properly called, how do I ensure that the Finalize method does not
also try to execute the code already run in the Close/Dispose method?

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_04 8/14/01 12:14 PM Page 168

Common Language Runtime • Chapter 4 169

A: Well, you might think of implementing a flag variable that you set in your
Close/Dispose method and then check in the Finalize method to determine
whether the code needs to be run in the Finalize method when your object
is finally collected. However, a much more intuitive and efficient solution
exists.The System.GC class provides a method, SuppressFinalize, which takes
as a parameter an object and instructs the runtime not to call the object’s
Finalize method. If you implement something like the following in your
object, you can ensure proper behavior:

Public Sub Dispose()

'perform clean up on this object here

'call method to suppress the finalize method

GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()

'if Dispose was not called, call it now

Dispose()

End Sub

This is an improvement over the idea of simply using a variable flag in
your code. One reason is that it reads better. But more importantly, this
method implements something like setting a flag, but at the system level. It
ensures that the object is not placed in the queue of objects that need to be
finalized, and thus, the Garbage Collector will not have another object to
worry about, and performance will be improved.

Q: Can I monitor the CLR’s activities/performance in real time?

A: Yes, you can achieve this by running Perfmon.exe in Windows2000, clicking
the “+” icon on the toolbar, and selecting which object of the CLR you wish
to monitor.

Q: We have a lot of code in place under COM that we will want to utilize even
after we have moved to .NET. Should we port this code over or should we
simply use the COM Interop services to communicate with our unmanaged
objects?

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 169

170 Chapter 4 • Common Language Runtime

A: This is a delicate issue and will take some serious consideration.What to do
will most likely vary from situation to situation.Things you may want to
consider are the following:

■ How long can you afford to use these legacy objects? Will they need to
be ported eventually? If so, you may want to go ahead and consider the
transition process sooner than you had anticipated.

■ Is performance a factor? If yes, then you will want to port over for a
couple of reasons. One, your existing objects are communicating
through wrapper classes.This is introducing another level of indirection
and work that must be done by the Interop service through the wrapper
class.This, in and of itself, will cause a hit on performance. Secondly, by
porting your code over to run under the CLR, you get to take advan-
tage of all the benefits of managed code we have discussed herein.

■ Do the objects function correctly via the COM Interop service? The
wrapper classes have yet to be heavily utilized in industry at this point,
and some inconsistencies may exist between running your COM objects
directly as opposed to through the COM Interop service.The wrapper
classes are customizable, however, and you may find solutions that way.
Again, though, you will need to make considerations based on cost of
learning and implementing fixes (workarounds) for legacy code versus
the cost of porting the code to target the CLR.

www.syngress.com

153_VBnet_04 8/14/01 12:14 PM Page 170

.NET Programming
Fundamentals

Solutions in this chapter:

■ Variables

■ Constants

■ Structures

■ Program Flow Control

■ Arrays

■ Functions

■ Object Oriented Programming

■ String Handling

■ Error Handling

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 5

171

153_VBnet_05 8/14/01 2:21 PM Page 171

172 Chapter 5 • .NET Programming Fundamentals

Introduction
Even though this book is focused on the intermediate programmer, some funda-
mental programming is included.This can be used as a refresher, or for those of
you from different programming languages, it will provide you the syntax for
some fundamental programming.This chapter is not intended to teach beginners
how to program.We cover how variables are declared and used.Variable types
have changed since Visual Basic 6.0.You must be more specific with data types
now.You cannot count on Visual Basic to automatically convert everything for
you.Also new to Visual Basic .NET are structures. If you have programmed in C,
this will be familiar.This replaces the Type in previous versions of Visual Basic.
Structures allow you to logically group together variables of different (or same)
data types. Each member of a structure is given a name. It allows you to utilize a
group of data as a single unit with access to its members by name.

When developing applications, you have to be able to dynamically set the
flow of a program’s execution.There are several programming fundamentals to
allow you to control the flow of execution.This chapter shows you the syntax
and usage for decision making and looping.Arrays allow you to store data that
can be accessed by indexes rather than names.Arrays have changed somewhat
from previous versions, and it is important to understand these differences.
Functions allow you to separate code into units of functionality.There are many
benefits to functions when developing applications.Working with strings can
sometimes be confusing.There are numerous functions available for manipulating
strings.We look at some of these functions and how to use them.

Visual Basic .NET is now arguably a true object oriented programming lan-
guage. Everything is an object. It is important to understand what object oriented
programming is and to shift your thought process.A brief overview of what con-
stitutes object oriented programming—and how Visual Basic satisfies it—is
included in this chapter.You can now create and inherit classes.You can even
inherit classes written in other programming languages, which is a powerful new
feature.Visual Basic classes are now more like C++ classes.You don’t have to
create class modules anymore to define a class.

A major paradigm shift in Visual Basic .NET is error handling.After years of
begging by programmers,Visual Basic now uses structured error handling. Error
handling now shifts to the use of exceptions.This is similar to other program-
ming languages.This will allow you to have more robust error handling with
better control and more comprehensive handling of errors than previous versions.

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 172

www.syngress.com

You will have to learn some new concepts, but this will empower you to develop
applications that are more responsive to errors.

Variables
A variable is simply a named memory location.When writing programming code,
you’ll find numerous situations where you need to store data It could be for tem-
porary values during calculations, information on a customer, and so on.This data
is stored in memory. Instead of referring to the memory location by actual
memory address, you can give it a name by which you can refer to it.You give it
a name by declaring a variable and giving it a data type.When naming a variable,
you must follow a few rules:

■ It must start with an alphabetic character.

■ It can only contain alphabetic characters, numbers, and underscores.

■ It cannot contain a period.

■ It can not be more than 255 characters.

■ It must be unique within the current scope (we discuss scope shortly).

The data type determines how much memory is allocated to store data in.
Visual Basic .NET has a number of built-in data types that are specified in the
Common Language Runtime. Later, we will see how to create our own custom
data types. For those of you who have used the previous versions of Visual Basic,
you know that if you don’t give it a variable type, it is implicitly assigns it as a
Variant data type. In .NET, the Variant data type no longer exists. In Visual Basic
.NET, if you don’t specify a data type, it defaults to an Object data type.You
should always specify the data type for a variable.When you declare the data type
for your variables, this is called strong typing. Using the type of variable with the
smallest size that will meet your needs is good programming practice. For
instance, if you are going to add integers that will always be less than 100, using
an Integer would be a waste of memory when a Byte would suffice. However,
ensure that the variable is large enough for all circumstances.Also, by using strong
typing, you will be able to use Intellisense for your variables, the compiler can
perform type checking to help reduce the possibility for runtime errors, and your
code will execute faster because it doesn’t have to implicitly determine the data
type. In Table 5.1, we take a look at the data types in Visual Basic .NET, including
their size and range.

.NET Programming Fundamentals • Chapter 5 173

153_VBnet_05 8/14/01 2:21 PM Page 173

174 Chapter 5 • .NET Programming Fundamentals

Table 5.1 Comparing Built-In Data Types

VB.NET
Type Size Range

Boolean 4 Bytes True or False
Byte 1 Byte 0–255 unsigned
Char 2 Bytes 0–65,535 unsigned
Date 8 Bytes 1/1/1 CE to 12/31/9999
Decimal 12 Bytes +/–79,228,162,514,264,337,593,543,950,335

with no decimal point;
+/–7.9228162514264337593543950335 with
28 places to the right of the decimal; smallest
nonzero number is
+/–0.0000000000000000000000000001

Double 8 Bytes –1.79769313486231E308 to
–4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308
for positive values

Integer 4 Bytes –2,147,483,648 to 2,147,483,647
Long 8 Bytes –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
Object 4 Bytes Any object type
Short 2 Bytes –32,768 to 32,767
Single 4 Bytes –3.402823E38 to –1.401298E-45 for negative values;

1.401298E-45 to 3.402823E38 for positive values
String 10 Bytes + 0 to approximately 2 billion Unicode characters

(characters
in string * 2)

User- Sum of the Range dependent data type for each member
Defined size of its
Type members

We have discussed how to name variables and the data types available. Now let’s
see how to declare variables.As in previous versions of Visual Basic, you use the
Dim keyword.The following are some common examples of declaring variables:

Dim x as Integer

Dim y, z as Single

Dim str as string

Dim obj 'defaults to Object

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 174

.NET Programming Fundamentals • Chapter 5 175

As in previous versions of Visual Basic, you can also specify the data type of a
variable by using identifier type characters.This is done by appending a type char-
acter to the end of a variable name to specify its type.These identifiers can also
be used with constants and expressions to explicitly declare their data type. Here
are some examples of using the identifier type characters:

Dim intX% ' % character identifies it as an Integer data type

Dim lngX& ' & character identifies it as a Long data type

Dim decX@ ' @ character identifies it as a Decimal data type

Dim sngX! ' ! character identifies it as a Single data type

Dim dblX# ' # character identifies it as a Double data type

Dim strX$ ' $ character identifies it as a String data type

New to Visual Basic is the capability to initialize variables when you declare
them, which is a feature that C++ programmers are accustomed to. By default,
numeric variables are initialized to zero, a string is initialized to an empty string
(“”), and an object variable is initialized to Nothing. If you want to initialize a
variable to a value other than the default, you can now do it on the same line
that you declare it.You can also initialize Object data types, but we take a look at
that later in the chapter. Here are some common examples of initializing variables
when declaring them:

Dim x as Integer = 5

Dim dblValue as Double = 22.5

Constants
Constants are similar to variables.The main difference is that the value contained
in memory cannot be changed once the constant is declared.When you declare a
constant, the value for the constant is specified. So, why bother with a constant?
Why not just use the value in your code? Because using constants rather than
hard-coded values is good programming practice.A common illustration for the
use of constants is the use of rates. Say you are developing an application that uses
a special internal company factor when determining prices for products.You
might use this factor in numerous places throughout your code. If you used hard-
coded values, and the factor changed, you would have to search the code and
change the value everywhere it was used. If you were using a constant instead, all
you would have to change is the value of the constant—this would automatically

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 175

176 Chapter 5 • .NET Programming Fundamentals

propagate the change to your entire application. Here are some examples of
declaring constants:

Const X As Integer = 5

Const str As String = "Company Name"

Const X As Double = 0.12

Structures
A structure allows you to create your own custom data types.A structure contains
one or more members that can be of the same or different data types. Each
member in a structure has a name, which allows you to reference the members
individually by name even though the structure as a whole is considered a single
entity. In previous versions of Visual Basic, structures were implemented using the
Type keyword. In Visual Basic .NET, the Structure keyword is used to define a
structure.This is the syntax for structures:

[Public|Private|Friend] Structure varname

NonMethod Declarations

Method Declarations

End Structure

The following code examples show how structures were declared in Visual Basic
6.0 and now in Visual Basic .NET. Notice how a scope now has to be given to
the members. In the examples, we are just using the Dim statement. Basically,
scope determines where in the program’s code a variable can be accessed.The
Visual Basic 6.0 example is as follows:

Type Employee

No As Long

Name As String

Address As String

Title As String

End Type 'Employee

In Visual Basic .NET, structures are declared like this:

Structure Employee

Dim No As Long

Dim Name As String

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 176

.NET Programming Fundamentals • Chapter 5 177

Dim Address As String

Dim Title As String

End Structure 'Employee

Now let’s take a look at how structures are used programmatically.The
example is for employee data.The data for an employee is a single entity, but you
would like to reference the members individually. If you did this with individual
variables, controlling the variable for each employee could become difficult. In
the following example, we can easily reference the data for different employees:

Dim emp1 As Employee

Dim emp2 As Employee

emp1.No = 12345

emp1.Name = "Cameron Wakefield"

emp1.Address = "123 Somewhere Ave."

emp1.Title = "President"

emp2.No = 12346

emp2.Name = "Lorraine Wakefield"

emp2.Address = "123 Somewhere Ave."

emp2.Title = "Vice President"

NOTE

Structures are now very similar to classes. Structures can even contain
methods as shown in the structure syntax. There are some restrictions on
structures that are not limited in classes. For instance, you cannot inherit
a structure. Also, you cannot initialize structure members, and you
cannot use the As New statement when declaring the members.
Structures are referenced by value, not by reference. So if a structure
variable is assigned to another variable, the structure would be copied to
the new variable. This also applies to passing it to a function by value.

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 177

178 Chapter 5 • .NET Programming Fundamentals

Program Flow Control
In this section, we cover how to control the flow of execution of your program
code.When code is executed, certain blocks of code might only need to execute
for certain conditions. For this type of execution control, we discuss the use of
the If…Then…Else and Select statements. In other circumstances, you may
want code to execute multiple times until a certain condition occurs.You can
accomplish this with While loops.A similar case is when you want a loop to
execute a certain number of times—this case uses the For loop.

If…Then…Else
If…Then…Else statements allow you to determine which block of code is exe-
cuted based on specified criteria. For the block of code to execute, the condition
must evaluate to True. Let’s take a look at the syntax for these statements, which
take on two basic forms: the single-line form and the block form.The single-line
form allows you to put the statement all on one line, as follows:

If condition Then [statement] [Else elsestatement]

The block form breaks the statement up over multiple lines.This format is
more structured and easier to read and follow.The syntax for the block form is
shown in the following code.The brackets around the ElseIf and Else statements
indicate that they are optional:

If condition Then

[statements]

[ElseIf condition-n Then

[elseifstatements] ...

[Else

[elsestatements]]

End If

When implementing If…Then…Else statements, you must always include
the If…Then statement and provide a condition. If this condition is true, the
block of code will execute.This block is terminated by one of the following
statements: ElseIf, Else, or End If. If the condition is not true, it will see if any
ElseIf conditions are true.The ElseIf statement allows you to enter multiple
additional condition execution blocks.The blocks will execute if its condition is
true. However, only one block will execute. Once a block of code is executed,

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 178

.NET Programming Fundamentals • Chapter 5 179

execution move to the end of the If…Then…Else statement. It doesn’t execute
every True condition, which means that you should be careful about the order of
the blocks.The Else statement does not have a condition; this block will execute
if none of the blocks above it are true.The Else block is always the last block in
an If…Then…Else statement.You can have only one Else statement.

Let’s take a look at an example.This example determines the shipping cost
based on amount of purchase. Notice that the Else clause is executed when the
purchase amount is greater than all of the specified amounts. Notice the order of
the conditions. If we had put the condition for less than the third shipping class,
the code would never get to the blocks for the first and second shipping classes:

Const MIN_AMT As Single = 9.99

Const SECOND_AMT As Single = 29.99

Const THIRD_AMT As Single = 49.99

Const MIN_SHIP_COST As Single = 10.49

Const SECOND_SHIP_COST As Single = 21.5

Const THIRD_SHIP_COST As Single = 26.33

Const MAX_SHIP_COST As Single = 30.48

Dim sngShipCost As Single

If sngAmt <= MIN_AMT Then

sngShipCost = MIN_SHIP_COST

ElseIf sngAmt <= SECOND_AMT Then

sngShipCost = SECOND_SHIP_COST

ElseIf sngAmt <= THIRD_AMT Then

sngShipCost = THIRD_SHIP_COST

Else

sngShipCost = MAX_SHIP_COST

End If

Notice that the If…Then…Else statements use less-than or equal compar-
ison operators.Visual Basic provides a number of comparison operators (shown in
Table 5.2) to allow extensive comparisons of expressions.

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 179

180 Chapter 5 • .NET Programming Fundamentals

Table 5.2 Comparison Operators

Comparison Operator Comparison Type

= Equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
<> Not equal to

In addition to the comparison operators listed in Table 5.2, you can use two
additional operators for special purposes: the Is and the Like operators.The Is
operator is used to compare object references. If two object references point to the
same object, the comparison is True.The Like operator is used to compare a string
to a string pattern rather than the exact copy of a string.This is similar to the SQL
Like clause.Wildcards give you flexibility in the pattern matching.Table 5.3 lists
the wildcards that are available for the Like operator.

Table 5.3 Like Operator Wildcards

Wildcard Character Pattern Matches

? Matches a single character
* Matches all or none characters
Matches a single digit
[character list] Matches any single character in the character list
[! Character list] Matches any single character NOT in the character list

The Like operator gives you many options when looking for patterns in a
string. If the pattern is found in the string, the expression returns True. If the pat-
tern is not found, the expression returns False. Let’s look at some examples of
using the Like operator and the value of the expression:

"abcdefg" Like "a*a" 'Expression is False

"abcdefga" Like "a*a" 'Expression is True

"abc" Like "a?a" 'Expression is False

"aba" Like "a?a" 'Expression is True

"aba" Like "a#a" 'Expression is False

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 180

.NET Programming Fundamentals • Chapter 5 181

"a1a" Like "a#a" 'Expression is True

"abcdefga" Like "a[a-z]a" 'Expression is False

"aba" Like "a[a-z]a" 'Expression is True

"aba" Like "a[!a-z]a" 'Expression is False

"aBa" Like "a[!a-z]a" 'Expression is True

Sometimes a single expression in an If…Then…Else statement is not
enough.You can use multiple expressions to create a single True or False value for
an If…Then…Else statement.You can use the logical operators to create com-
pound expressions that, as a whole, returns a single Boolean value.Table 5.4 lists
the logical operators.

Table 5.4 Logical Operators

Logical
Operator Function

And Both expressions must be True for a True result
Not Expression must evaluate to False for a True result
Or Either one of the expressions must be True for a True result
Xor Only one expression can be True for a True result

You can combine the logical operators to create multiple expressions.You can
use parentheses to logically group expressions together. Let’s take a look at some
examples of compound expressions:

1=1 And 1=2 'Expression is False

1=1 And 1<2 'Expression is True

1<1 Or 1=2 'Expression is False

1=1 Or 1=2 'Expression is True

(1=1 And 1=2) Or 1=3 'Expression is False

(1=1 And 1=2) Or 1<3 'Expression is True

Not 1=1 'Expression is False

1=1 And Not 1=2 'Expression is True

1=1 Xor 1<2 'Expression is False

1=1 Xor 1<2 'Expression is True

As you can see, you have virtually unlimited possibilities for determining a
result in your applications. Now let’s take a look at using some of these expressions

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 181

182 Chapter 5 • .NET Programming Fundamentals

in an If…Then…Else statement. In the following example, the numbers from
the preceding example are replaced with variables:

IntA = 1

IntB = 2

IntC = 3

IntD = 1

If intA=intD And intA=intB Then 'Expression is False

'Do something

ElseIf intA=intD And intA<intB Then 'Expression is True

'Do something

ElseIf intA=intD Or intA=intB Then 'Expression is True

'Do something

ElseIf (intA=intD And intA=intB) Or intA=intC Then 'Expression is False

'Do something

ElseIf intA=intD And Not intA=intB Then 'Expression is True

'Do something

ElseIf intA=intD Xor intA<intB Then 'Expression is False

'Do something

Else

'Do something

End If

Select Case
The Select Case statement is similar to the If…Then…Else statement.The
functionality is basically the same, except you get a cleaner way to write the
code.Whenever If…Then…Else statements have more than a few Else…If
blocks, the code becomes hard to read and follow.A general rule is to use the
Select Case statement when you have more than two Else…If statements.The
syntax for the Select Case statement is as follows:

Select Case testexpression

[Case expressionlist-n

[statements-n]] ...

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 182

.NET Programming Fundamentals • Chapter 5 183

[Case Else

[elsestatements]]

End Select

The Select Case will compare the Case statement expressions to the
testexpression.The expressionlist is one or more values separated by commas to
compare against the testexpression.The statements for the first Case that matches
the testexpression will be executed. Even if subsequent Case expressions match,
they will not be executed. If none of the Case expressions match, the statements
under the Case Else will be executed. Let’s look at an example. Let’s take the
If…Then…Else statement from the preceding code and convert it to a Select
Case statement:

Select Case sngAmt

Case Is <= MIN_AMT

sngShipCost = MIN_SHIP_COST

Case Is <= SECOND_AMT

sngShipCost = SECOND_SHIP_COST

Case Is <= THIRD_AMT

sngShipCost = THIRD_SHIP_COST

Case Else

sngShipCost = MAX_SHIP_COST

End Select

You can also use multiple expressions or even ranges in a Case expression,
and you can also match strings, as shown in the following code:

Select Case intTest

Case 1 To 5, 10 To 15, 21

'Do something

End Select

Select Case strTest

Case "match1", "match2"

msgbox("Found match 1 or 2")

Case "match3"

msgbox("Found match 3")

End Select

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 183

184 Chapter 5 • .NET Programming Fundamentals

While Loops
At times, you may wish to execute a block of code multiple times without
knowing beforehand how many times it needs to execute.You can use a While
loop to execute a block of code until a condition becomes False.That is, the loop
will continue to execute as long as the condition remains True.A common
example is looping through a recordset until you reach the end of it.You can use
While loops in multiple ways—let’s look at the syntax for the first way to use it:

Do [{While | Until} condition]

[statements]

[Exit Do]

[statements]

Loop

Or:

Do

[statements]

[Exit Do]

[statements]

Loop [{While | Until} condition]

The loop is started with the Do While keywords.The condition is checked to
see if it is True prior to each execution of the statements including the first itera-
tion.The Do Until statement will execute until the condition is True, whereas
the Do While will execute until the condition is False. For those of you accus-
tomed to using the While…Wend syntax, this is no longer available in Visual
Basic .NET.

In the following example, we keep adding the value 5 to a variable as long as
its value stays below 100:

Dim val As Integer = 0

Do While val < 100

Val = val + 5

Loop

The code inside the While loop will execute over and over until the variable
val becomes greater than or equal to the value 100.Sometimes, you may want to
exit a While loop before the condition is False. Let’s expand our previous

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 184

.NET Programming Fundamentals • Chapter 5 185

example to count how many times we add the value 5 to the variable, and if we
add it 10 times, exit the loop.You can exit a While loop at any time by using the
Exit Do statement as shown here:

Dim val As Integer = 0

Dim ctr As Integer = 0

Do While val < 100

val = val + 5

ctr = ctr + 1

If ctr >= 10 Then

Exit Do

End If

Loop

The While loop will stop executing under two conditions: when the variable
val is greater than or equal to the value 100 or when the variable ctr is greater
than or equal to the value 10. Of course, we could create a compound condi-
tional statement to achieve the same result and make our code cleaner.You can
use the same logical and comparison operators described in the “If…Then…Else”
section earlier in the chapter. Sometimes, exiting a loop cleanly is difficult, and
you will need to use the Exit Do statement. Here is an example of how this can
be rewritten:

Dim val As Integer = 0

Dim ctr As Integer = 0

Do While val < 100 And ctr < 10

val = val + 5

ctr = ctr + 1

Loop

Sometimes, you may always want a loop to execute at least one time. In the
preceding examples, if our variable val had been initialized to the value 100, the
code inside the loop would have never executed.To force our code inside the
loop to execute at least once, you can use another variation of the While loop as
shown here:

Dim val As Integer = 0

Dim ctr As Integer = 0

Do

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 185

186 Chapter 5 • .NET Programming Fundamentals

val = val + 5

ctr = ctr + 1

Loop Until val > 100 And ctr >= 10

In this example, the code always executes at least once because the condi-
tional is not evaluated until after the code inside the loop has executed.Also note
that you can use Loop While to execute until the condition is False. While
loops can be very powerful for performing complex operations.You can also nest
loops inside of each other.

For Loops
The For loop is similar to the While loop except in this case, you are executing
the code in the loop a fixed number of times.This is useful when reading or
writing to arrays (covered in the next section). Let’s take a look at the syntax:

For counter = start To end [Step step]

[statements]

[Exit For]

[statements]

Next

The counter is a numeric variable used as the loop counter.This variable is
used to keep track of the number of iterations through the loop.The start value is
what the loop counter is initialized to.The end value is the max value of the loop
counter before the loop stops executing.The Step clause is optional.This is how
much the loop counter will be incremented by each time through the loop after
the first execution. By default, this will increment the counter by a value of 1.
The step value can be negative to decrement the counter. In this case, the loop
will execute until the loop counter is less than the end value.As an example, let’s
create a For loop that will increment a variable 10 times by 5:

Dim I As Integer

Dim val As Integer = 0

For i = 1 To 10

Val = val + 5

Next

After the loop is finished executing, the value of the variable val is equal to
50 and the value of i will be 11.This is because after the tenth iteration through

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 186

.NET Programming Fundamentals • Chapter 5 187

the loop, i is incremented by 1 to 11, which is greater than the end value of 10,
and the loop stops executing.We will see some more examples of For loops later
in this chapter in the “Arrays” section.

Another form of the For loop is For…Each…Next.This loop is used with
arrays and collections. It loops through each item in the array or collection.We
haven’t discussed arrays and collections yet, but let’s look at how they are used.
The syntax is very similar to a For loop, as shown here:

For Each element In group

[statements]

[Exit For]

[statements]

Next [element]

The element must be the same data type as each item in the array or collec-
tion.The group is an array or collection.The loop will automatically step through
each element in the array or collection and exit the loop to the end of the array
or collection. Here is an example of looping through a collection:

Dim objItem, MyCollection As Object

For Each objItem In MyCollection ' Iterate through items.

If objItem.val = 5 Then

Exit For ' Exit loop.

End If

Next

Arrays
At times, you may need to store multiple instances of like data. Arrays allow you
to do this without having to create a separate variable for each item of data.An
array stores all of the items in a single variable, and you can reference each item
by using an array index or numerical subscript.All the elements of an array have
the same data type (structures are allowed).You can “cheat” this rule by using the
Object data type, which allows you to use different data types in an array.This is
similar to using the Variant data type in previous versions of Visual Basic.

Arrays have a lower bound and an upper bound.Arrays have changed slightly
in Visual Basic .NET.The lower bounds for an array is always 0.You cannot
change the lower bound of an array as you could in previous versions of Visual

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 187

188 Chapter 5 • .NET Programming Fundamentals

Basic. So, if an array had 10 elements, the lower bound would be 0 and the upper
bound would be 9.As we will see later in this chapter, everything in .NET is an
object.Arrays are inherited from the System.Array object and as such can use
the properties and methods available.

NOTE

When porting Visual Basic applications to Visual Basic .NET, be careful of
the lower bounds of arrays. If you are using a for loop to iterate through
the array, and it is hard-coded to initialize the counter at 1, the first ele-
ment will be skipped. Remember that all arrays start with the index of 0.

You can think of an array as a row of items that contain values. For example,
if you had an array of integers with five elements, it would be represented as
shown here with one row of five columns where each element is a column:

1 2 3 4 5

Declaring an Array
To declare an array variable, the syntax is similar to other variables.You still use
the Dim or Scope (Public, Private, Friend, and so on) keyword except that
you add parentheses after the variable name to indicate that it is an array. For
example, to declare an array of integers with 10 elements, use the following
syntax (you are limited to an upper bound of the max value of a Long data type
[264 –1]):

Dim arr(10) As Integer

Dim arr() As Integer = New Integer(10) {}

You can also initialize the values of an array when you declare it.The fol-
lowing line of code is the syntax for declaring an array of integers and initializing
the values. Notice that the parentheses are left blank. It is automatically dimen-
sioned to the correct number of elements:

Dim arr() As Integer = {0,1,2,3,4}

Now let’s see how we can use an array.To read or write an element in the
array, you use the array’s variable name followed by parentheses. Inside the

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 188

.NET Programming Fundamentals • Chapter 5 189

parentheses, the number indicates which element in the array is being referenced.
Let’s take a look at some examples:

arr(0) = 5

i = arr(3)

Now, let’s take a look at how you can use a For loop with an array as men-
tioned earlier in the chapter.We will set each element of an integer array to its
index value using a For loop as shown here:

Dim arr(5) As Integer

Dim i As Integer

For i = 0 To 4

arr(i) = i

Next

We could also loop through an array looking for a specific value, as in this
example:

For i = 0 To 4

If arr(i) > 10 Then

Exit For

End If

Next

Visual Basic has two functions that are used to determine the upper and
lower bounds of an array.The LBound function is used to retrieve the lower
bound of an array (always zero), and the UBound function returns the upper
bound of an array.We could change our for loop to read as follows:

For i = LBound(arr) To UBound(arr)

arr(i) = i

Next

Multidimensional Arrays
Arrays can have more than one dimension. In fact, in Visual Basic .NET, they can
have up to 60 dimensions, although it is uncommon to go above 3 dimensions.
An easy way to picture this is to expand our previous example beyond one row
of columns to multiple rows of columns. For example, an array with three rows

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 189

190 Chapter 5 • .NET Programming Fundamentals

of five columns would be represented by the following illustration where the first
digit represents the row and the second digit represents the column:

11 12 13 14 15

21 22 23 24 25
31 32 33 34 35

To declare this array, use the following syntax:

Dim arr(3,5) As String

To declare a multidimension array, you separate the length for each row by a
comma. If you wanted to declare a 2-dimensional array with 5 elements in the
first dimension and 10 elements in the second dimension, declare it as follows:

Dim arr(5,10) As String

To initialize a multidimensional array when declaring it, you leave the paren-
theses empty except for a comma for each additional array dimension. For
example, to initialize an array, use the following syntax:

Dim arr(,) As String = {{"11", "12", "13"}, {"21", "22", "23"}}

You can still use the LBound and UBound functions with multidimensional
arrays, but you need to also tell it which row to return the value for. By default,
it returns the value for the first row, which is why we didn’t need to pass in a
value for single dimension arrays. Let’s look at using the functions for iterating
through each element in the array and setting it to zero:

Dim arr(3, 5, 7) As Integer

Dim i As Integer

Dim j As Integer

Dim k As Integer

For i = LBound(arr, 1) To UBound(arr, 1)

For j = LBound(arr, 2) To UBound(arr, 2)

For k = LBound(arr, 3) To UBound(arr, 3)

arr(i, j, k) = 0

Next

Next

Next

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 190

.NET Programming Fundamentals • Chapter 5 191

NOTE

The memory size of an array is larger than just the memory needed to hold
the data. An array requires 20 bytes for the array, plus 4 bytes for each
dimension in the array plus the size of the data type for each element.

Dynamic Arrays
Once you have declared an array, you may need to change the size of it, which
Visual Basic allows you to do.This is accomplished using the Redim keyword.
When you declare an array, you don’t have to specify its size.You can just declare
it and the set its size later with the Redim keyword or you can redimension an
existing array. Let’s look at some examples:

Dim arr() As Integer

Dim i As Integer

ReDim arr(i)

For i = 0 To 3

arr(i) = 0

Next

This example does not specify the size of the array when declaring it, but
dimensions it using the variable i to specify its size.This allows you to create
arrays to a size that is not known until runtime. Unlike previous versions of
Visual Basic, you can now change the size of all the dimensions as shown here:

Dim arr(5, 5, 5) As Integer

Dim i As Integer

ReDim arr(3, 3, 3)

For i = 0 To 3

arr(1, 1, i) = 0

Next

When using the Redim keyword as we have seen so far, a completely new
array is created and any new existing data is lost. For example, if we initialized an
array with values for each element and then redimensioned it, the values would

www.syngress.com

153_VBnet_05 8/14/01 2:21 PM Page 191

192 Chapter 5 • .NET Programming Fundamentals

be set to their defaults (for example, integers would be set to zero). Let’s look at
an example:

Dim arr() As Integer = {1, 2, 3}

Dim i As Integer

ReDim arr(5)

i = arr(0)

In this example, when i is set to arr(0), its value is 0 rather than 1.To keep any
existing values in an array when redimensioning it, use the Preserve keyword.
This will copy the existing values into the new array, with one limitation:You can
only resize the last dimension.The other dimensions must stay the same size. So
let’s see what happens if we change the preceding example:

Dim arr() As Integer = {1, 2, 3}

Dim i As Integer

ReDim Preserve arr(5)

i = arr(0)

This time, when i is set to arr(0), its value is still 1.Thus, the original values
are preserved after resizing the array.

NOTE

Some things to remember when using arrays:
■ Because every array is an object, it also contains members that

contain the array’s rank and length information.
■ If you assign one array variable to another, only the pointer is

copied, not the entire array.

Functions
In most applications, some blocks of code are executed multiple times in different
parts of your application.You can’t just use a loop because the code is executed in
different parts of your program. Sure, you can cut and paste the code wherever
you use it, but if you discover a bug or have to change the code, you have to find
and change the code everywhere it is used.You also can’t have any typos or miss
any of the blocks spread throughout the application.You can get around this
problem by using functions.A function is a block of code that can be called (and

www.syngress.com

153_VBnet_05 8/14/01 2:22 PM Page 192

.NET Programming Fundamentals • Chapter 5 193

even passed parameters) to perform some type of functionality.When the block
of code is completed, execution returns to the line of code after the function was
called.A procedure performs this same functionality, except that a function can
return a variable. Let’s see the syntax for functions:

[Public | Private | Friend] [Static] Function name [(arglist)] [As type]

[statements]

[name = expression]

[Exit Function]

[statements]

[name = expression]

End Function

The keywords prior to Function (Public, Private, and so on) deal with
scope of a function (where it can be called from).

In previous versions of Visual Basic, to return a value of a function you set the
name of the function (as if it was a variable) to the value. In Visual Basic .NET,
you can use this method or use the Return keyword to return a value from a
function as shown in the following code.The difference is that the Return key-
word returns control from the function immediately, whereas using the function
name sets the value to be returned but does not return from the function until it
hits either an End function or Exit function. In Visual Basic 6.0 and earlier,
you can do this:

Function GetPi() As Double

GetPi = 3.14

End Function

In Visual Basic .NET, you can do this:

Function GetPi() As Double

Return = 3.14 'return immediately

End Function

Or you can do this:

Function GetPi() As Double

Dim pi as double = 3.14

GetPi = pi 'doesn't return yet

Pi = 4

End Function 'returns 3.14

www.syngress.com

153_VBnet_05 8/14/01 2:22 PM Page 193

194 Chapter 5 • .NET Programming Fundamentals

Another significant difference is how parameters are passed to functions. In
previous version of Visual Basic, parameters were passed by reference by default. In
Visual Basic .NET, parameters are passed by value by default.The difference
between the two is that when a parameter is passed by value, if the code inside the
function changes the value of the parameter, the change is not seen by the code
calling the function. It just passes in a copy of the value.When parameters are
passed by reference, a pointer to the variable is passed into the function so that, if
the parameter is changed inside the function, that change is also reflected outside
the function. Let’s look at an example where we pass a parameter by value:

Function F1(ByVal x As Integer) As Integer

X = 1

Return 0

End Function

Sub F2()

Dim z As Integer = 0

F1(z)

MessageBox(z)

End Sub

In this example, when the variable z is displayed in the message box, the
value will still be 0. Now let’s change this example to pass the parameter by
reference:

Function F1(ByRef x As Integer) As Integer

X = 1

Return 0

End Function

Sub F2()

Dim z As Integer = 0

F1(z)

MessageBox(z)

End Sub

www.syngress.com

153_VBnet_05 8/14/01 2:22 PM Page 194

.NET Programming Fundamentals • Chapter 5 195

In this example, when the variable z is displayed in the message box, the
value will be changed to one.

You can use two other keywords with function parameters: Optional and
ParamArray.The Optional keyword is used for parameters that are not
required to be supplied when calling a function. However, when a parameter is
declared as Optional, all parameters after it must also be Optional.You must
also supply a default value for the parameter.When this parameter is not specified
when the function is called, the default value is used. Let’s look at an example:

Function Multiply(ByVal x1 As Integer,

ByVal x2 As Integer,

Optional ByVal x3 As Integer = 1) As Integer

Return x1 * x2 * x3

End Function

In this example, you have to pass in only parameters for x1 and x2. If you
don’t provide a value for x3, it defaults to 1. Let’s look at two calls to this function:

i = Multiply(2, 3)

i = Multiply(2, 3, 4)

In the first call, the Optional parameter is not provided, and the function
returns the value 6. In the second call, the value 4 is provided, and the function
returns the value 24. Now let’s take a look at how you use ParamArray.You can
only use this keyword as the last parameter and with only one parameter.This
keyword allows the function to be called with any number of arguments.The
limitation is that all values must be passed by value. Let’s modify our Multiply
function to use ParamArray:

Function Multiply(ByVal ParamArray Args() As Integer) As Integer

Dim i As Integer

Dim val As Integer = 1

For i = 0 To Args.Length() - 1

val = val * Args(i)

Next

Return val

End Function

www.syngress.com

153_VBnet_05 8/14/01 2:22 PM Page 195

196 Chapter 5 • .NET Programming Fundamentals

Notice that the Args array is an object and that we have used the length
property to determine how many arguments were passed into the function.We
then used a For loop to multiply all of the arguments together and return the
result.

Object Oriented Programming
An object is an entity that contains state (or data) and behavior (methods).Think
of a car.A car is a single object, yet it has numerous parts and behaviors.A car has
a body, frame, wheels, doors, and so on. It’s a single object made up of smaller
objects.A car also has behavior (or actions).You can drive it, open the doors,
turn, and so on.All of this is encapsulated in a single object: a car. Let’s see what
the pseudocode would look like for a basic vehicle object:

Vehicle Object

NumWheels

NumDoors

Color

Drive()

End Vehicle Object

A class is a template for objects.An object is an instance of an object in
memory.You can have multiple instances of the same class. In previous versions of
Visual Basic, you had some limited benefits of objects.You could create a class by
adding a Class module to your application, but you were limited to one class per
class module. In Visual Basic .NET, you can still use Class modules, but they aren’t
required, and you can have multiple classes in the same module. Object oriented
programming has three basic concepts: Inheritance, Polymorphism, and
Encapsulation.Visual Basic .NET has extended its object oriented functionality
beyond encapsulation and a pseudo-inheritance to create a true object oriented
programming language. Microsoft has added true inheritance and polymorphism
to Visual Basic.This section is by no means a complete reference to implementing
objects in Visual Basic .NET—it is meant to provide a basic understanding.A
complete book could be devoted to this topic.

Inheritance
Finally,Visual Basic allows true inheritance of objects. So, what does this really
mean? Inheritance is a relationship where one object is derived from another

www.syngress.com

153_VBnet_05 8/14/01 2:22 PM Page 196

.NET Programming Fundamentals • Chapter 5 197

object.When an object is inherited, all of its properties and methods are
automatically included in the new object. Let’s take our car example a little fur-
ther and create a new object for a specific type of vehicle, a truck:

Truck Object

Inherits Vehicle Object

BedLength

End Vehicle Object

This new truck object will now have the same properties as the vehicle
object (number of wheels and doors as well as color), but we have now added
how long the truck bed is without have to recreate the other properties.As you
can see, this can be a powerful tool for code reuse.You don’t have to rewrite code
just to tweak it to your specific needs.

Polymorphism
Polymorphism allows an inherited method to be overridden.This means that if
we inherit an object and want to change the functionality of an inherited
method, we can add a new method to the new object with the same method
name.Thus, when the method is called for the new object, it will execute the
new method. If an object is created from the original object, the original method
will be used. If an object is created from the new object, the new method is used.
This prevents you from having to implement separate methods for drive for each
type of vehicle (such as TruckDrive, CarDrive, and so on). If we wanted to
change the functionality of our Drive method, our new object would look like
the following example:

Truck Object

Inherits Vehicle Object

Drive()

BedLength

End Vehicle Object

Encapsulation
Encapsulation was available in previous version of Visual Basic. Encapsulation is,
simply put, a technique to hide information in an object by combining both data
and operations on that data within an object. For example, our vehicle object is a

www.syngress.com

153_VBnet_05 8/14/01 2:22 PM Page 197

198 Chapter 5 • .NET Programming Fundamentals

single entity that contains data (number of wheels and doors, color, and so on)
and operations (drive).This is all wrapped up inside a single object.You can
control what methods and properties are available outside the object and which
are hidden.A common practice is that before a property is changed, it can be
validated before changing it.

Classes
A class is a template for an object.This is how you define a class.This is where
you specify the properties and methods of your class. It is a data structure that can
contain data members such as constants, variables, and events and function mem-
bers such as methods and properties. Let’s start by looking at the basic syntax for
declaring a class:

Class name

[statements]

End Class

The Class keyword start the class definition.The name is the name to be used
to create instances of this class.The statements comprise the methods, properties,
variables, and events of the class.Within a class, access to each member can be
specified.A member declared as Private is available only from within the class.A
member declared as Public is available inside the class as well as outside the class.
Public is the default declaration if not specified.

In Visual Basic .NET, the Set keyword is no longer needed and in fact will
give you a syntax error if you try to use it. In Visual Basic 6.0, the Set keyword
was needed because of default properties (as in a Label control had the default
property of Caption). So when setting one label variable to another, if you didn’t
use the Set keyword, it just copied the value in the Caption property from one
control to the other. If you used the Set keyword, it actually set the object refer-
ence to the other object. In Visual Basic .NET, default properties are no longer
valid unless they take parameters, which eliminates the need for the Set keyword.

Adding Properties
Properties store information in an object. Properties can be specified by either
public variables or as property methods.When properties are declared using a
public variable, they are also referred to as fields. This method does not provide
the ability to control (validate) reading and writing a property. Property methods
allow you to control read and write operations of properties in a class.This is

www.syngress.com

153_VBnet_05 8/14/01 2:22 PM Page 198

.NET Programming Fundamentals • Chapter 5 199

similar to creating properties in a COM object in previous versions of Visual
Basic. Let’s look at how to declare each type. Following our vehicle example, we
will use a public variable for the number-of-doors property and property
methods for our number-of-wheels property:

Class Vehicle

Public NumDoors As Integer = 2

Private NumWheelsValue As Integer = 4 ' Used for property ops.

Public Property NumWheels() As Integer ' This is a Property.

Get

Return NumWheelsValue

End Get

Set(ByVal Value As Integer)

' Only allow set operation for values less than 13.

If Value < 13 Then

NumWheelsValue = Value

End If

End Set

End Property

End Class

Function testVehicle()

Dim clsVehicle As New Vehicle()

Dim clsOtherVehicle As Vehicle

clsVehicle.NumDoors = 4

clsVehicle.NumWheels = 4

clsOtherVehicle = New Vehicle()

clsOtherVehicle.NumWheels = 13

End Function

In this example, the testVehicle function instantiates (or creates) the object
in the variable clsVehicle. Unlike other data types such as integers and strings, a

www.syngress.com

CD File
5-1

153_VBnet_05 8/14/01 2:22 PM Page 199

200 Chapter 5 • .NET Programming Fundamentals

class has to be explicitly created using the New keyword.You can do this when
declaring the variable or later in code. Notice that both of the properties are used
the same way. However, when we try to set the number of wheels to 13, the
value remains 4. No error message occurs, it just silently ignores the invalid value.
So, when should you use property methods versus public variables? We have
already seen that to validate values for properties, you must use the property
method.There may also be cases where a property setting affects other portions
of a class. Say, for example, our class had a number-of-windows property. If we
changed the number of doors, this would automatically affect the number of
windows, and you could use a property method to reflect this change transparent
to the user of the class.To make a property read-only, you must use property
methods.This is achieved by using the ReadOnly keyword, supplying only a Get
method and not implementing a Set method. Let’s change our class to reflect this:

Class Vehicle

Public NumDoors As Integer = 2

Private NumWheelsValue As Integer = 4 ' Used for property ops.

Public ReadOnly Property NumWheels() As Integer

Get

Return NumWheelsValue

End Get

End Property

End Class

Adding Methods
Methods of a class perform an action or operation.These are simply public func-
tions or procedures in a class. Let’s implement the Drive method for our Vehicle
class in the following code:

Class Vehicle

Public NumDoors As Integer = 2

Private NumWheelsValue As Integer = 4 ' Used for property ops.

Public ReadOnly Property NumWheels() As Integer

Get

Return NumWheelsValue

www.syngress.com

CD File
5-2

CD File
5-3

153_VBnet_05 8/14/01 2:22 PM Page 200

.NET Programming Fundamentals • Chapter 5 201

End Get

End Property

Public Sub Drive()

'make vehicle drive

End Sub

End Class

Even though our Drive procedure doesn’t do anything, you can see how easy
it is to create class methods. If the procedure had been declared as Private, it
could be called only within the class and would not be available outside the class.

System.Object
Everything in .NET is derived from the System.Object class.You can think of it as
the super class or root of all classes in .NET.When a class is created, it automati-
cally inherits the properties and methods of the System.Object. Everything in
.NET is an object, therefore everything in .NET is derived from System.Object.

Constructors
Constructors are methods of a class that are executed when a class is instantiated.
This is commonly used to initialize the class.To create a constructor, you simply
add a public procedure called New().Then add any initialization code inside this
method as shown here:

Public Sub New()

NumDoors = 4

NumWheelsValue = 4

End Sub

This constructor actually gets executed when the class is created with the
New keyword. In this example, we just set the number of doors to 4 and the
number of wheels to 4.We could expand the constructor to allow the user of the
class to pass in the initial values for these by using a parameterized constructor.
We will add two parameters for the number of doors and wheels to initialize to
and pass in these values when we create the class as shown here:

Public Sub New(ByVal Doors As Integer, ByVal Wheels As Integer)

NumDoors = Doors

NumWheelsValue = Wheels

www.syngress.com

153_VBnet_05 8/14/01 2:22 PM Page 201

202 Chapter 5 • .NET Programming Fundamentals

End Sub

Function testVehicle()

Dim clsVehicle As New Vehicle(4, 4)

clsVehicle.NumDoors = 4

End Function

What if we don’t want to require the user of the class to have to specify these
values? We can then use optional parameters with default values as shown here:

Public Sub New(Optional ByVal Doors As Integer = 4,

Optional ByVal Wheels As Integer = 4)

NumDoors = Doors

NumWheelsValue = Wheels

End Sub

Overloading
Overloading provides the ability to create multiple methods or properties with the
same name, but with different parameter lists.This is a feature of polymorphism.
It is accomplished by using the Overloads keyword.A simple example would be
an Addition function that can add real number or integers.You could create two
methods with the same name, but one would take integer parameters and one
would take real numbers.This prevents you from having to create a method for
each data type with different names. Let’s take a look at how these are declared:

Public Overloads Function Add(ByVal x As Integer,

ByVal y As Integer)

Return x + y

End Function

Public Overloads Function Add(ByVal x As Double,

ByVal y As Double)

Return x + y

End Function

'method usage

clsVehicle.Add(1, 1) 'calls first Add function

www.syngress.com

CD File
5-4

153_VBnet_05 8/14/01 2:22 PM Page 202

.NET Programming Fundamentals • Chapter 5 203

clsVehicle.Add(1.5, 1.5) 'calls second Add function

clsVehicle.Add(1, 1.5) 'calls second Add function

This example creates two functions called Add using the Overloads keyword.
If two integers are passed in, the first Add function is executed. If either of the
parameters is a real number, the second Add function is executed. It implicitly
converts the integer parameter to a double data type.When overloading methods
the compiler must be able to differentiate between them. For example, you can’t
just change parameter names and leave them with the same data type.You cannot
just change it from a public method to a private method or change the return data
type.You cannot just change a parameter in one method from ByVal to ByRef.

Overriding
Inheriting a class allows you utilize the methods and properties of a class without
having to implement them by simply reusing the existing ones. However, there
are times when you want to change the functionality of an inherited method or
property.You don’t want to have to create a new method with a new name, you
just want to override the existing member.This is another feature of polymor-
phism.You accomplish this by using the Overridable keyword in the base class
and the Overrides keyword in the derived class. Let’s look at an example where
we start with a base class called Square with a method to calculate the circumfer-
ence of a square:

Class Square

Public Overridable Function getCircumference(ByVal r As Double)

As Double

Return (2 * r) * 4 'length of side time 4 sides

End Function

End Class

Function testSquare()

Dim clsSquare As New Square()

Dim circ As Double

circ = clsSquare.getCircumference(1)

End Function

In this example, the value of the variable circ will be 8 after calling
GetCircumference in the Square class. Now let’s take a look at inheriting this class in

www.syngress.com

CD File
5-5

153_VBnet_05 8/14/01 2:22 PM Page 203

204 Chapter 5 • .NET Programming Fundamentals

a circle class.The circumference is calculated differently, so we will want to
override it:

Class Circle

Inherits Square

Public Overrides Function getCircumference(ByVal r As Double)

As Double

Return 2 * 3.14 * r

End Function

End Class

Public Function testCircle()

Dim clsCircle As New Circle()

Dim clsSquare As New Square()

Dim circSquare As Double

Dim circCircle As Double

circCircle = clsCircle.getCircumference(1) 'returns 6.28

circSquare = clsSquare.getCircumference(1) 'returns 8

End Function

In this example, we overrode the getCircumference function to calculate the cir-
cumference of a circle. In the testVehicle function, the call to the circle class
method returns the value 6.28, and the call to the square class method returns the
value 8. Now you can begin to see the power of polymorphism. It allows users of
your classes to use some standardized methods without have to change the name
of it for every little difference.You must follow some rules for overriding mem-
bers.You can only override members that are declared with the Overridable
keyword in the base class.When overriding a member, it must have the exact
same arguments.You can call the base class method from within the derived class
using the MyBase keyword. For example, we could add a method in the derived
class called getSquareCircumference, and it could just call the base class method as
shown in the following example. Granted, this isn’t a plausible example, but it
does illustrate the available functionality.This example simply passes the argument
to the base class method and returns its value:

Public Function getSquareCircumference(ByVal r As Double) As Double

www.syngress.com

CD File
5-6

CD File
5-7

153_VBnet_05 8/14/01 2:23 PM Page 204

.NET Programming Fundamentals • Chapter 5 205

Return MyBase.getCircumference(r)

End Function

You can use some additional keywords for overriding members of a class.The
NotOverridable keyword is used to declare a method that cannot be overridden
in a derived class.Actually, this is the default, and if you do not specify
Overridable, it cannot be overridden.The MustOverride keyword is used to
force a derived class to override this method.You commonly use this when you
do not want to implement a member, but require it to be implemented in any
derived class. For example, if we started with a shape class with the getCircumference
method, we couldn’t implement it because each shape would require a different
calculation. But, we could force each derived class to implement for its particular
shape (such as circle or square).When a class contains a MustOverride member,
the class must be marked with MustInherit as shown here:

MustInherit Class Shape

MustOverride Function getCircumference(ByVal r As Double) As Double

End Class

Class Square

Inherits Shape

Public Overrides Function getCircumference(ByVal r As Double)

As Double

Return 2 * r * 4

End Function

End Class

Shared Members
In all the classes we have seen so far, a member is available only within that par-
ticular instance of the class. If two instances of the same class were created and
you changed a property in one of the instances, it would not change the value of
the property in the other instances. Shared members are members of a class that
are shared between all instances of a class; for example, if you did change a prop-
erty in one instance, that change would be reflected across all instances of the
class.This lets you share information across instances of classes. Let’s look at an
example where we track how many instances of a class are instantiated:

www.syngress.com

CD File
5-8

153_VBnet_05 8/14/01 2:23 PM Page 205

206 Chapter 5 • .NET Programming Fundamentals

Class SomeClass

Private Shared NumInstances As Integer = 0

Public Sub New()

NumInstances = NumInstances + 1

End Sub

Public ReadOnly Property Instances() As Integer

Get

Return NumInstances

End Get

End Property

End Class

Public Sub testShared()

Dim clsSomeClass1 As New SomeClass()

Dim clsSomeClass2 As SomeClass

Dim num As Integer

num = clsSomeClass1.Instances ' returns 1

clsSomeClass2 = New SomeClass()

num = clsSomeClass2.Instances ' returns 2

End Sub

In this example, we created a constructor that increments the NumInstances
variable.When the first class is instantiated, this variable is equal to 1.When the
second class is instantiated, the value becomes equal to 2.

String Handling
For those of you have gotten accustomed to the powerful string manipulation
functions in Visual Basic, don’t worry, that power is still available.As we have
stated numerous times already, everything in .NET is an object.Therefore, when
you create a string variable, the string methods are already built in.A string vari-
able is actually an instance of a string class.Table 5.5 lists the most common
built-in methods of the string class.

www.syngress.com

CD File
5-9

153_VBnet_05 8/14/01 2:23 PM Page 206

.NET Programming Fundamentals • Chapter 5 207

Table 5.5 String Class Methods

Method Description

Compare Compares two string objects
Concat Concatenates one or more strings
Copy Creates a new instance of the string class that contains

the same string value
Equals Determines whether or not two strings are equal
Format Formats a string
Equality Operator Allows strings to be compared using the = operator
Equality Operator Allows strings to be compared using the <> operator
Chars Returns the character at a specified position in the string
Length Returns the number of characters in the string
EndsWith Determines whether or not a string ends with a specified

string
IndexOf Returns the index of the first character of the first occur-

rence of a substring within this string
IndexOfAny Returns the index of the first occurrence of any character

in a specified array of characters
Insert Inserts a string in this string
LastIndexOf Returns the index of the first character of the last occur-

rence of a substring within this string
LastIndexOfAny Returns the index of the last occurrence of any character

in a specified array of characters
PadLeft Pads the string with spaces on the left to right-align a

string
PadRight Pads the string with spaces on the right to left-align a

string
Remove Deletes a specified number of characters at a specified

position in the string
Replace Replaces all occurrences of a substring with a specified

substring
Split Splits a string up into a string array using a specified

delimiter
StartsWith Determines whether or not a string starts with a specified

string
SubString Returns a substring within the string

www.syngress.com

Continued

153_VBnet_05 8/14/01 2:23 PM Page 207

208 Chapter 5 • .NET Programming Fundamentals

ToLower Returns a copy of the string converted to all lowercase
letters

ToUpper Returns a copy of the string converted to all uppercase
letters

Trim Removes all occurrences of specified characters (normally
whitespace) from the beginning and end of a string

TrimEnd Removes all occurrences of specified characters (normally
whitespace) from the end of a string

TrimStart Removes all occurrences of specified characters (normally
whitespace) from the beginning of a string

As you can see, numerous string manipulation methods are available. Let’s take
a look at how some of these are used.When working with strings in Visual Basic
.NET, the strings are zero-based, which means that the index of the first char-
acter is 0. In previous versions of Visual Basic, strings were one-based. For those
of you who have been using Visual Basic for a while, this will take some getting
used to. Remember that most string methods return a string, they do not manip-
ulate the existing string, which means that you need to set the string equal to the
string method as shown here:

Dim str As String = "12345"

str.Remove(2, 2) 'str still = "12345"

str = str.Remove(2, 2) 'str = "12345"

In the first call to the Remove method, the str variable value does not change.
In the second call, we are setting the str variable to the returned string from the
Remove method, and now the value has changed:
1 Dim str As String = "Cameron"

2 Dim str2 As String

3 Dim len As Integer

4 Dim pos As Integer

5 len = str.Length() 'len = 7

6 str2 = str 'str2 now = "Cameron"

7 If str.Compare(str, str2) = 0 Then

www.syngress.com

Table 5.5 Continued

Method Description

CD File
5-10

153_VBnet_05 8/14/01 2:23 PM Page 208

.NET Programming Fundamentals • Chapter 5 209

8 'strings are equal

9 ElseIf str.Compare(str, str2) > 0 Then

10 'string1 is greater than string2

11 ElseIf str.Compare(str, str2) < 0 Then

12 'string2 is greater than string1

13 End If

14 If str = str2 Then

15 'same instance

16 Else

17 'difference instances

18 End If

19 str = str + "W" 'str = "CameronW"

20 str = str.Insert(7, " ") 'str now = "Cameron W"

21 If str.EndsWith(" W") Then

22 str.Remove(7, 2) 'str still = "Cameron W"

23 str = str.Remove(7, 2) 'str = "Cameron"

24 End If

25 pos = str.IndexOf("am") 'pos = 1

26 pos = str.IndexOfAny("ew") 'pos = 3

Now let’s take a look at what we have done. In line 7, we are using the
Compare function to see if the string values are equal.They are equal, and line 8
would be executed next. In line 14, we are comparing the string references, not
the string values. Because these are two separate instances of the String class, they
are not equal, and line 17 would execute next. Remember that this does not
compare the string values. In line 25, the index returned is equal to 1 because
arrays are zero-based.This function is looking for the entire substring in the string.
In line 26, this method is looking for any of the characters in the substring in the
string. Even though w is not in the string, it finds e and returns the index 3.

www.syngress.com

153_VBnet_05 8/14/01 2:23 PM Page 209

210 Chapter 5 • .NET Programming Fundamentals

Error Handling
To prevent errors from happening after you distribute your application, you need
to implement error trapping and handling.This will require you to write good
error handlers that anticipates problems or conditions that are not under the con-
trol of your application and that will cause your program to execute incorrectly
at runtime.You can accomplish this largely during the planning and design phase
of your application.This requires a thorough understanding of how your applica-
tion should work, and the anomalies that may pop up at runtime.

For runtime errors that occur because of conditions that are beyond a pro-
gram’s control, you handle them by using exception handling and checking for
common problems before executing an action.An example of checking for errors
would be to make sure that a floppy disk is in the drive before trying to write to
it or to make sure that a file exists before trying to read from it.Another example
of when to use exception handling is retrieving a recordset from a database.You
might have a valid connection, but something might have happened after your
connection to cause the retrieval of a recordset to fail.You could use exception
handling to trap this error rather than a cryptic message popping up and then
aborting your application.

You should use exception handling to prevent your application from
aborting.They provide support for handling runtime errors, called exceptions,
which can occur when your program is running. Using exception handling, your
program can take steps to recover from abnormal events outside your program’s
control rather than crashing your application.These exceptions are handled by
code that is not run during normal execution.

In previous versions of Visual Basic, error handling used the On Error Goto
statement. One of the major complaints made by programmers has been the lack
of exception handling.Visual Basic .NET meets this need with the inclusion of
the Try...Catch…Finally exception handling.Those of you who have pro-
grammed in C++ should already be familiar with this concept. Let’s take a look
at the syntax for exception handling:

Try

tryStatements

[Catch [exception [As type]] [When expression]

catchStatements1

www.syngress.com

153_VBnet_05 8/14/01 2:23 PM Page 210

.NET Programming Fundamentals • Chapter 5 211

…

Catch [exception [As type]] [When expression]

catchStatementsn]

[Finally

finallyStatements]

End Try

The Try keyword basically turns the exception handler on.This is code that
you believe is susceptible to errors and could cause an exception.The compound
statement following the Try keyword is the “guarded” section of code. If an
exception occurs inside the guarded code, it will throw an exception that can
then be caught, allowing your code to handle it appropriately.The Catch key-
word allows you to handle the exception.You can use multiple catch blocks to
handle specific exceptions.The type is a class filter that is the class exception or a
class derived from it.This class contains information about the exception.The
Catch handlers are examined in order of their appearance following the Try
block. Let’s take a look at an example:

Dim num As Integer = 5

Dim den As Integer = 0

Try ' Setup structured error handling.

num = num \ den ' Cause a "Divide by Zero" error.

Catch err As Exception ' Catch the error.

MessageBox.Show(err.toString) ' Show friendly error message.

num = 0 ' set to zero

End Try

In this example, the code that divides one variable by another is wrapped
inside a Try block. If the denominator equals 0, an exception will occur and exe-
cution will move to the Catch block.The Catch block displays the error mes-
sage and then sets the variable to 0.You can also include multiple Catch blocks
to handle specific types of errors, which allows you to create different exception
handlers for different types of errors. Let’s expand our previous example by
adding an additional Catch block that catches only divide-by-zero exceptions.
Any other exceptions are handled by the second Catch block.

www.syngress.com

153_VBnet_05 8/14/01 2:23 PM Page 211

212 Chapter 5 • .NET Programming Fundamentals

www.syngress.com

Dim num As Integer = 5

Dim den As Integer = 0

Try ' Setup structured error handling.

num = num \ den ' Cause a "Divide by Zero" error.

Catch err As DivideByZeroException ' Catch the divide by zero error.

MessageBox.Show("Error trying to divide by zero.")

num = 0 ' set to zero

Catch err As Exception ' Catch any other errors.

MessageBox.Show(err.toString) ' Show friendly error message.

End Try

CD File
5-11

153_VBnet_05 8/14/01 2:24 PM Page 212

.NET Programming Fundamentals • Chapter 5 213

Summary
In this chapter, we have covered a broad portion of programming concepts.We
discussed what variables are and how they differ from variables in previous ver-
sions of Visual Basic. Of significance is the new ability to initialize a variable
when it is declared.Another significant change is that the Variant data type is no
longer available. In previous versions of Visual Basic, when a variable was not
given a data type, it was implicitly declared as a Variant data type. In Visual Basic
.NET, the Object data type is the default.The Type keyword is no longer avail-
able; it has been replaced by structures. Structures are similar to classes with some
limitations. Structures are useful for lumping like data together and allow access
to each data member by name, such as an employee record.

When developing applications, you cannot just write lines of code that will
always be executed.You will have to be able to change the flow of execution
based on specified conditions.You can accomplish this through several program
flow techniques.The If…Then…Else technique allows only certain blocks of
code to be executed depending on a condition.The Select statement to be used
to provide the same functionality as the If…Then…Else, but it is cleaner and
easier to read when you have multiple ElseIf blocks. For executing through the
same block of code multiple times, we discussed the While and For loops. Use
the While loop when the number of iterations through the loop is not known
ahead of time. Use the For loop when you want to iterate through the loop a
fixed number of times.

Arrays are used to store multiple items of the same data type in a single vari-
able. Imagine the headache of trying to create a hundred variables with the
number 1–100 appended to the end of the variable name.This provides a simpler
way to store like information.We saw that you can create multidimensional arrays
and resize arrays.

Functions have changed somewhat in Visual Basic .NET.We now have two
ways to return values.We can use the Return statement or the function name.
Parameters have also changed from passing by reference as the default to passing
by value.

Everything in .NET is an object.This is a major paradigm shift from previous
versions of Visual Basic.We saw that we now have true inheritance and polymor-
phism at our fingertips.We can create multiple classes in the same module and
have a great deal of the functionality previously available only in C++.We saw
how members can be overloaded and overridden and even how to share a
member across instances of a class.

www.syngress.com

153_VBnet_05 8/14/01 2:24 PM Page 213

214 Chapter 5 • .NET Programming Fundamentals

Because strings are objects, all of the string manipulation functions are part of
the String class. If anything, it helps you to see all the methods available in place
using Intellisense. No more searching through Help files for that desired string
function.We also learned that string indexes are now zero-based instead of one-
based as in previous versions of Visual Basic.

Error handling in Visual Basic .NET has changed dramatically compared to
previous versions of Visual Basic. Previous versions used the On Error Goto
syntax for error handling.Visual Basic .NET has changed to a structured
approach using exception handling with the Try…Catch…Finally blocks,
which make exception handling cleaner to read and provide more functionality.
You can now use multiple Catch blocks to provide separate exception handlers
for different kinds of errors.

Solution Fast Track

Variables

Variables are named memory locations for storing data.

The Variant data type is no longer available.

You should use the correct data types. Do not use the Object data
type unless necessary.

You can initialize variables when you declare them as in other
programming languages.

Constants

Constants are similar to variables.The main difference is that the value
contained in memory cannot be changed once the constant is declared.

When you declare a constant, the value for the constant is specified.

Structures

Structures allow you to create custom data types with named members
in a single entity.

www.syngress.com

153_VBnet_05 8/14/01 2:24 PM Page 214

.NET Programming Fundamentals • Chapter 5 215

The Type keyword is no longer available.You must now use the
Structure keyword.

Program Flow Control

If…Then…Else statements allow you to specify which blocks of code
run under different circumstances.

If you have several more than a few ElseIf statements, then you should
use the Select statement for easier to read code.

If you need to loop through a block of code an unspecified number of
times, you should use a while loop.

If you know how many times you need to loop through a block of
code, you should use a for loop.

Arrays

Arrays allow you to store multiple instances of a group of data with the
same data type.

All arrays now have a lower bound of zero.

Arrays can be initialized when declared.

Arrays can be created dynamically and resized as needed using the
ReDim keyword.

Functions

Functions now have two ways of returning values.You can still use the
function name or the Return keyword.

The default method of passing parameters is now by value. In previous
version of Visual Basic, the default method was by reference.

You can create optional parameters as well as parameter arrays that allow
any number of parameters to be passed in.

www.syngress.com

153_VBnet_05 8/14/01 2:24 PM Page 215

216 Chapter 5 • .NET Programming Fundamentals

Object Oriented Programming

In Visual Basic .NET, everything is an object.

Visual Basic .NET now supports true inheritance and polymorphism to
become a more true object oriented programming language.

You are no longer limited to one class per class module. In fact, your
classes don’t even have to be created in a class module.

The Set keyword is no longer used when working with objects.This is
because default properties without parameters are no longer used
negating the need for the Set keyword.

Constructors allow you to initialize your object when the object is
created.You can even pass in parameters to the constructor.

You can overload class methods.This allows you to create multiple
methods with the same name but different parameters types.

Overriding a method allows you to change the functionality of an
inherited method.

Shared members of a class are shared between all instances of the class.
This means that if one instance of a class changes the member’s value,
then this changed would be seen in all instances of the class.

String Handling

All those powerful string manipulation functions are now built into the
String class.

Strings indexes are now zero based instead of one based.

When using a String class method, it does not directly manipulate the
existing String value. It returns a string value.This means you must
assign the return value to a String variable.

Comparing two String variables using the equal operator compares the
object reference, not the string values themselves.

www.syngress.com

153_VBnet_05 8/14/01 2:24 PM Page 216

.NET Programming Fundamentals • Chapter 5 217

Error Handling

Error handling is now accomplished using a structured exception
handling technique using the Try…Catch…Finally.

You can use multiple Catch blocks to handle different types of
exceptions appropriately.

Q: I am porting an application that used the Variant data type. Because this is no
longer available, what data type can I use to replace it?

A: First of all, whenever possible, this should be replaced with the appropriate
data type. If this is not possible, use the Object data type.

Q: I am porting an application from a previous version of Visual Basic. Do I have
to change all of my functions to use the Return statement?

A: No, you can still use the function name to return a value from a function.
Use the Return statement for new functions as they are created.

Q: I am reading in a file that has data stored in rows separated by commas (CSV
format). Is there a function I can use to separate the data in each row into
separate items without having to manually parse it?

A: Yes, you can use the Split method of the String class.

Q: I have a single function that I use frequently in my application. Because
everything is now object oriented, should I put this function in a class?

A: No, if it is a standalone function that is not related to any other functions, you
would just be creating unnecessary overhead.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_05 8/14/01 2:24 PM Page 217

153_VBnet_05 8/14/01 2:24 PM Page 218

Advanced
Programming
Concepts

Solutions in this chapter:

■ Using Modules

■ Utilizing Namespaces

■ Understanding the Imports Keyword

■ Implementing Interfaces

■ Delegates and Events

■ The Advantages of Language
Interoperability

■ File Operations

■ Collections

■ The Drawing Namespace

■ Understanding Free Threading

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 6

219

153_VBnet_06 8/14/01 4:23 PM Page 219

220 Chapter 6 • Advanced Programming Concepts

Introduction
Now that we have covered the fundamentals of programming in Visual Basic
.NET, let’s take a look at some more advanced topics.The topics in this chapter
are eclectic, but they are all important programming concepts. In object-oriented
programming, we saw how there can be multiple instances of an object with dif-
ferent sets of data values. Shared members are class members that are shared across
all instances of an object.This means that if the value is changed in one instance
of an object, that change would be propagated to all of the instances. In previous
versions of Visual Basic, you could create standard modules.You can still do this in
.NET, but it creates a class where all the members are shared members.

We have covered the concept of namespaces and how they are used. In this
chapter, we explore the programmatic side of namespaces and how to utilize
them in your projects.The Imports keyword is used to allow the use of name-
spaces from other referenced projects or assemblies.This simplifies the use of
other components and classes.An interface is a template for class members. It cre-
ates the contract for how the members are to be used. It does not provide the
actual implementation of the class. In previous versions of Visual Basic, you could
not explicitly create interfaces.You could create an interface of sorts by creating a
class with all the methods left empty and then implement it.The process is
cleaner in Visual Basic .NET.You can explicitly create interfaces using the
Interface keyword.You can also implement interfaces using the Implements key-
word. Interfaces allow you to design the interaction between components before
you actually develop them.This allows a team of developers to create the contract
on components and then split up and develop them independently.

Event handling has changed in Visual Basic .NET, including a new concept
called delegates. Delegates can be thought of as function pointers that are type-
safe.All events will be handled using delegates. For the most part,Visual Basic
.NET will create all the delegates needed for you, but you will now have the
power to override some event handlers.You can still create your own custom
events as in previous versions of Visual Basic.Another new concept is the interop-
erability between languages.A project can contain code from different languages
and you can even inherit classes in Visual Basic that were created in another pro-
gramming language.This allows you to use the power of C++ or C# when
needed, but you don’t have to develop the entire project in one of them.

In Visual Basic 6.0, you could use the File System Object from the Scripting
component. Now, with .NET, you can manipulate folders and files using the
System.IO class.This is similar to the File System Object and gives you a nice

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 220

www.syngress.com

clean object interface to file operations.This will allow for synchronous and asyn-
chronous operations on files and data streams. Collections aren’t new to Visual
Basic, but it is now a .NET object. Collections are generally used with objects. It
gives an easier way to program dynamic collections of data than arrays because it
is object based with methods for adding and deleting members.The System
object includes a namespace for drawing manipulation.This gives you access to
the GDI+ engine.The functionality was available in previous versions of Visual
Basic, but it is now available in one class to making it easier to use. Included in
this namespace is the Imaging namespace for working with any type of images.
The Printing namespace is also included, which allows you to control how docu-
ments are printed.

Finally, in Visual Basic, you can create true free threaded applications.This
allows you to perform multitasking within your applications.As is normally the
case, with this power comes the increased potential for problems. Use this feature
with care and only when required.We also discuss some methods of synchroniza-
tion that are available for multithreaded applications.

Using Modules
In previous versions of Visual Basic, generic functions that did not necessarily
require the creation of an object were placed into Standard modules.Visual Basic
.NET implements this functionality by allowing you to create shared members in
your classes. Shared members are methods and functions of a class that can be
called without actually instantiating an instance of the class.

When you add a shared method to a class, the method is accessed directly
rather than through an object instance.A common use for shared methods is a
utility class. In the following example, we create a utility class (Math) with a
shared method (Square):

Public Class Math

Shared Function Square(ByVal Number As Integer)

As Integer

Return Number * Number

End Function

End Class

Advanced Programming Concepts • Chapter 6 221

153_VBnet_06 8/14/01 4:23 PM Page 221

222 Chapter 6 • Advanced Programming Concepts

To use the Square function that we just created in the Math class, we do not
need to create a Math object.We can call the function directly from the Math
class as follows:

Dim iRet As Integer

IRet = Math.Square(25)

In the preceding example, note that no object of type Math was created or
instantiated—not even behind the scenes.The Square method was called directly,
just as it would have been called from a standard module in previous versions of
Visual Basic.

All Visual Basic modules are now classes and need to be treated as such.You
must be familiar with basic object-oriented programming techniques to be suc-
cessful programming in Visual Basic .NET.You need to understand the basics of
classes and how they are used.

If you are already familiar with using classes when programming in previous
versions of Visual Basic, the adjustment to Visual Basic .NET will be easy because
the principles are similar. If you are not familiar with using classes, fear not.The
basic principles of programming with classes are easy to learn and will make you
a better programmer.

Utilizing Namespaces
Namespaces are groupings of objects within assemblies.An assembly is everything
that makes up a Visual Basic .NET application (which contains one or more
namespaces). Namespaces allow programmers to create logical groups of classes
and functions. Many assemblies are DLLs that can be used by an application.

Creating Namespaces
Namespaces allow programmers to group functions together logically.You can
create a namespace as part of a DLL (which can be an assembly).This gives you
the ability to easily reuse functions and classes.As you create namespaces, include
your company name as the root of the namespace to help avoid naming conflicts
as your code is reused.

The following code fragment will show programmatically how to create and
implement namespaces in your code.This can help with code reuse and code
segmentation.We can group like functions together within namespaces.This code
is an example of a form that has a button on it that when clicked displays a mes-
sage box. Some of the Windows Form Designer–generated code has been

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 222

Advanced Programming Concepts • Chapter 6 223

removed in order to conserve space.Additionally, we have removed the root
namespace specified in the application’s properties:

1 Imports System.ComponentModel

2 Imports System.Drawing

3 Imports System.WinForms

4 Namespace haverford.test.example

5 Public Class frmDemoNameSpace

6 Inherits System.WinForms.Form

7 Public Sub New()

8 MyBase.New()

9 frmDemoNameSpace = Me

'This call is required by the Win Form Designer.

10 InitializeComponent()

11 End Sub

'Form overrides dispose to clean up the component list.

12 Public Overrides Sub Dispose()

13 MyBase.Dispose()

14 components.Dispose()

15 End Sub

16 Protected Sub Button1_Click(ByVal sender As Object, ByVal

e As System.EventArgs)

17 msgbox("Button Pressed!!!")

18 End Sub

19 End Class

20 End Namespace

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 223

224 Chapter 6 • Advanced Programming Concepts

In order to inherit or import this form, you need to prefix the form with its
namespace.The following example shows a form inheriting this form.This form
inherits all of the classes of the preceding form (frmDemoNameSpace).The most
relevant part of the preceding code occurs in lines 4 and 20.These lines encapsu-
late the form in a namespace (determined by the programmer):

1 Imports System.ComponentModel

2 Imports System.Drawing

3 Imports System.WinForms

4 Public Class inhForm

5 Inherits haverford.test.example.frmDemoNameSpace

6 Public Sub New()

7 MyBase.New

8 inhForm = Me

'This call is required by the WinForm Designer.

9 InitializeComponent

10 End Sub

'Form overrides dispose to clean up the component list.

11 Overrides Public Sub Dispose()

12 MyBase.Dispose

13 components.Dispose

14 End Sub

15 End Class

In this example, we can see in line 5 that this form inherits the properties of
the haverford.test.example.frmDemoNameSpace form.

Creating namespaces is especially helpful with code reuse.You can implement
functionality between applications with very little effort, which makes program-
ming much more efficient.You can think of namespaces as classes in a DLL, with

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 224

Advanced Programming Concepts • Chapter 6 225

the DLL itself being the assembly. If you are familiar with the concept of pro-
gramming using classes in earlier versions of Visual Basic, the concept of name-
spaces should be easy to understand.

If a group of functions are contained in a namespace, you can import the
namespace and then have access to all of the functionality of the namespace.A
number of standard namespaces are used with Visual Basic.These namespaces will
be used to accomplish different programming tasks in Visual Basic .NET.After a
namespace is imported, you can access its methods directly.You do not have to
prefix it with the namespace.

NOTE

If you have conflicting method names, you need to use the namespace
to prefix the object. This allows the use of conflicting method names.

When you use the Imports command (as shown in Figure 6.1), you are
given a list of assemblies to pick from, and within the assemblies, namespaces are
available.

www.syngress.com

Figure 6.1 Using the Imports Command to Import Namespaces

153_VBnet_06 8/14/01 4:23 PM Page 225

226 Chapter 6 • Advanced Programming Concepts

Figure 6.2 shows the System.IO namespace (as well as some of the other
system namespaces).The System.IO namespace—which is contained in the
mscorlib.dll assembly—is one of the most widely used namespaces and contains
many functions.We use it later in this chapter to demonstrate file I/O.

Another commonly used namespace is the System.Winforms namespace.This
namespace contains classes, interfaces, structures, delegates, enumerations, and
methods for creating Windows-based applications.The form class, the clipboard
class, and most of the objects you would find on a Visual Basic 6.0 form are con-
tained in this namespace. Most Visual Basic .NET applications that use forms will
require the use of this namespace. Figure 6.3 shows the implementation of the
System.Winforms namespace with the Imports command.

Understanding the Imports Keyword
Imports allows a class to use a namespace that contains functionality.You must
place the Imports statement at the beginning of a class. Imports goes hand in
hand with namespaces—it’s what allows us to use the namespaces.

www.syngress.com

Figure 6.2 The System.IO Namespace Being Imported

153_VBnet_06 8/14/01 4:23 PM Page 226

Advanced Programming Concepts • Chapter 6 227

Restated, the Imports command exposes the functionality in a namespace
to a class.The Imports command is common throughout Visual Basic .NET
applications, so you need to understand how to use it. Here is an example of the
Imports statement:

1 Imports REGTOOL=Microsoft.Win32.Registry

2 Imports System.Drawing

3 Protected Sub Button1_Click(ByVal sender As Object, ByVal e

As System.EventArgs)

4 Dim img As Imaging.Metafile

' part of the system.drawing namespace

5 img.Save("c:\pic.wmf")

6 REGTOOL.CurrentUser.CreateSubKey("SomeKey")

7 End Sub

In the code example, when the command button button1 is clicked, a
subkey is created in the registry called SomeKey.The namespace

www.syngress.com

Figure 6.3 Importing the System.Winforms Namespace

153_VBnet_06 8/14/01 4:23 PM Page 227

228 Chapter 6 • Advanced Programming Concepts

Microsoft.Win32.Registry is imported and aliased to REGTOOL.This means that
we can use REGTOOL throughout the application.You don’t need to alias an
import; in this case though it will make the name easier to use. REGTOOL is
much easier to type than Microsoft.Win32.Registry.You cannot use the same alias
for more than one namespace within a class.

Additionally, you can see in line 4 prefixing an object with its namespace isn’t
necessary unless a conflict exists.After an object has been imported, all of its
methods are available without prefixing them with the namespace. If you have the
same method name within more than one namespace, you must prefix the
method name with the namespace name.You can also use the Imports statement
to add namespaces from the current project. If you had code in another class
within the project you wanted to use, you could use Imports to access that code.

When you are working in the Visual Basic .NET development environment
and invoke the Imports command, Microsoft’s IntelliSense technology will show
the available namespaces you can select. If the namespace you are looking for is
not in the list, you may need to use the Add Reference dialog box (choose Add
Reference from the Project menu).

The Add Reference dialog box allows you to add references to other objects
(see Figure 6.4).These references will add namespaces to the list displayed when
you use the Imports command.This enables your application to use the
methods and objects exposed by the namespace.

As you can see, this dialog box is somewhat different from the one presented
in Visual Basic 6.0. References are broken out by type, .NET Framework, COM,

www.syngress.com

Figure 6.4 Adding a Reference to Other Objects

153_VBnet_06 8/14/01 4:23 PM Page 228

Advanced Programming Concepts • Chapter 6 229

and projects.This is useful when you are dealing with many objects. Most of the
objects you use—along with many objects you were familiar with in Visual Basic
6.0—are under the COM tab.

Implementing Interfaces
The use of the Implements keyword has changed from Version 6.0 of Visual
Basic.The Implements statement allows you to use a form of inheritance in
Visual Basic .NET.You can implement a class or an interface in Visual Basic
.NET with the Implements statement. Here is an example:

Public function TestFoo (ByVal sWork as String) as Integer

Implements ImyInterface.Run

An interface is comprised of the methods and objects that a class exposes to
its consumers. In COM programming, one of the fundamental rules is that after
an interface is published you cannot change it. Interfaces are defined in a class
with the Interface statement; the following code fragment shows an example.
Note that you can define subs, functions, events, and properties in interfaces:

Public Interface MyInterface

Sub subOne()

Sub SubTwo()

End Interface

An example of an interface to a VB class might be a function as defined in
the following code fragment:

Public Sub subOne(ByVal sSoftDrink As String) as Integer

This code fragment defines a method called subOne that has a parameter of
sSoftdrink.According to the COM rules, if we change the interface it becomes a
new object.This would be contained within a class.

A class can inherit another class’s interfaces by using the Implements state-
ment.When you implement a class, you have to create all of the methods and
properties contained in the implemented class or interface. Failure to do so will
cause an error.The only code needed in the interface is the definition for the
interface.

The Inherits keyword allows Visual Basic .NET to implement true polymor-
phism. Polymorphism is the ability to redefine methods for base classes.The
Inherits keyword will allow a class to take on all of the objects completely from

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 229

230 Chapter 6 • Advanced Programming Concepts

a base class.This means that the class will have all of the methods and properties
of the base class.

Let’s look at an example based on a restaurant, where we have a person class
and a customer class.The customer class will inherit the person class.The following
code shows the attributes of the person class:

Public Class person

' Person class. This class simulates a customer

Dim m_name As String ' Declare local storage

Dim m_fname As String

Public Property Last_name(ByVal sNameIn As String) As String

Get

Last_name = m_name

End Get

Set

m_name = sNameIn

End Set

End Property

Public Property first_name(ByVal sFNameIn As String) As String

Get

first_name = m_fname

End Get

Set

m_fname = sFNameIn

End Set

End Property

Public Sub eat(ByVal sFood As String)

'

'

End Sub

End Class

As we can see, the customer class has a first name property and a last name prop-
erty, as well as a method called eat. Note that the syntax and implementation of
the get and set methods have changed from earlier versions of Visual Basic.You

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 230

Advanced Programming Concepts • Chapter 6 231

can write to and read from the first name and last name while the eat method
accepts food as a string variable. Now, suppose we are selling soft drinks as well to
our customers.We would need a drink method (just for our customer class). In the
following class, we inherit the properties and methods of the person class.When
we create the customer class, we can add a drink class:

Public Sub Public Class customer

Inherits person

Public Sub drink(ByVal sSoftDrink As String)

'

'

'

End Sub

End Class

The customer class now contains all of the properties and methods of the
person class, as well as the added drink method.This way, the coding is consider-
ably less than it would be to rewrite the methods.Additionally, if a problem
occurs with the customer class, we need to fix it in only one place, and the fix will
propagate to all the classes that inherit the customer class.

Now suppose we also sell alcohol to adult customers. In this case, we would
not only offer soft drinks but beer as well.We can override the drink class and
change it.Another observation we can make is that a number of built-in methods
are available within the class:

1 Public Class adultCustomer

2 Inherits customer

3 Overrides Sub drink(ByVal sSoftDrink As String, ByVal sBeer As

String)

'

'

4 End Sub

5 End Class

As you can see, the drink sub has changed to include beer for the
adultCustomer class. It inherits all of the properties and methods of the customer
class.The original customer class contains the drink method that accepts only

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 231

232 Chapter 6 • Advanced Programming Concepts

softdrink. See the previous code fragment (where the customer class is defined).The
adult customer class contains the method that will accept both softdrink and beer.
See Figure 6.5 for an example.The possibilities of what you can do with the
Inherits command are pretty endless.

Another concept is that of overloaded functions. Overloaded functions are
functions with the same name but different data types.When you create an over-
loaded function interface, you use the following syntax:

Overloads Function isZeroOut(ByVal strTest As String) As String

If strTest = "" Then isZeroOut = "-"

End Function

Overloads Function isZeroOut(ByVal iTest As Integer) As String

If iTest = 0 Then return("-")

End Function

In this example, the same function name is called, but a different set of code
executes depending on the type of variables passed into the function.You could
also include other data types and have more than two (that is, another set of code
if a double was passed in).

Delegates and Events
Delegates can be likened to creating a method in a class whose sole purpose in
life is to call another method. Basically, the name of the procedure is passed to
the delegate, and it executes the procedure on behalf of the calling procedure.
Delegates are called using the Invoke method.A delegate is useful for specifying
the name of a routine to run at runtime.

www.syngress.com

Figure 6.5 The Adult Customer Class

153_VBnet_06 8/14/01 4:23 PM Page 232

Advanced Programming Concepts • Chapter 6 233

Delegates are similar to function pointers in C++. Delegates perform the task
of calling methods of objects on your behalf. Delegates are classes that hold refer-
ences to other classes:

■ You can use a delegate to specify an event handler method to invoke
when an event occurs.This is one of the most common uses for dele-
gates in Visual Basic .NET. Delegates have signatures and hold references
to methods that match their signatures.

■ Delegates act as intermediaries when you are programming events to
link the callers to the object called.

A declaration for a delegate is shown here:

Delegate Function IsZero(ByVal x As Integer) as boolean

The following example form and class demonstrate the use of delegates:The
following code is used to build the form; the form constructor code has been
removed to save space.The form has two buttons on it: One for a command we’ll
call BLUE and one for a command we’ll call RED. Pressing the buttons causes a
message box to be displayed on the screen with a message displaying blue or red.
First, we take a look at the delegatedemo class:

1 Public Class delegatedemo

2 Delegate Function ColorValue(ByVal sMessage As String) As String

3 Public Function showcolor(ByVal clr As ColorValue, ByVal sMessage

As String) As String

' invoke

4 return(clr.Invoke(sMessage))

5 End Function

6 End Class

In the delegatedemo class, the delegate ColorValue is declared and then used by
the ShowColor function. In this class, the ColorValue delegate is invoked and
returns the message from the appropriate function, either redMessage or
blueMessage, whichever function address is passed.

The delegate acts as a pointer to the function. It is a multicast delegate
because it can point to the redMessage function or the blueMessage function.

Next, we take a look at the form that uses the delegatedemo class.

1 Imports System.ComponentModel

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 233

234 Chapter 6 • Advanced Programming Concepts

Imports System.Drawing

Imports System.WinForms

Public Class testform

Inherits System.WinForms.Form

2 Protected Sub cmdBlue_Click(ByVal sender As Object, ByVal e

As System.EventArgs)

3 Dim delMess As New delegatedemo()

4 Dim sMessage As String

5 delmess.showcolor(AddressOf blueMessage, "Hello World B ")

6 msgbox(sMessage)

7 End Sub

8 Protected Sub cmdRed_Click(ByVal sender As Object, ByVal e

As System.EventArgs)

9 Dim delMess As New delegatedemo()

10 Dim sMessage As String

11 delmess.showcolor(AddressOf redMessage, "Hello World R")

12 msgbox(sMessage)

13 End Sub

14 Private Function redMessage(ByVal sSmessage As String) As

String

' This function returns sSmessage and 'red'.

15 return "RED " & sSmessage

16 End Function

17 Private Function blueMessage(ByVal sSmessage As String) As

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 234

Advanced Programming Concepts • Chapter 6 235

String

18 ' This function returns sSmessage and 'blue'.

19 return "Blue " & sSmessage

20 End Function

21 End Class

This form class consumes the class delegatedemo. Based on the button clicked,
the delegate in the delegatedemo class is invoked and will fire either the function
redMessage or the function blueMessage, depending on the value passed in with the
AddressOf keyword.What the AddressOf keyword does is return the address of
the routine called. Consider the following code fragment:

delmess.showcolor(AddressOf redMessage, "Hello World R")

AddressOf redMessage instructs Visual Basic to return the address of redMessage
so that we can use it in the routine.This is necessary in order to use delegates
properly.

Lines 1 and 2 perform the housekeeping functions that build the form. Some
of the initialization code for the form has been removed in order to save space.
The button event starts at line 2.This event instantiates the delegatedemo class and
then calls the showcolor method within the delegatedemo class.The address of the
blueMessage function is passed in to the delegate so it can call the function.A
string message is also passed in.The value returned is then displayed in a message
box. In order to use a delegate, you need to execute its invoke method.This is
what causes a delegate to fire.The other button event, the redMessage function is
similar, except that it passed in the address of the redMessage function. Finally, the
redMessage and blueMessage functions accept a string parameter and prefix the
string with the respective color.

Simple Delegates
Simple delegates are delegates that keep a list of pointers to one function.A
simple delegate serves only one function and calls only one method. It’s impor-
tant for the delegate’s signature (function definition) to match that of the called
function.

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 235

236 Chapter 6 • Advanced Programming Concepts

Multicast Delegates
Multicast delegates are delegates that keep a list of pointers to several functions.
The preceding example uses multicast delegates.The important thing about mul-
ticast delegates is that the interfaces of all the methods that are called by the dele-
gate need to be the same. Sometimes the interfaces for these methods are referred
to as the signature of the delegate.The signatures all need to match in order for
the delegate to function correctly.

Event Programming
An event is defined as a message sent by an object that signals the occurrence of
an action.The action could be something a user does, like clicking on a button
or typing text in a textbox, or it can be raised by the code you have written.

One of the issues associated with event programming is that the sender gen-
erally doesn’t know which object(s) is/are going to consume its events.An event
delegate is a class that allows an event sender to be connected with an event han-
dler.An example of an event delegate is shown in this code fragment:

Public Delegate Sub MyEventHandler(_

ByVal caller As Object, _

ByVal eArgs As EventArgs _

)

Handles Keyword
The Handles keyword is used when creating an event listener to glue the sub to
the event:

Private Sub HandleEventFire(_

ByVal sender As Object, _

ByVal e As FireEventArgs) _

As Boolean Handles m_SomeEvent.Fire

The Handles keyword can accept more than one event—in this way, the
event handler can handle more multiple events.The only requirement is that the
events it handles have the same parameter list.

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 236

Advanced Programming Concepts • Chapter 6 237

Language Interoperability
Language interoperability is the ability of a class to consume other classes written in
other languages. One of the benefits to programming with Visual Studio .NET is
the ability to work with multiple languages. For example, the following code
fragment is part of a C# class that takes an integer and squares it and returns the
value (see CD folder Chapter 06/usingcsharpclasses):

public static int SquareNumber(int number)

{

return number * number;

}

The following Visual Basic .NET class inherits this C# form class and takes
on all of its attributes.The following code fragment consumes the Visual Basic
.NET C# class.We removed the initialization logic in order to save space:

Imports cSharpDemo.cSharpCode

Public Class cSharpInheritedClass

' This class will take on the properties of

' the c# form1 class.

Inherits cSharpDemo.cSharpCode

End Class

The class that follows is a C# class.Although the syntax is similar to that of a
Visual Basic class, if we look closely, we can see differences in the syntax:

Imports System.ComponentModel

Imports System.Drawing

Imports System.WinForms

Public Class cSharpCode

Inherits System.WinForms.Form

Public Sub New()

MyBase.New

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 237

238 Chapter 6 • Advanced Programming Concepts

cSharpCode = Me

'This call is required by the Win Form Designer.

InitializeComponent

'TODO: Add any initialization after the InitializeComponent()

call

End Sub

'Form overrides dispose to clean up the component list.

Overrides Public Sub Dispose()

MyBase.Dispose

components.Dispose

End Sub

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As

System.EventArgs)

Dim csc As New cSharpInheritedClass()

msgbox(CStr(csc.SquareNumber(2)))

End Sub

End Class

This code displays the square of 2 (4) in a message box.Although this is a
simple example, there could be a time when you need a more complex mathe-
matical function written in one language for use in another language.

The ability to share classes between languages is particularly useful if you have
a team of programmers working on a project in different languages.The team can
easily share functionality across languages, and programmers can program in
whatever language they are most comfortable with. Code that is already written
in one language need not be rewritten in another language.This is a major boon
for code reuse.

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 238

Advanced Programming Concepts • Chapter 6 239

File Operations
Since the early days of BASIC, we have been using the Open statement for file
I/O.Visual Basic 6.0 allowed us to move toward a more object-oriented approach
to file I/O by using the Scripting library.The .NET platform takes this a step
further by introducing the .NET System.IO namespace.

The System.IO namespace contains classes that provide developers with
methods to read data from and write data to both physical files and data streams,
as well as performing file system operations such as obtaining directory listings
and monitoring for changes in the file system.Additionally, the ability to read
from and write to files asynchronously is a new feature in Visual Basic .NET.

Directory Listing
In earlier versions of Visual Basic, we used the Dir() function to retrieve direc-
tory listings.This was a bit of a clumsy process that involved seeding a variable
with a call to Dir() and then entering a loop, calling Dir() until it returns an
empty string.The old method of obtaining directory listing follows:

Dim sFile As String

'Obtain an initial value for sFile

sFile = Dir("C:")

'Loop until Dir() returns empty string

Do Until sFile = vbNullString

Debug.Print sFile

sFile = Dir()

Loop

Visual Basic 6.0 introduced the Microsoft Scripting Runtime Library.This
library gives us access to the Windows file system through a root object, the
Scripting.FileSystemObject object, and its subordinate objects.This method is much
more object-oriented in nature and feels much more fluid, but requires an addi-
tional reference and its associated files to be packaged with your application.The
syntax and structure of the Scripting Library method of accessing the file system
is very similar to that of file system access in Visual Basic .NET. Here is a sample
of how you can accomplish the task demonstrated in the previous code example
using Visual Basic 6.0 and the Scripting runtime:

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 239

240 Chapter 6 • Advanced Programming Concepts

'***

'This example requires a reference to be set to the

'Microsoft Scripting Runtime

'***

Dim oFS As Scripting.FileSystemObject

Dim oFolder As Scripting.Folder

Dim oFile As Scripting.File

'Create the FileSystemObject Object

Set oFS = New Scripting.FileSystemObject

'Get reference to folder through FileSystemObject

Set oFolder = oFS.GetFolder("C:\")

'Enumerate Files

For Each oFile In oFolder.Files

Debug.Print oFile.Name

Next oFile

Now that we’ve reviewed the methods that have been used in the past to
obtain directory listings, we’ll look at the preferred method of obtaining direc-
tory listings in Visual Basic .NET.As mentioned earlier in the chapter, the
System.IO namespace provides us with classes that allow us to obtain information
about the Windows file system.The specific classes in the System.IO namespace
that we will use in this demonstration are the System.IO.Directory class and the
System.IO.File class.

You will notice many similarities between directory listing with the Scripting
FileSystemObject and directory listing using Visual Basic .NET.The primary differ-
ence is that the objects needed to perform the task are now native to the devel-
opment environment. Here is an example of how to perform a directory listing
with Visual Basic .NET:

Imports SYSTEM.IO

Module Module1

Sub Main()

'Obtain reference to Directory

Dim oDir As Directory = New Directory("C:\")

Dim oFile As File

For Each oFile In oDir.GetFiles()

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 240

Advanced Programming Concepts • Chapter 6 241

debug.WriteLine(oFile.Name)

Next

End Sub

End Module

Data Files
It is important to consider the type and use of data before storing data in local
files on a client.When accessing data files, you will most likely use ADO and
databases.The benefits of using databases as opposed to binary files are tremen-
dous, with indexing and sorting and the like built-in. For small amounts of data,
such as configuration data, you may want to store information in the registry.
From the standpoint of debugging, you may want to store the information locally
in a text file—this will allow you to view the information with a simple text
editor such as Notepad.This can aid in the debugging process.That being said,
you may find that sometimes you need to store information in data files on the
client. Data files on the client are usually in binary format.As mentioned earlier
in the chapter, the System.IO namespace is used to provide us with file access
methods.At the top of our module, we need to provide an Imports statement
for System.IO namespace.The following example shows us how to use the
System.IO namespace to perform file I/O to and from a data file.

The BinaryReader and BinaryWriter classes may be more familiar to Visual
Basic users as DataReader and DataWriter from the filesystem object.Although the
names have been changed for the System.IO model, the functionality remains
similar. BinaryReader is used for reading strings and primitive data types, whereas
BinaryWriter writes strings and primitives types from a stream.The following
example demonstrates reading from a binary file and writing to a binary file:

1 Dim InFile As String

2 Dim OutFile As String

3 InFile = "c:\SomeInFile.bin"

4 OutFile = "c:\someOutFile.Bin"

5 Dim inf As New System.IO.File(InFile)

6 Dim outf As New System.IO.File(OutFile)

7 Dim x As Integer

8 Dim aRetVal As Integer

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 241

242 Chapter 6 • Advanced Programming Concepts

' create streams for input and output

9 Dim myInstream As System.IO.FileStream

10 Dim myOutstream As system.IO.FileStream

11 Dim aFoo(100) As System.Byte ' data to read and write

12 For x = 1 To 99

aFoo(x) = x

13 Next

14 Try

15 myInstream = inf.OpenRead ' Open a new stream for input.

16 myOutStream = outf.OpenWrite

17 aRetVal = myoutstream.write(aFoo, 0, 10)

18 myoutstream.Flush()

19 aRetVal = myInstream.Read(aFoo, 0, 10) ' read 10 bytes

20 Catch IOExcep As IO.IOException

21 ' Some kind of error occurred. Display error message

22 MessageBox.Show(IOExcep.Message)

23 Finally

24 myInStream.Close() ' Close the files

25 myOutStream.Close()

26 End Try

In this code fragment, the file name variables are declared and assigned in
lines 1 through 4.As we progress to lines 5 and 6, the objects for the files are
declared and instantiated. Line 7 declares an integer that will be used later in the
load logic.The stream objects for input and output are created and instantiated.
Line 8 declares an integer to hold the returned value from the call. Lines 9 and
10 initialize the stream variables. In lines 11 through 13, the variable used to send
and receive data is initialized and loaded.We load the variable with numeric data.
Lines 15 and 16 open the streams for reading and writing and associate them

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 242

Advanced Programming Concepts • Chapter 6 243

with the files. Line 17 writes some data to the file and line 18 completes the
operation by flushing the buffer.The data written to the file will look like this:

1234567891

Line 19 reads data from the other file (we assume that the file exists; if it
doesn’t exist, we would get an error).Assuming we were to use the file we had
written previously, the data read from the file will look like this:

1234567891

Lines 20 through 26 contain exception-handling code, which will handle any
exceptions that occur. Lines 24 and 25 the close the streams. Line 26 is the end
of the exception-handling code.

That’s all there is to reading and writing to files.Additionally, the filesystem
object provides other methods for file I/O, as do many third-party products.The
filesystem object has been available for use within Visual Basic since Visual Basic
6.0.This is an object that provides methods for manipulating a computer’s files.
The following code fragment demonstrates the use of the filesystem object:

1 Set fs = CreateObject("Scripting.FileSystemObject")

2 Set oFile = fs.CreateTextFile("c:\MyTestFile.txt",

True)

3 oFile.WriteLine("This is a test.")

4 oFile.Close

Text Files
The following example shows how to read and write from a text file.This
example opens a file, reads one line at a time from the file, converts the line to
uppercase, and then appends the line to the output file.Writing to and reading
from text files is a common programming task in Visual Basic.

Text files are generally carriage-return delimited and are limited to ASCII-
readable characters. Data files generally contain control characters:

1 Imports System.ComponentModel

2 Imports System.Drawing

3 Imports System.WinForms

4 Imports SYSTEM.IO

5 Public Class Case_Converter

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 243

244 Chapter 6 • Advanced Programming Concepts

6 Private LinesCounted As Integer = 0

7 Public Event Status(ByVal LinesCounted As Integer)

8 Public Event FinishedConverting()

9 Sub ToUpper(ByVal InFile As String, ByVal OutFile As String)

' first handle files

10 Dim inf As New SYSTEM.IO.File(InFile)

11 Dim outf As New SYSTEM.IO.File(OutFile)

' create streams for input and output

12 Dim myInstream As SYSTEM.IO.StreamReader

13 Dim myOutstream As SYSTEM.IO.StreamWriter

' temporary string to hold work

14 Dim mystr As String = " " ' initialize to not empty

15 Dim OutStr As String = " "

16 Try

17 myInstream = inf.OpenText ' Open a new stream for input.

' Do until the stream returns Nothing at end of file.

18 myOutStream = outf.CreateText

19 Do Until isnothing(mystr)

20 mystr = myInstream.ReadLine

' perform conversion

21 OutStr = ucase(mystr)

22 myoutstream.WriteLine(OutStr)

23 LinesCounted += 1 ' Increment line count

' raise an event so the form can monitor progress

24 RaiseEvent Status(LinesCounted)

25 Loop

26 Catch eof As IO.EndOfStreamException

' No action is necessary, the end of the stream has been reached.

27 Catch IOExcep As IO.IOException

' Some kind of error occurred.

28 MessageBox.Show(IOExcep.Message)

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 244

Advanced Programming Concepts • Chapter 6 245

29 Finally

30 myInStream.Close() ' Close the files

31 myOutStream.Close()

32 End Try

33 RaiseEvent FinishedConverting()

34 End Sub

35 End Class

In this example, we can see that the class Case_Converter contains a method
called ToUpper, which includes two parameters: InFile and OutFile. Note that
importing the System.IO namespace (shown in line 4 of the code) is very impor-
tant.This allows us to use the methods and functions contained in that namespace.

Next, as we progress through the code, line 6 declares a local variable for use
within the class. Lines 7 and 8 declare public events that are exploited later in this
chapter. It is good programming practice to declare everything in Visual Basic.
NET for type safety as well as to help understand the data in a particular variable.

Line 9 is the beginning of the method.When we declare the method, notice
that the parameters (InFile and Outfile) include both a type (String) and a calling
method (ByVal).This is very important in Visual Studio .NET because the default
calling type has changed from Byref to Byval, and you may not get the expected
results using the default calling type.

NOTE

Remember to include the Imports System.IO command at the beginning
of your code when you are working with file I/O. If you don’t include it,
your code won’t compile. This is not so much a problem if you are
writing a routine from scratch, because Microsoft’s IntelliSense won’t
work, and you will quickly be aware of the issue. However, look out for if
you are pasting code in from another project.

Lines 10 through 15 declare the objects we use to work with file I/O. Some
important things to note here are the System.IO.File object, the
System.IO.StreamReader object, and the System.IO.StreamWriter object.The
System.IO.File class is used to help create FileStream objects and provides routines
for creating, copying, deleting, moving, and opening of files. In lines 10 and 11,
file objects are created for the input and output files.These are used later with

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 245

246 Chapter 6 • Advanced Programming Concepts

the FileStream objects that are created in lines 12 and 13.The System.IO
.StreamReader class implements a text reader that will read characters in from the
file.This class does the work when it comes to reading data in from the file.The
System.IO.StreamWriter class implements a text writer that will read characters in
from the file.

Appending to Files
Appending to files is pretty simple. If we use the code shown in the text files
example, only a minor change is necessary.Appending means that we have an
existing file, and we want to add data to the end of it, which is a common pro-
gramming task. Oftentimes, you’ll need to write information out to files for log-
ging, troubleshooting, and saving information.

17 myInstream = inf.OpenText ' Open a new stream for input.

' Do until the stream returns Nothing at end of file.

18 myOutStream = outf.CreateText

Line 18 would change to:

17 myInstream = inf.OpenText ' Open a new stream for input.

' Do until the stream returns Nothing at end of file.

18 myOutStream = outf.AppendText

Changing the stream type from CreateText to AppendText causes text to be
appended to the file as opposed to overwriting the file.

Collections
Collections are groups of like objects. Collections are similar to arrays, but they
don’t have to be redimensioned.You can use the Add method to add objects to a
collection. Collections take a little more code to create than arrays do, and some-
times accessing a collection can be a bit slower than an array, but they offer sig-
nificant advantages because a collection is a group of objects whereby an array is
a data type. Consider the following code fragment:

Dim colPeople As New Collections.StringCollection()

Dim x As Integer

colPeople.Add("Mark")

colPeople.Add("Debbie")

colPeople.Add("Marissa")

www.syngress.com

153_VBnet_06 8/14/01 4:23 PM Page 246

Advanced Programming Concepts • Chapter 6 247

For x = 0 To colPeople.Count - 1

msgbox(colpeople.Item(x))

Next x

When this code is executed, it displays three message boxes.The first contains
“Mark,” the second contains “Debbie,” and the third contains “Marissa.”We can
easily remove Debbie from the collection by using the following code:

colpeople.RemoveAt(1)

This removes Debbie from the collection, and colPeople.Count will be equal to
2.The reason we remove at element 1 is because the collection is zero-based, the
first item in the collection is item 0.We can also remove Debbie from the collec-
tion by using the following code:

colpeople.Remove("Debbie")

This code produces the same result: It removes “Debbie” from the collec-
tion. If we run the following code fragment, it displays two message boxes: the
first contains “Mark,” the second contains “Marissa”:

For x = 0 To colPeople.Count - 1

msgbox(colpeople.Item(x))

Next x

Some of the more commonly used methods and properties of collections are
shown in Table 6.1.

Table 6.1 Collection Parameters

Parameter Description

colpeople.Add() Adds an element to the collection.
colpeople.AddRange() Copies the elements of a string array to the end

of a collection.
colpeople.Clear() Removes all of the elements from the collection.
colpeople.Contains() Gets a value indicating whether the collection

contains the specified value.
colpeople.CopyTo() Copies the collection values to a one-

dimensional array instance at the specified index.
colpeople.Count() Returns the number of elements in the collection.

www.syngress.com

Continued

153_VBnet_06 8/14/01 4:23 PM Page 247

248 Chapter 6 • Advanced Programming Concepts

colpeople.Equals() Determines whether the specified object is the
same instance as the current object (colpeople).

colpeople.GetEnumerator() Returns an enumerator that can iterate through
the collection.

colpeople.GetType() Gets the type of the object.
colpeople.IndexOf() Gets the zero-based index of the collection.
colpeople.Insert() Inserts an object in the middle of the collection

(at the specified location).
colpeople.IsReadOnly() Determines whether the collection is read-only.
colpeople.IsSynchronized() Determines if the collection is synchronized

(thread safe).
colpeople.Item() The index into the collection.
colpeople.Remove() Removes an element from a named spot in the

collection.
colpeople.RemoveAt() Removes an element from the collection at a

named specified location in the collection.
colpeople.SyncRoot() Gets the object used to synchronize access to

the collection.
colpeople.ToString() Returns a string representation of the collection.

The Drawing Namespace
The System.Drawing object provides methods for drawing and performing graphic
operations. It is a very powerful namespace that exposes quite a few classes,
methods, and child namespaces.The following code fragment demonstrates how
easy it is to use the System.Drawing namespace to draw a simple graphic (a rect-
angle) on a form (see CD folder Chapter 06/drawingapp):

Protected Sub Button1_Click(ByVal sender As Object, ByVal

e As System.EventArgs)

' create graphics object

1 Dim grp As System.Drawing.Graphics

2 grp = Me.CreateGraphics

www.syngress.com

Table 6.1 Continued

Parameter Description

153_VBnet_06 8/14/01 4:24 PM Page 248

Advanced Programming Concepts • Chapter 6 249

' Create pen object

3 Dim oPen As New System.Drawing.Pen(system.Drawing.Color.Black)

' Draw up a rectangle

4 grp.DrawRectangle(oPen, 100, 100, 100, 100)

End Sub

In this code fragment, line 1 creates a graphics object.The form in line 2
then instantiates this graphics object. Line 3 creates a pen object to be used for
our drawing.The color should be specified in the parameter list.The output of
the code is shown in Figure 6.6.

As you can see, a rectangle is drawn on the form. If you are familiar with the
drawing techniques in earlier versions of Visual Basic, you will realize quickly that
the code needs to go in the form.paint event. Otherwise, the drawings will be lost
whenever the form is repainted.The drawn figure will disappear if you don’t put
the drawing code (so that it is redrawn) every time the form is repainted.This
event fires whenever the form is redrawn.

With the System.Drawing object, the ability to create different line graphic
images is limitless.This may not be the method of choice when you can choose
from so many different commercially available graphics packages, but the
System.Drawing object is built-in and lightweight. Line graphics, which are usually
mathematical in nature, can easily be represented by programmatic functions.You
can also use functions for things such as filling in graphics that have been drawn
by the drawing objects.

www.syngress.com

Figure 6.6 The Results of the Drawrectangle Function

153_VBnet_06 8/14/01 4:24 PM Page 249

250 Chapter 6 • Advanced Programming Concepts

Take some time to review Table 6.2, which shows the different methods and
descriptions of the System.Drawing object.

Table 6.2 Classes of the System.Drawing Namespace

Method Description

System.Drawing.Bitmap() The bitmap class encapsulates a
GDI+ bitmap.

System.Drawing.Brush() The brush class is a base class
used to fill the interior of shapes
such as circles, rectangles, and
the like.

System.Drawing.Brushes() This class contains brushes for
all of the standard colors.

System.Drawing.BrushStyle() This is an enumeration that
contains the brush styles. These
are typically applied to brush
objects.

System.Drawing.Color() This structure represents a color.
System.Drawing.ColorConverter() This class is used to convert a

color from one data type to
another.

System.Drawing.ColorTranslator() This class translates colors to
and from GDI+ objects.

System.Drawing.ContentAlignment() This enumeration specifies the
alignment of content on a
drawing object.

System.Drawing.Cursor() This class contains the image
used to create the mouse cursor.

System.Drawing.CursorConverter() This class is used to convert
cursors from one data type to
another.

System.Drawing.Cursors() This class contain the standard
cursors.

System.Drawing.Font() This class defines a format for a
font with attributes such as
type, size, and style.

System.Drawing.FontConverter() This class is used to convert
fonts from one data type to
another.

www.syngress.com

Continued

153_VBnet_06 8/14/01 4:24 PM Page 250

Advanced Programming Concepts • Chapter 6 251

System.Drawing.FontFamily() This class is used to class of
fonts that have similar attributes
but some variation.

System.Drawing.FontStyle() This enumeration contains style
information for fonts.

System.Drawing.Graphics() This class encapsulates a GDI+
drawing surface.

System.Drawing.Icon() This class contains the icon class;
a small bitmap image.

System.Drawing.IconConverter() This class is used to convert an
icon from one data type to
another.

System.Drawing.Image() This is an abstract class that
offers functionality for icons,
bitmaps cursors, and metafile
classes.

System.Drawing.ImageAnimator() This class is used to work with
images and had members to
animate multiple frame images.

System.Drawing.ImageConverter() This class is used to convert an
image from one data type to
another.

System.Drawing.ImageFormatConverter() This class is used to convert
colors from one data type to
another.

System.Drawing.Pen() This defines a class to be used
for drawing lines and shapes.

System.Drawing.Pens() This includes pens for all the
standard colors.

System.Drawing.PenStyle() This enumeration defines
different styles that a pen can
be defined with.

System.Drawing.Point() This structure represents a pair
of X, Y coordinates on a
drawing surface.

System.Drawing.PointConverter() This point converter can be used
to convert a point from one
data type to another.

www.syngress.com

Table 6.2 Continued

Method Description

Continued

153_VBnet_06 8/14/01 4:24 PM Page 251

252 Chapter 6 • Advanced Programming Concepts

System.Drawing.PointF() This structure represents a pair
of X, Y coordinates on a
drawing surface.

System.Drawing.PolyFillMode() This enumeration specifies how
overlapping objects will be filled.

System.Drawing.Rectangle() This structure stores the location
and size of a rectangular region.

System.Drawing.RectangleConverter() This class is used to convert a
rectangle from one data type to
another.

System.Drawing.Region() This class shows the interior of a
rectangle.

System.Drawing.Size() This represents the size of a
rectangle. Uses an order pair to
represent size.

System.Drawing.SizeConverter() This class is used to convert a
size from one data type to
another.

System.Drawing.SizeF() This represents the size of a
rectangle. Uses an order pair to
represent size.

System.Drawing.SolidBrush() This class defines a brush that is
comprised of one color. Brushes
are used to fill objects with a
color.

System.Drawing.StringAlignment() This enumeration is used to
define the alignment of a string.

System.Drawing.StringDigitSubstitute() This enumeration is used to
specify information for string
digit substitution.

System.Drawing.StringFormat() This class contains string layout
information and manipulation
functions.

System.Drawing.StringFormatFlags() This enumeration is used to
specify the layout information
describing how a string is to be
laid out.

www.syngress.com

Table 6.2 Continued

Method Description

Continued

153_VBnet_06 8/14/01 4:24 PM Page 252

Advanced Programming Concepts • Chapter 6 253

System.Drawing.StringTrimming() This enumeration is used to
specify how to trim characters
that don’t fit in an object like a
rectangle or polygon.

System.Drawing.StringUnit() This enumeration is used to
specify the unit of measurement
for a text string.

System.Drawing.SystemBrushes() This class contains brushes for
some of the Windows colors.

System.Drawing.SystemColors() This class contains Windows
systemwide colors.

System.Drawing.SystemIcons() This class contains Windows
systemwide icons.

System.Drawing.SystemPens() This class contains pens for
Windows systemwide colors.

System.Drawing.TextureBrush() This class contains a brush that
can be used to fill the interior of
an object, such as a polygon or
circle.

System.Drawing.ToolboxBitmapAttribute() This class defines the images
that are associated with a
particular component.

Images
A powerful child namespace of the System.Drawing namespace is the
System.Drawing.Imaging namespace. It provides methods for loading, saving, and
manipulating image files. Quite a few types of image files are supported by the
images namespace. Most of the common types (JPEG, GIF,TIF, and the like) are
supported.

www.syngress.com

Table 6.2 Continued

Method Description

153_VBnet_06 8/14/01 4:24 PM Page 253

254 Chapter 6 • Advanced Programming Concepts

Table 6.3 Classes of the System.Drawing.Imaging Namespace

Method Description

System.Drawing.Imaging.APMFileHeader() This class contains objects to
Define an APM file header.

System.Drawing.Imaging.BitmapData() This class contains objects to
specify the attributes of a
bitmap file.

System.Drawing.Imaging.ColorAdjustType() This enumeration is used to
specify which GDI+ uses color
adjustment information.

System.Drawing.Imaging.ColorChannelFlags() This enumeration is used to
specify CMYK channels.

System.Drawing.Imaging.ColorMap() This class is used to define a
map for converting colors.

System.Drawing.Imaging.ColorMapType() This enumeration is used to
specify types of color maps.

System.Drawing.Imaging.ColorMatrix() This class defines a 5x5 matrix
used for coordinates in an RGB
color space (defines the mix for
colors).

System.Drawing.Imaging.ColorMatrixFlags() This enumeration is used to
specify options for adjusting
the color matrix for a GDI+
object.

System.Drawing.Imaging.ColorMode() This enumeration specifies the
two-color modes for color
components.

System.Drawing.Imaging.ColorPalette() This class defines objects for
an array to make up a color
pallet.

System.Drawing.Imaging This enumerator defines the
.EmfPlusRecordType() methods available in a metafile

to read and write graphics
commands.

System.Drawing.Imaging.EmfType() This enumeration is used to
specify the metafile type.

System.Drawing.Imaging.Encoder() This class contains functions
that can be used to describe
an image and can be passed to
an image codec.

www.syngress.com

Continued

153_VBnet_06 8/14/01 4:24 PM Page 254

Advanced Programming Concepts • Chapter 6 255

System.Drawing.Imaging.EncoderParameter() This class contains functions
that can be used to work with
encoderparameter types.

System.Drawing.Imaging This class contains functions
.EncoderParameters() which can be used to work

with standard encoder
parameters.

System.Drawing.Imaging This enumeration specifies an
.EncoderParameterValueType() encoderparameter data type.
System.Drawing.Imaging.FrameDimension() This class contains functions

that can be used to work with
page frames and dimensions.
Some of the shared properties
of this class are resolution,
page, and time.

System.Drawing.Imaging.ImageAttributes() This class contains information
about how colors are manipu-
lated during the rendering
process.

System.Drawing.Imaging.ImageCodecFlags() This enumeration specifies an
image codec flag’s data type.

System.Drawing.Imaging.ImageFlags() This enumeration specifies the
attributes of the pixel data in
an image object.

System.Drawing.Imaging.ImageFormat() This class contains objects for
manipulating the format of an
image.

System.Drawing.Imaging.ImageLockMode() This enumeration is used to
specify the lock mode of an
image.

System.Drawing.Imaging.Metafile() This class is used to define a
graphic metafile. This can be
used to record and play back a
metafile.

System.Drawing.Imaging.MetafileFrameUnit() This enumeration specifies the
unit of measurement used by
a metafile frame unit.

www.syngress.com

Table 6.3 Continued

Method Description

Continued

153_VBnet_06 8/14/01 4:24 PM Page 255

256 Chapter 6 • Advanced Programming Concepts

System.Drawing.Imaging.MetafileHeader() This class contains information
about the header attributes of
a metafile.

System.Drawing.Imaging.MetafileType() This enumeration specifies the
type of metafile.

System.Drawing.Imaging.METAHEADER() This class is used for working
with metafile headers.

System.Drawing.Imaging.PaletteFlags() This enumeration specifies the
type of color data in the
system palette.

System.Drawing.Imaging.PixelFormat() This enumeration specifies the
format for each pixel.

System.Drawing.Imaging.PropertyItem() This class is used to encapsu-
late an item to be used with
an image file.

Printing
Printing in Visual Basic .NET is an entirely different concept than in previous
versions of Visual Basic, which utilized the intrinsic Printer object that was used in
a straight line manner. In Visual Basic .NET, printing is handled by classes in the
System.Drawing.Printing namespace.

To print a document in Visual Basic .NET, we create an instance of the
System.Drawing.Printing.PrintDocument object (this object must be declared
WithEvents), set properties to determine the characteristics of our print job, and
then call the Print() method of the PrintDocument object to begin the printing
process.As the printing engine prepares to render each page of our document,
the delegate method that we assigned to handle the PrintPage event of the
PrintDocument object will be called. In this routine is where we need to provide
instructions for how the next page is to be printed.

We can best understand this new concept in printing by walking through a
simple example. In the example, we create an application that prints the contents
of a text file.To minimize overhead and keep the code in our project focused
on printing the file, we use a console application for our sample. Create a new
console application project named FilePrinter.At the top of Module1, add the
following Imports statements:

www.syngress.com

Table 6.3 Continued

Method Description

153_VBnet_06 8/14/01 4:24 PM Page 256

Advanced Programming Concepts • Chapter 6 257

Imports System.Drawing

Imports System.Drawing.Printing

Imports SYSTEM.IO

The namespaces we reference in these Imports statements contain the classes
that allow us to read our text file and print the contents. Now, we need to
declare our module level variables.We need a variable to represent the file that
we read, and we need a variable to represent the actual print job.Add the fol-
lowing code to the Declarations section of Module1:

Private WithEvents m_oDoc As PrintDocument

Private m_oFile As StreamReader

With our variables declared and our namespaces imported, we are ready to
jump into coding the example.We start out by opening our file and starting the
print job in Sub Main. In the interest of keeping our code as simple as possible,
error handling will not be used. It is imperative to make sure that the file you
specify for the StreamReader object actually exists. Modify Sub Main in your pro-
ject to read as follows:

Sub Main()

m_oFile = file.OpenText("C:\myFile.txt")

m_oDoc = New PrintDocument()

m_oDoc.Print()

End Sub

At this point, our application opens a text file and starts a print job, but none
of the actual printing code is written.The true work in this application is done
in the method assigned as the delegate for the PrintPage method of m_oDoc.We
first look at the code for our delegate, and then we discuss the code line by line.
Place the following code in Module1:

Private Sub OnPagePrint(ByVal Sender As Object, _

ByVal arg As System.Drawing.Printing.PrintPageEventArgs) _

Handles m_oDoc.PrintPage

Dim sngCurY As Single

Dim sngLineHeight As Single

Dim oFont As Font

'Set the font for printing

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 257

258 Chapter 6 • Advanced Programming Concepts

oFont = New System.Drawing.Font("Courier New", 12)

'Determine the height of font for printing

sngLineHeight = oFont.GetHeight(arg.Graphics)

'Move to top of page

sngCurY = arg.MarginBounds.Top

'Make sure data is available in file

If m_oFile.Peek() <> -1 Then

Do

'move to next line on page

sngCurY += sngLineHeight

'print the next line of the file

arg.Graphics.DrawString(m_oFile.ReadLine(), _

oFont, brushes.Black, _

arg.MarginBounds.Left, sngCurY)

Loop Until sngCurY >= arg.MarginBounds.Bottom Or _

m_oFile.Peek() = -1

End If

'determine whether we should continue

'on the next page

If m_oFile.Peek <> -1 Then

arg.HasMorePages = True

Else

arg.HasMorePages = False

End If

End Sub

In the first line, we declare the sub OnPagePrint.This routine must accept two
arguments: the first is of type Object and the second is of type
System.Drawing.Printing.PrintPageEventArgs.The second argument, which we
declared as arg, provides us with the ability to discover information about the
print job and to write our output to the printer.We use the Handles keyword to

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 258

Advanced Programming Concepts • Chapter 6 259

indicate that this method provides the event handling for the PrintPage method of
the PrintDocument object.

On the next several lines, we declare variables that are important for the
spacing of our printer output.The single, sngCurY, contains our current vertical
position on the page.We use this to indicate when we need to go to the next
page.The single, sngLineHeight, contains the height of the lines on our page.This
is calculated by calling the GetHeight method of the Font object used to render
our text. Finally, we declare our Font object, oFont, which determines the charac-
teristics of the font used in our print job.

Following the declaration of our variables, we instantiate oFont, setting the
font family to Courier New and the font size to 12.We then use the GetHeight
method of oFont to set sngLineHeight to the height of each line in our document.
By setting sngCurY to the value of arg.MarginBounds.Top, we move our starting
position to the topmost position in the printable area of our page.

Our next step is to determine whether we have data left inside the file to
print.This is done by calling the Peek() method of our StreamReader object.The
Peek() method returns the next available character (or –1 if no more characters
are available) without actually moving the pointer within the file. If we have data
in the file, we proceed into our loop.

Inside the loop, the first action we need to take is to move our vertical posi-
tion on the paper.We do this by adding the value of sngLineHeight to sngCurY.
This, in effect, brings our “pen” down one line.We call the DrawString method of
the System.Drawing object so that we can access through the variable arg. Our
loop continues this process until we have reached the bottom of the page or we
have run out of data in our file.

This process concludes by determining whether we finished the loop because
we ran out of data in the file or because we reached the bottom of the page. If
there is still data in our file, then we know that we reached the bottom of the
page, and we set the HasMorePages property of arg to True to indicate that the
print engine needs to request another page. If not, we set the HasMorePages prop-
erty to False to indicate that the print engine can complete the job. Our
OnPagePrint method is called until the print engine is instructed that there are no
more pages to print.

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 259

260 Chapter 6 • Advanced Programming Concepts

Table 6.4 Classes of the System.Drawing.Printing Namespace

Method Description

System.Drawing.Printing.Duplex() This enumeration defines the
printer’s duplex setting.

System.Drawing.Printing This class is the base for the
.InvalidPrinterException() error that gets thrown when

trying to use a printer with
invalid settings.

System.Drawing.Printing.Margins() This class is used to specify the
margins of a page.

System.Drawing.Printing.MarginsConverter() This class is used to convert the
margins to and from different
types.

System.Drawing.Printing.PageSettings() This class can be used to specify
settings for a page.

System.Drawing.Printing.PaperKind() This enumeration is used to
specify the standard paper size.

System.Drawing.Printing.PaperSize() This class is used to specify the
paper size.

System.Drawing.Printing.PaperSource() This enumeration is used to
specify the standard paper
source.

System.Drawing.Printing.PaperSourceKind() This enumeration is used to
specify the standard paper
source.

System.Drawing.Printing.PreviewPageInfo() This class contains objects for a
single page. This class cannot
be inherited.

System.Drawing.Printing This class contains objects for a
.PreviewPrintController() printcontroller.
System.Drawing.Printing.PrintController() This class contains objects that

control how a document is
printed.

System.Drawing.Printing.PrintDocument() This class contains objects to
send documents to the printer.

System.Drawing.Printing.PrinterResolution() This class contains objects to
represent the printer resolution.

www.syngress.com

Continued

153_VBnet_06 8/14/01 4:24 PM Page 260

Advanced Programming Concepts • Chapter 6 261

System.Drawing.Printing This class contains objects to
.PrinterResolutionKind() represent the standard printer

resolutions.
System.Drawing.Printing.PrinterSettings() This class contains objects to

represent how a document is
printed.

System.Drawing.Printing.PrinterUnit() This enumeration contains
representations that are used
to define the unit of measure
for the printer.

System.Drawing.Printing This class contains objects that
.PrinterUnitConvert() are used for working with the

WIN32 printing API.
System.Drawing.Printing.PrintEventArgs() This class contains objects for

printing; used with the begin-
print and endprint events.

System.Drawing.Printing.PrintEventHandler() This delegate handles the
beginprint, endprint, and
querypagesettings events

System.Drawing.Printing This class contains objects for
.PrintPageEventArgs() printing; used with the

printpage event.
System.Drawing.Printing This delegate handles the print-
.PrintPageEventHandler() page event.
System.Drawing.Printing.PrintRange() This enumeration is used to

specify the options buttons on
the Print dialog box.

System.Drawing.Printing This class provides data for the
.QueryPageSettingsEventArgs() querypagesettings event.
System.Drawing.Printing This delegate is for the
.QueryPageSettingsEventHandler() querypagesettings event.
System.Drawing.Printing This class is used to specify a
.StandardPrintController() print controller to send data to

a printer.

www.syngress.com

Table 6.4 Continued

Method Description

153_VBnet_06 8/14/01 4:24 PM Page 261

262 Chapter 6 • Advanced Programming Concepts

Understanding Free Threading
In order to understand free threading, you need to first understand what a thread
is.A thread is an independent flow of control that operates within the same
address space as other independent flows of controls within a process. It can also
be defined as instructions executed by a process.A process is typically an applica-
tion or part of an application running under Windows.

Windows is a pre-emptive multitasking system.The operating system works
with threads, and it switches them between processors. In a single processor
system, this means at any given instant only one thread can be running. In a mul-
tiprocessor system, more than one thread can run at once.

Free threading allows the application you write to perform tasks indepen-
dently.As a programmer, you can create an independent thread for a process.This
can cause an application to be more responsive.Although this is a very powerful
addition to Visual Basic, it can also wreak havoc if it is not properly implemented
and managed.

Additionally, debugging free-threaded applications can be a nightmare.When
more than one process is running, and processes are sharing memory, this can
create really complicated bugs. On the positive side, quite a few applications
could benefit from the use of free threading, such as the following:

■ Applications that have long computational processes.

■ Applications that are communicating over the Internet.

■ Applications that are performing data access.

■ Applications that are using MSMQ (Microsoft Message Queue Services).

■ Applications that perform process control.

In order to use free threading in Visual Basic .NET, you must create a thread
object using the System.Threading namespace. It’s a good idea to import the
System.Threading namespace at the beginning of your class so that you have access
to the following:

Dim thread As System.Threading.Thread

Another implementation of threading is shown in the following code frag-
ment, where a thread is created for a sub called SomeSub:

Dim othread As New System.Threading.thread(AddressOf SomeSub)

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 262

Advanced Programming Concepts • Chapter 6 263

The following statement kicks off the thread:

othread.Start()

Because Visual Basic has made creating threads so easy, you must be careful
about synchronization with threads as well as the creation of so many threads that
the system performance suffers. If you need to terminate a thread, you can do so
by implementing the following code:

oThread.Stop

SyncLock
You can use the SyncLock command to help prevent problems when working
with objects in a multithreaded environment.The SyncLock command accepts
an object as a key and locks that object from being accessed by other threads. By
key we mean a unique identifier or license plate that is used to identify an object
. In this way, a function can be marked as off-limits to other threads.The reason
why this is so critical is that in the case of multiple threads trying to access an
object at the same time, it could cause the system to become unstable or crash.
The SyncLock command helps us to prevent this from happening.

If another thread were to try to execute the locked block of code, it would
be suspended until the SyncLock cleared (at the end SyncLock statement).
SyncLock is basically a mutex (mutual exclusion) preventing a critical section of
code from being executed by two threads at the same time.The following code
fragment demonstrates the SyncLock command:

Private Sub dosomething()

SyncLock (button1)

button1.Text = "Something Else"

End SyncLock

End Sub

In the procedure, the SyncLock command uses the button1 object as the key.
In this case, a key is used as a unique identifier for a block of code.This prevents
other threads from accessing button1 while we were changing the text. If another
thread changed the text while we were changing it, a system crash, program
error, or some other undesired effect may result.

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 263

264 Chapter 6 • Advanced Programming Concepts

Good threadsafe code is written by properly using multithreading and paying
attention to designing your application properly.Threadsafe code operates prop-
erly when more than one thread executes it.

You can use events to simplify thread synchronization. If a process needs to
wait for another process to finish, it can wait for the event to raise.This is done
my designing the program so that functions wait for other functions to finish
using events.

NOTE

Although the SyncLock command is helpful, it is not a substitute for
writing robust, threadsafe code. When you are developing a multi-
threaded application, proper design consideration to threading is still
required.

An example of this would be asking a coworker to do something and waiting
for them to finish (them telling you they are done could be likened to an event)
before performing a task that needs the work they were doing.

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 264

Advanced Programming Concepts • Chapter 6 265

Summary
In this chapter, we have covered namespaces and how they benefit us by giving
us logical groupings of functionality.We have seen how namespaces can make the
programming task easier through code reuse, as more and more functions are
written.We have also explored the use of the Imports keyword.This is the
method by which namespaces are made available to a program. Remember to
choose wisely when deciding to use an array or a collection. Collections offer
many advantages over arrays.We have begun to exploit the power of free
threading, and how it can make our applications more responsive. Some of the
risks associated with free threading have also been covered.This will be a boon to
applications which need to process information asynchronously.The SyncLock
command was introduced to help manage multithreaded object access.

Solutions Fast Track

Using Modules

In Visual Basic .NET, modules are treated like classes.

Shared methods take the place of functions and subs in modules.

Utilizing Namespaces

Namespaces are one of the key new concepts in Visual Basic .NET. Be
sure that you understand how they can help you with code reuse.

Take the time to familiarize yourself with Visual Basic .NET’s built-in
namespaces.

Understanding the Imports Keyword

The Imports keyword is one of the most important new features of
Visual Basic .NET.

Imports is the method by which we use namespaces.

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 265

266 Chapter 6 • Advanced Programming Concepts

Implementing Interfaces

Visual inheritance is now supported in Visual Basic .NET, which is a
major benefit when creating a lot of similar forms.

The Implements command requires all interfaces of the base class to be
created in the inherited class.

Delegates and Events

Delegates are similar to pointers in C.

The Handles keyword accepts multiple events.

The Advantages of Language Interoperability

Language interoperability can help to ease development on large projects.

It can aid in code reuse across languages.

File Operations

File handling has changed somewhat—it’s now stream oriented.

The System.IO namespace should be imported when doing file I/O.

Consider the type of data and the use of the data before deciding on a
storage type.

Collections

The implementation of collections has changed slightly from earlier
versions of Visual Basic, but the principles are the same.

Collections don’t require redimensioning like arrays do.

Removing an object from within a collection is easier than it is within
an array.

The Drawing Namespace
When drawing, use the paint event of your form where appropriate.

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 266

Advanced Programming Concepts • Chapter 6 267

Understanding Free Threading

Consider synchronization of processes when creating threads.

Creating too many threads can negatively affect performance instead of
speeding things up.

Q: I’m trying to use a namespace that is part of an assembly I know is installed on
my system, but it doesn’t show up in the Intellisense list.What should I do?

A: If you know the name of the assembly (in this case we’ll say it’s
MHFUNCS.DLL, you can go to the Add References selection from the
Project menu and add MHFUNCS.DLL to the list.

Q: I created a thread for every function in my application, and now it runs really
slow.Why didn’t free threading speed things up?

A: You created too many threads. Consider creating threads for tasks that take a
long time to return control to the calling function.

Q: I create graphics to draw a square on the screen, but when I Alt-Tab to my
e-mail program and come back, the graphics are gone. What can I do to
prevent this?

A: Add code to draw the graphics (or redraw the graphics) in the form paint
event.This will cause the graphics to be redisplayed whenever the form needs
to be redrawn.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_06 8/14/01 4:24 PM Page 267

268 Chapter 6 • Advanced Programming Concepts

Q: My application has three threads that all use the same object. I’m not sure
why, but sometimes the results are not what I expect from the object.What
could be causing this?

A: It sounds like the threads may all be accessing the object at once.Wrapping
the code in a SyncLock statement would be a good idea. For more
information, review the SyncLock section in this chapter.

www.syngress.com

153_VBnet_06 8/14/01 4:24 PM Page 268

Creating Windows
Forms

Solutions in this chapter:

■ Application Model

■ Manipulating Windows Forms

■ Form Events

■ Creating Multiple Document
Interface Applications

■ Adding Controls to Forms

■ Dialog Boxes

■ Creating and Working with Menus

■ Adding Status Bars to Forms

■ Adding Toolbars to Forms

■ Data Binding

■ Using the Windows Forms Class Viewer

■ Using the Windows Forms ActiveX
Control Importer

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 7

269

153_VBnet_07 8/15/01 12:31 PM Page 269

270 Chapter 7 • Creating Windows Forms

Introduction
The .NET Framework provides a common object-based framework for creating
forms.All programming languages will use the same forms which are called
Windows Forms.This gives C++ users an easier way to create forms, and Visual
Basic users gain more control over their forms.Windows Forms are classes inher-
ited from the Forms class.You can also inherit existing forms to extend or change
their functionality.The process of working with forms has undergone some fun-
damental changes from the process used in previous versions of Visual Basic.We
discuss how to create Windows Forms at design time and how to programmati-
cally manipulate them at runtime. It is also important to understand the events
for Windows Forms and how they can be utilized.Visual Basic uses the following
types of forms: standard forms, MDI forms, and dialog boxes.We discuss working
with each of these types of forms.

Another change that will take a little getting used to is adding and using con-
trols on forms.We won’t go into much detail on the controls themselves until the
next chapter, though.You use menus to allow users easy access to functionality
within your program. Users are also accustomed to context menus as well.You
will need to understand how to create these menus at design time and manipu-
late them at runtime.You use toolbars for frequently used commands, and you
use status bars to indicate various items of interest to the user.

Binding controls on a form to data sources was a cumbersome task in pre-
vious Visual Basic versions.Visual Basic .NET comes with a wizard to ease this
process.You can bind controls on a form to a data source in different ways.We
also discuss how changes made to controls by the user are updated in the data
source.This chapter does not go into detail on ADO and data access.This is cov-
ered in Chapter 9.

Windows Forms recognize only Windows Controls. However, you can still
use existing ActiveX controls on Windows Forms.Visual Studio .NET includes
the Windows Forms ActiveX Control Importer. It converts the type definitions of
an ActiveX Control to make it look like a Windows Control to the form.

Application Model
Windows Forms is the new platform for Microsoft Windows–based application
development. It is based on the .NET Framework and provides a clear, object-
oriented, extensible set of classes that enable you to develop rich Windows-based
applications.Additionally, in a multi-tier distributed solution,Windows Forms can
act as the local user interface.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 270

www.syngress.com

A form is a representation of a window. Most forms are used to display con-
trols that display information to the user or collect input from the user.A form is
an object with properties that define its appearance, methods that define its
behavior, and events that define its interaction with the user.You can use the
properties, methods, and events of a form to suit your needs. For example, you
can change forms to create standard windows, dialog boxes, multiple document
interface (MDI) windows, or display surfaces for graphical routines.We take a
closer look at some of these applications of forms in the following sections.

The .NET Framework also allows you to inherit from existing forms to add
functionality or modify existing behavior.When you add a form to your project,
you can choose whether it inherits from the Form class provided by the frame-
work, or from a form you’ve previously created.

The .NET Framework provides a common, object-oriented framework for all
languages in Visual Studio .NET—this framework is Windows Forms.Windows
Forms give the Visual Basic programmer control that was previously available
only in other Visual Studio languages.

Properties
The properties of a form determine its appearance and behavior.You can use the
Properties window to change properties of a form at design-time (see Figure 7.1).

Creating Windows Forms • Chapter 7 271

Figure 7.1 The Properties of a Form Displayed in the Properties Window

153_VBnet_07 8/15/01 12:31 PM Page 271

272 Chapter 7 • Creating Windows Forms

You can change many properties of a form at runtime as well.Table 7.1
shows properties of a form.You will see how to change these properties both at
design-time and runtime in the following sections.

Table 7.1 Form Properties

Property Description

(Bindings) This collection holds all the bindings of properties of
the form to data sources.

AcceptButton The accept button of the form. If this is set, the
button is clicked whenever the user presses Enter.

AccessibleDescription The description that will be reported to accessibility
clients.

AccessibleName The name that will be reported to accessibility clients.
AccessibleRole The role that will be reported to accessibility clients.
AllowDrop Determines if the controls will receive drag-and-drop

notifications.
AutoScale Determines whether the form will automatically scale

with the screen font.
AutoScroll Determines whether scroll bars will automatically

appear if controls are placed outside the form’s client
area.

AutoScrollMargin The margin around controls during autoscroll.
AutoScrollMinSize The minimum logical size for the autoscroll region.
BackColor The background color used to display text and

graphics in the form.
BackgroundImage The background image used for the form.
BorderStyle Controls the appearance of the border of the form.

This will also affect how the caption bar is displayed
and what buttons are allowed to appear on it.

CancelButton The Cancel button of the form. If this is set, the
button is clicked whenever the user presses Esc.

CausesValidation Indicates whether the form causes and raises
validation events.

ContextMenu The shortcut menu to display when the user right-
clicks the form.

ControlBox Determines whether the form has a Control/System
menu box.

www.syngress.com

Continued

153_VBnet_07 8/15/01 12:31 PM Page 272

Creating Windows Forms • Chapter 7 273

Cursor The cursor that appears when the mouse passes over
the form.

DockPadding Determines the size of the border for docked controls.
DrawGrid Indicates whether to draw the positioning grid.
Enabled Indicates whether the form is enabled.
Font The font used to display text in the form.
ForeColor The foreground color used to display text and

graphics in the form.
GridSize Determines the size of the positioning grid.
HelpButton Determines whether a form has a Help button on the

caption bar.
Icon Indicates the icon for a form. This is displayed in the

form’s system menu box and when the form is
minimized.

IMEMode Determines the Input Method Editor (IME) status of
the form when selected.

IsMDIContainer Determines whether the form is an MDI container.
KeyPreview Determines whether keyboard events for controls on

the form are registered with the form.
Language Indicates the current localizable language.
Localizable Determines if localizable code will be generated for

the form.
Location The position of the top-left corner of the form with

respect to its container.
Locked Determines whether the form can be moved or

resized.
MaximizeBox Determines whether the form has a Maximize box in

the upper-right corner of its caption bar.
Menu The main menu of the form. This should be set to a

component of type MainMenu.
MinimizeBox Determines whether a form has a Minimize box in the

upper-right corner of its caption bar.
Opacity Determines how opaque or transparent the form is;

0% is transparent, 100% is opaque.

www.syngress.com

Table 7.1 Continued

Property Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 273

274 Chapter 7 • Creating Windows Forms

RightToLeft Indicates whether the form should draw right-to-left
for RTL languages.

ShowInTaskbar Determines whether the form appears in the
Windows taskbar.

Size The size of the form in pixels.
SizeGripStyle Determines when the size grip will be displayed for

the form.
SnapToGrid Determines if controls should snap to the positioning

grid.
StartPosition Determines the position of the form when it first

appears.
Text The text contained in the form.
TopMost Determines whether the form is above all other

non-topmost forms, even when deactivated.
TransparencyKey A color that will appear transparent when painted on

the form.
WindowState Determines the initial visual state of the form.

When you add a form to a project by clicking Add Windows Form from
the Project menu,Visual Basic .NET prompts you for a name for the form.You
can also change the name of a form after you have added it to your project.You
can change the name of a form by using the Solution Explorer window. Perform
the following steps to change the name of a form:

1. From the View Menu, click Solution Explorer.

2. Right-click the form in Solution Explorer and then click Rename.

3. Enter a new name for the form, including a .vb extension.

You can also use the Properties window to change the name of a form.
Follow these steps to change a form’s name using the Properties window:

1. From the View menu, click Solution Explorer.

2. Right-click the form in Solution Explorer and then click Properties.

3. In Properties Window, type a new name in the FileName property
box, including a .vb extension.

www.syngress.com

Table 7.1 Continued

Property Description

153_VBnet_07 8/15/01 12:31 PM Page 274

Creating Windows Forms • Chapter 7 275

You will want to change many properties of a form besides its name to get
the appearance that suits your needs. In the following section, we look at how to
change key properties of a form and how those changes affect its appearance and
behavior.

Manipulating Windows Forms
When you add a Windows form to your project, many of the form’s properties
are set to commonly used values by default. For example, the Opacity property is
set to 100% by default because forms are generally opaque and not transparent.
Also, the TopMost property is set to False by default because inactive forms are
not commonly above other forms.Although these values are convenient, they
will not always suit your needs. For example, a Help window often allows the
user to make it stay on top of other windows. Let’s look at how to change the
properties of a form.

Properties of Windows Forms
You can change the properties of a form at design time or at runtime.You can
virtually avoid compile-time errors by changing properties by point-and-click at
design time.Also, changing properties at design time by using the Properties
window is often quicker. For example, you could change the font used to display
text on a form by following these steps:

1. From the View menu, click Properties Window.

2. In the Properties Window, click Font and then click the ellipsis box.

3. In the Font dialog box, select the appropriate settings.

Because the Font property consists of many subproperties, quickly changing it
at design time is convenient. Similarly, you can use the Properties window to
change other properties at design time.

At times, you will want to manipulate a form based on a user input. Like
other properties, you can change the caption of a form at runtime.This is handy
when the caption of your form includes the text in an editable control on the
form. For example, in an employee database application, a form’s caption may
include the name of an employee and read “John Doe Properties.” If the user
changes the employee’s name using a text box named txtName, you want to
change the form’s caption as shown in the following code:

frmEmployee.Text = txtName.Text & "Properties"

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 275

276 Chapter 7 • Creating Windows Forms

Likewise, you can change other properties at runtime.You can also use a
form’s methods at runtime to change its behavior. In the following section, you
will see how to do just that.

Methods of Windows Forms
The methods of a form determine its behavior.As you write code in the Code
window, methods show differently from properties in the Complete Word box:
methods appear as purple diamonds.You can use methods to tailor the behavior
of a form to your needs. For example, to make a form invisible you can use the
Hide method as follows:

frmEmployee.Hide()

You can also use many other form methods, as shown in Table 7.2.

Table 7.2 Form Methods

Method Description

Activate Activates the form and gives it focus.
ActivateControl Activates a specified control.
(inherited from
ContainerControl)
AddOwnedForm Adds an owned form to this form.
AdjustFormScrollbars Adjusts the autoscroll bars on the container
(inherited from based on the current control positions and the
ScrollableControl) control currently selected.
AssignParent Assigns a new parent control. Sends out the
(inherited from appropriate property change notifications for
RichControl) properties that are affected by the change of

parent.
BeginInvoke (inherited Overloaded. Executes a delegate on the thread
from RichControl) that owns the control’s underlying handle.
BringToFront (inherited Brings this control to the front of the z-order.
from Control)
CallWndProc (inherited Dispatch the method to this window’s wndProc
from Control) directly.
Close Closes the form.
Contains (inherited Verifies if a control is a child of this control.
from Control)

www.syngress.com

Continued

153_VBnet_07 8/15/01 12:31 PM Page 276

Creating Windows Forms • Chapter 7 277

CreateAccessibilityInstance Constructs the new instance of the accessibility
(inherited from object for this control. Subclasses should not call
RichControl) base.CreateAccessibilityObject.
CreateControl (inherited Forces the creation of the control. This includes
from Control) the creation of the handle, and any child

controls.
CreateControlsInstance Constructs the new instance of the Controls
(inherited from RichControl) collection objects. Subclasses should not call

base.CreateControlsInstance.
CreateGraphics (inherited Overloaded. Creates the Graphics object for the
from RichControl) control.
CreateHandle (inherited Creates a handle for this control. This method
from Control) should not be called; it is only called by the .NET

Framework. Inheriting classes should always call
base.createHandle when overriding this method.

DefWndProc (inherited Sends the message to the default window proc.
from Control)
DestroyHandle (inherited Destroys the handle associated with this control.
from RichControl)
Dispose (inherited from Disposes of the resources (other than memory)
ContainerControl) used by the ContainerControl.
DoDragDrop (inherited Begins a drag operation. The allowedEffects
from RichControl) determine which drag operations can occur. If

the drag operation needs to interact with appli-
cations in another process, data should either be
a base managed class (String, Bitmap, or
Metafile) or some Object that implements
System.ComponentModel.IPersistable. Data can
also be any Object that implements
System.WinForms.IDataObject.

EndInvoke (inherited Retrieves the return value of the asynchronous
from RichControl) operation represented by the IAsyncResult inter-

face passed. If the asynchronous operation has
not been completed, this function will block
until the result is available.

Equals (inherited from Determines whether the specified Object is the
Object) same instance as the current Object.

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 277

278 Chapter 7 • Creating Windows Forms

Finalize (inherited from Allows an Object to attempt to free resources
Object) and perform other cleanup operations before the

Garbage Collector (GC) reclaims the Object. This
method may be ignored by the Common
Language Runtime; therefore, necessary cleanup
operations should be done elsewhere.

FindForm (inherited from Retrieves the form that this control is on. The
RichControl) control’s parent may not be the same as the

form.
Focus (inherited from Sets focus to the control. Attempts to set focus
Control) to this control.
GetChildAtPoint (inherited Retrieves the child control that is located at the
from Control) specified client coordinates.
GetContainer Gets the container for the component.
(inherited from
MarshalByRefComponent)
GetContainerControl Returns the closest ContainerControl in the
(inherited from Control) control’s chain of parent controls and forms.
GetDesignMode Gets a value indicating whether the component
(inherited from is currently in design mode.
MarshalByRefComponent)
GetHashCode (inherited Serves as a hash function for a particular type,
from Object) suitable for use in hashing algorithms and data

structures like a hash table.
GetLifetimeService This method is used to return a lifetime service
(inherited from object that is used to control the lifetime policy
MarshalByRefObject) to the object. For the default Lifetime service,

this will be an object of type ILease.
GetNextControl (inherited Retrieves the next control in the tab order of
from Control) child controls.
GetServiceObject Gets the implementer of the
(inherited from IServiceObjectProvider.
MarshalByRefComponent)
GetStyle (inherited from Retrieves the current value of the specified bit in
Control) the control’s style. NOTE: This is a control style,

not the Win32 style of the hwnd.
GetType (inherited from Gets the Type of the Object.
Object)

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 278

Creating Windows Forms • Chapter 7 279

Hide (inherited from Hides the control by setting the visible property
Control) to false.
InitializeLifetimeService Object can provide their own lease and so
(inherited from control their own lifetime. They do this by over-
MarshalByRefObject) riding the InitializeLifetimeService method pro-

vided on MarshalByRefObject.
InitLayout (inherited from Called after the control has been added to
RichControl) another container.
Invalidate (inherited from Overloaded. Invalidates a specific region of the
Control) control and causes a paint message to be sent to

the control.
Invoke (inherited from Overloaded. Executes a delegate on the thread
RichControl) that owns this control’s underlying window

handle.
InvokeGotFocus (inherited Raises the GotFocus event.
from Control)
InvokeLostFocus (inherited Raises the LostFocus event.
from Control)
InvokeOnClick (inherited) Raises the Click event.
from Control
InvokePaint (inherited Raises the Paint event for a specific control.
from RichControl)
InvokePaintBackground Raises the PaintBackground event for a specific
(inherited from) control.
RichControl
IsInputChar (inherited Determines if charCode is an input character that
from Control) the control wants.
IsInputKey (inherited from Determines if keyData is an input key that the
Control) control wants.
LayoutMDI Arranges the Multiple Document Interface (MDI)

child forms of this form.
MemberwiseClone Creates a shallow copy of the current Object.
(inherited from Object)
OnChangeUICues Raises the ChangeUICues event.
(inherited from Control)
OnClick (inherited from Raises the Click event.
Control)

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 279

280 Chapter 7 • Creating Windows Forms

OnClosed Raises the Closed event.
OnClosing Raises the Closing event.
OnControlAdded Raises the ControlAdded event.
(inherited from Control)
OnControlRemoved Raises the ControlRemoved event.
(inherited from Control)
OnCreateControl Called when the control is first created.
(inherited from Control)
OnDeactivate Raises the Deactivate event.
OnDoubleClick (inherited Raises the DoubleClick event.
from Control)
OnDragDrop (inherited Inheriting classes should override this method to
from RichControl) handle this event. Call base.onDragDrop to send

this event to any registered event listeners.
OnDragEnter (inherited Inheriting classes should override this method to
from RichControl) handle this event. Call base.onDragEnter to send

this event to any registered event listeners.
OnDragLeave (inherited Inheriting classes should override this method to
from RichControl) handle this event. Call base.onDragLeave to send

this event to any registered event listeners.
OnDragOver (inherited Inheriting classes should override this method to
from RichControl) handle this event. Call base.onDragOver to send

this event to any registered event listeners.
OnEnter (inherited from Raises the Enter event.
Control)
OnGiveFeedback (inherited Inheriting classes should override this method to
from RichControl) handle this event. Call base.onGiveFeedback to

send this event to any registered event listeners.
OnGotFocus (inherited Raises the GotFocus event.
from RichControl)
OnHandleCreated Inheriting classes should override this method to
(inherited from find out when the handle has been created. Call
RichControl) base.OnHandleCreated first.
OnHandleDestroyed Inheriting classes should override this method to
(inherited from RichControl) find out when the handle is about to be

destroyed. Call base.OnHandleDestroyed last.

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 280

Creating Windows Forms • Chapter 7 281

OnHelpRequested Inheriting classes should override this method to
(inherited from RichControl) handle this event. Call base.onHelp to send this

event to any registered event listeners.
OnInputLangChange Raises the InputLangChange event.
OnInputLangChangeRequest Raises the InputLangChangeRequest event.
OnInvalidated Inheriting classes should override this method to
(inherited from RichControl) handle this event. Call base.OnInvalidate to send

this event to any registered event listeners.
OnKeyDown (inherited Raises the KeyDown event.
from Control)
OnKeyPress (inherited Raises the KeyPress event.
from Control)
OnKeyUp (inherited Raises the KeyUp event.
from Control)
OnLayout (inherited from Core layout logic. Inheriting controls should
RichControl) override this function to do any custom layout

logic. It is not necessary to call base.layoutCore,
however for normal docking and anchoring func-
tions to work, base.layoutCore must be called.

OnLeave (inherited Raises the Leave event.
from Control)
OnLostFocus (inherited Raises the LostFocus event.
from RichControl)
OnMDIChildActivate Raises the MdiChildActivate event.
OnMenuComplete Raises the MenuComplete event.
OnMenuStart Raises the MenuStart event.
OnMouseDown (inherited Raises the MouseDown event.
from Control)
OnMouseEnter (inherited Raises the MouseEnter event.
from Control)
OnMouseHover (inherited Raises the MouseHover event.
from Control)
OnMouseLeave (inherited Raises the MouseLeave event.
from Control)
OnMouseMove (inherited Raises the MouseMove event.
from Control)

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 281

282 Chapter 7 • Creating Windows Forms

OnMouseUp (inherited Raises the MouseUp event.
from Control)
OnMouseWheel (inherited Raises the MouseWheel event.
from Control)
OnMove (inherited from Raises the Move event.
Control)
OnPaint (inherited from Inheriting classes should override this method to
RichControl) handle this event. Call base.onPaint to send this

event to any registered event listeners.
OnPaintBackground Inheriting classes should override this method to
(inherited from RichControl) handle the erase background request from

windows. It is not necessary to call
base.onPaintBackground, however if you do not
want the default Windows behavior you must
set event.handled to true.

OnParentPropertyChanged This method is called by the parent control when
(inherited from RichControl) any property changes on the parent. This can be

overridden by inheriting classes; however, they
must call base.OnParentPropertyChanged.

OnPropertyChanged Occurs when AccessibleObject is providing help
(inherited from RichControl) to accessibility applications.
OnQueryContinueDrag Inheriting classes should override this
(inherited from RichControl) method to handle this event. Call

base.onQueryContinueDrag to send this event to
any registered event listeners.

OnResize (inherited from Raises the Resize event.
Control)
OnValidated (inherited Raises the Validated event.
from Control)
OnValidating (inherited Raises the Validating event.
from Control)
ParentChanged (inherited Called by the .NET Framework after a control’s
from Control) parent changes. This allows (for example) child

controls to automatically hook events on their
parent, giving better encapsulation.

PerformLayout (inherited Overloaded. Forces the control to apply layout
from Control) logic to child controls.

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 282

Creating Windows Forms • Chapter 7 283

PointToClient Gets the client coordinates for a specified
location.

PointToScreen Gets the screen coordinates for a specified
location.

PreProcessMessage Called by the application’s message loop to
(inherited from Control) preprocess input messages before they are

dispatched.
ProcessCmdKey (inherited Processes a command key.
from RichControl)
ProcessDialogChar Processes a dialog character.
(inherited from Control)
ProcessDialogKey (inherited Processes a dialog key.
from Control)
ProcessKeyEventArgs Processes a key message.
(inherited from Control)
ProcessKeyPreview Previews a keyboard message.
(inherited from Control)
ProcessMnemonic Processes a mnemonic character.
(inherited from Control)
ProcessTabKey (inherited Selects the next available control and makes it
from ContainerControl) the active control.
RaiseDragEventArgs Raises the event associated with key with the
(inherited from event data of e and a sender of this control.
RichControl)
RaiseKeyEventArgs Raises the event associated with key with the
(inherited from Control) event data of e and a sender of this control.
RaiseMouseEventArgs Raises the event associated with key with the
(inherited from Control) event data of e and a sender of this control.
RaisePaintEventArgs Raises the event associated with key with the
(inherited from event data of e and a sender of this control.
RichControl)
RaisePropertyChangedEvent Raises the property changed event. This creates
(inherited from Control) the needed event data and then calls

OnPropertyChanged.
RecreateHandle (inherited Forces the recreation of the handle for this con-
from Control) trol. Inheriting controls must call

base.recreateHandle.

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 283

284 Chapter 7 • Creating Windows Forms

RectangleToClient Gets the client coordinates and size of a
specified rectangle.

RectangleToScreen Gets the client coordinates and size for a
specified rectangle.

Refresh (inherited from Forces the control to invalidate and immediately
Control) repaint itself and any children.
RemoveOwnedForm Removes a form from the list of owned forms.

Also sets the owner of the removed form to a
null reference (in Visual Basic Nothing).

ResetBackColor (inherited Resets the back color to be based on the
from RichControl) parent’s back color.
ResetBindings (inherited Resets the DataBindings property to its default
from RichControl) value.
ResetCursor (inherited Resets the Cursor property to its default value.
from RichControl)
ResetFont (inherited from Resets the font to be based on the parent’s font.
RichControl)
ResetForeColor (inherited Resets the fore color to be based on the parent’s
from RichControl) fore color.
ResetRightToLeft Resets RightToLeft to be the default.
(inherited from RichControl)
ResetText (inherited from Resets the text to its default value.
Control)
ResumeLayout (inherited Overloaded. Resumes normal layout logic.
from Control)
ResumeLayout (inherited Overloaded. Resumes normal layout logic.
from Control)
RTLTranslateAlignment Overloaded Converts the current alignment to
(inherited from RichControl) the appropriate alignment to support right-to-

left text.
RTLTranslateContent [Overloaded. Converts the current alignment to
(inherited from the appropriate alignment to support right-to-
RichControl) left text.
RTLTranslateHorizontal Converts the specified HorizontalAlignment to
(inherited from RichControl) the appropriate HorizontalAlignment to support

right-to-left text.

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 284

Creating Windows Forms • Chapter 7 285

RTLTranslateLeftRight Converts the specified LeftRightAlignment to the
(inherited from RichControl) appropriate LeftRightAlignment to support right-

to-left text.
Scale (inherited from Overloaded. Scales the control and any child
Control) controls.
ScaleCore (inherited from Performs the work of scaling the entire control
Control) and any child controls.
Select (inherited from Activates this control.
Control)
SelectNextControl Selects the next control following ctl.
(inherited from Control)
SendMessage (inherited Overloaded. Sends a Win32 message to the
from Control) control.
SendMessage (inherited Overloaded. Sends a Win32 message to the
from Control) control.
SendToBack (inherited Sends this control to the back of the z-order.
from Control)
SetAutoScrollMargin Sets the size of the auto-scroll margins.
(inherited from
ScrollableControl)
SetBounds (inherited Overloaded. Sets the bounds of the control.
from Control)
SetBoundsCore (inherited Performs the work of setting the bounds of the
from RichControl) control.
SetClientSizeCore Performs the work of setting the size of the
(inherited from Control) client area of the control.
SetDesktopBounds Sets the bounds of the form in desktop

coordinates.
SetDesktopLocation Sets the location of the form in desktop

coordinates.
SetLocation (inherited Sets the location of this control.
from Control)
SetNewControls Arranges an array of controls on a form.
SetSize (inherited from Sets the size of this control.
Control)

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 285

286 Chapter 7 • Creating Windows Forms

SetStyle (inherited from Sets the current value of the specified bit in
Control) the control’s style. NOTE: This is control style,

not the Win32 style of the hwnd.
ShouldPersistAutoScrollMargin Indicates whether the AutoScrollMargin
(inherited from property should be persisted.
ScrollableControl)
ShouldPersistAutoScrollMinSize Indicates whether the AutoScrollMinSize
(inherited from property should be persisted.
ScrollableControl)
ShouldPersistAutoScrollPosition Indicates whether the AutoScrollPosition
(inherited from property should be persisted.
ScrollableControl)
ShouldPersistBackColor Indicates whether the BackColor property

should be persisted.
ShouldPersistBindings Indicates whether bindings should be
(inherited from RichControl) persisted.
ShouldPersistCursor (inherited Returns true if the cursor should be persisted
from RichControl) in code gen.
ShouldPersistFont (inherited Returns true if the font should be persisted
from RichControl) in code gen.
ShouldPersistForeColor Indicates whether the ForeColor property

should be persisted.
ShouldPersistIcon Indicates whether the Icon property should

be persisted.
ShouldPersistLocation Determines if the Location property needs to
(inherited from Control) be persisted.
ShouldPersistRightToLeft Returns true if the RightToLeft should be
(inherited from RichControl) persisted in code gen.
ShouldPersistSize (inherited Determines if the Size property needs to be
from Control) persisted.
ShouldPersistText (inherited Determines if the Text property needs to be
from Control) persisted.
ShouldPersistTransparencyKey Indicates whether the TransparencyKey

property should be persisted.
Show (inherited from Control) Makes the control display by setting the

visible property to true.

www.syngress.com

Table 7.2 Continued

Method Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 286

Creating Windows Forms • Chapter 7 287

ShowDialog Overloaded. Displays this form as a modal
dialog box.

SuspendLayout (inherited Suspends the layout logic for the control.
from Control)
ToString (inherited from Object) Returns a String that represents the current

Object.
Update (inherited from Control) Forces the control to paint any currently

invalid areas.
UpdateBounds (inherited from Overloaded. Updates the bounds of the
Control) control.
UpdateStyles (inherited from Forces styles to be reapplied to the handle.
Control) This function will call CreateParams to get

the styles to apply.
UpdateZOrder (inherited from Updates this control in its parent’s z-order.
Control)
Validate (inherited from Validates the last unvalidated control and its
ContainerControl) ancestors up through, but not including, the

current control.
WndProc Processes Windows messages.
WndProcException (inherited Processes Windows exceptions.
from RichControl)

Similarly, you can use other methods to achieve the behavior that you need.
In the following sections, we will look how to create forms that have a specific
application.

Creating Windows Forms
The form is the primary vehicle for user interaction within a Windows-based
application.You can combine controls and code to collect information from the
user and respond to it, work with data stores, and query and write to the
Registry and file system on the user’s computer.To achieve these results,Visual
Basic .NET allows you to create modal, modeless, and top-most forms; we will
discuss these form types in the following sections.Visual Basic .NET also allows
you to create new instances of a form in different ways. For example, each of the
following snippets creates a new instance frmNewDialog of a form frmDialog:

www.syngress.com

Table 7.2 Continued

Method Description

153_VBnet_07 8/15/01 12:31 PM Page 287

288 Chapter 7 • Creating Windows Forms

Dim frmNewDialog As frmDialog()

frmNewDialog = New frmDialog()

Or:

Dim frmNewDialog As New frmDialog()

Or:

Dim frmNewDialog As frmDialog = New frmDialog()

Notice how the Set keyword is conspicuously absent.Also notice the paren-
theses following the form class. In Visual Basic .NET, parentheses are added to the
names of forms, classes, and collections—if you omit them, the code editor will
add them for you. In the first snippet, declaring the new form frmNewDialog as
type frmDialog allows to you access the properties and methods of the frmDialog
class using the Complete Word window. However, a new instance of the form is
not created until the second statement, which includes the New keyword.

As with all objects in the .NET Framework, forms are instances of classes.
When you add a form, you can choose whether it inherits from the Form class
provided by the framework, or from a form you’ve previously created.The frame-
work also allows you to inherit from existing forms to add functionality or
modify existing behavior.

Displaying Modal Forms
A modal form must be closed before you can continue working with the rest of
the application. In many Windows-based applications, the user needs to click OK
or Cancel on a dialog box to be able to switch to another form:The dialog box
is modal. Modal dialog boxes are useful when displaying important messages
because they require an acknowledgement from the user.You can display a form
as a modal dialog box by using the ShowDialog method.The following snippet
shows just how:

Dim frmProperties As frmDialog = New frmDialog()

frmProperties.ShowDialog()

You should be familiar with code execution following the ShowDialog
method. If a form is shown modally, the code following the ShowDialog method
does not execute until the form is closed.This differs from code execution if a
form is shown as a modeless, as you will see in the next section.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 288

Creating Windows Forms • Chapter 7 289

Displaying Modeless Forms
Contrary to a modal form, a modeless form allows the user to shift the focus
between the form and another form without closing the initial form. Modeless
forms are useful when you want the user to refer to one form from another, such
as with tool windows and Help windows. However, modeless forms can be a
handful because the user can access them in an unpredictable order.This compli-
cates your task as the developer to keep the state of your application consistent.
You can easily display a form as a modeless dialog box.To display a modeless
dialog box, use the Show method, as shown in the following code:

Dim frmToolbox As frmDialog = New frmDialog()

frmToolbox.Show()

Execution of code following the Show method differs from execution of code
following the ShowDialog method.When a form is shown modelessly, the code
following the Show method is executed immediately after the form is displayed.
When showing multiple forms, at times you may want to keep a form on top of
other windows.The following section discusses top-most forms.

Displaying Top-Most Forms
A top-most form stays in front of non-topmost forms even when inactive. In
Windows 2000, a top-most form stays in front of other forms within its applica-
tion. In Windows 98, a top-most form stays in front of all forms in all applica-
tions.Top-most forms are useful for creating floating tool windows and Help
windows in front of other windows in your application. In a Windows Forms
application, you can easily make a form the top-most form by using the TopMost
property.The following snippet shows how:

frmToolbox.TopMost = True

After creating a form, you will often want to make stylistic changes to it, such
as changing its borders, resizing it, or setting its location.We cover these topics in
the following sections.

Changing the Borders of a Form
After you add a form to your project at design time or create a form in code, you
can choose from several border styles to determine its look.Apart from control-
ling the look of the borders of a form, the BorderStyle property influences how
the caption bar is displayed along with the buttons that appear on it. Moreover,

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 289

290 Chapter 7 • Creating Windows Forms

the BorderStyle property also affects the resizing behavior of a form.Table 7.3
describes the settings for the BorderStyle property.

Table 7.3 Settings for the BorderStyle Property

Setting Description

None No border or border-related elements. Used for
startup forms.

Fixed 3D Used when 3D border effect is desired. Not resizable.
Can include control-menu box, title bar, and Maximize
and Minimize buttons on the title bar. Creates a raised
border relative to the body of the form.

Fixed Dialog Used for dialog boxes. Not resizable. Can include
control-menu box, title bar, and Maximize and
Minimize buttons on the title bar. Creates a recessed
border relative to the body of the form.

Fixed Single Not resizable. Can include control-menu box, title bar,
and Maximize and Minimize buttons. Resizable using
only Maximize and Minimize buttons. Creates a single
line border.

Fixed Tool Window Used for tool windows. Displays a nonsizable window
with a Close button and title bar text in a reduced
font size. The form does not appear in the Windows
taskbar.

Sizable (Default) Often used as main window. Resizable. Can
include control-menu box, title bar, Maximize button,
and Minimize button. Can be resized using control-
menu box, Maximize and Minimize buttons on the
title bar, or by using the mouse pointer at any edge.

Sizable Tool Window Used for tool windows. Displays a sizable window
with a Close button and title bar text in a reduced
font size. The form does not appear in the Windows
taskbar.

NOTE

All border styles except the None setting feature the Close button on the
right-hand side of the title bar.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 290

Creating Windows Forms • Chapter 7 291

You can set the border style of a form at design time or at runtime.To set the
border style of a form at design time:

1. From the View menu, click Properties Window.

2. In the Properties Window, click BorderStyle and select the appro-
priate border style.

You can also change the border style at runtime using one of the values of
the FormBorderStyle enumeration. For example, the following sample code set the
border style of a form to FixedDialog:

frmProperties.BorderStyle = FormBorderStyle.FixedDialog

If you choose a border style that allows a Maximize and Minimize button in
the title bar, you can choose to disable either or both of the buttons.This is
handy when you are satisfied with all attributes of a particular border style except
the Maximize or Minimize button.You can disable the Maximize and Minimize
buttons using the MaximizeBox and MinimizeBox properties.The following
snippet disables the Maximize button of a form:

frmProperties.MaximizeBox = False

You can disable the Minimize button in similar fashion.The following section
discusses resizing forms.

Resizing Forms
As in previous version of Visual Basic, you can use the Width and Height proper-
ties to resize a form. However,Visual Basic .NET also allows you to resize a form
by setting its Size property. In addition, in Visual Basic .NET you can quickly
change form size by increments.Which method you use to resize a form depends
largely on your preference.

First, let’s look at how to resize a form the old-fashioned way, by setting the
Width and Height properties.This is useful when you want to change either form
width or form height, and not both.The following snippet sets the form height
to 50 pixels:

frmPalette.Height = 50

You can achieve the same result by using the Size object, which specifies the
width and the height in that order.The following code also changes only the

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 291

292 Chapter 7 • Creating Windows Forms

form height to 50 pixels.The frmPalette.Width parameter maintains the current
width of the form:

frmPalette.Size = New Size(frmPalette.Width, 50)

We have now revealed the true power of the Size object: to change both
height and width in one statement. For example, you could set the form size to
50 by 50 pixels as follows:

frmPalette.Size = New Size(50, 50)

In Visual Basic .NET you can also quickly change form size by increments.
The following example sets the form height to 50 pixels higher than the current
setting:

frmPalette.Height += 50

WARNING

Do not try to implicitly set the width and height of the Size object to
quickly change the form size by increments. The following code will not
change the form size. The Size property returns a Size structure con-
taining a copy of the form width and height, and the height member of
this copied structure is incremented by 50. However, the copied and
incremented structure is then discarded:

frmPalette.Size.Height += 50

Setting Location of Forms
After you create a form, you can specify where it is to be displayed on the com-
puter screen.When a form first appears, the StartPosition property determines the
position of the form.The default setting of the StartPosition is
WindowsDefaultLocation, which allows the operating system to compute the best
location for the form at startup based on the hardware. For example, the user may
have a system with multiple monitors or a different screen size and resolution,
which can cause the form location to change unpredictably.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 292

Creating Windows Forms • Chapter 7 293

NOTE

A form’s location as you see it may differ from the form’s location as the
user sees it.

To an extent, you can control the location of a form using its Location prop-
erty.You can change the x-coordinate and the y-coordinate of a form by using
the Left and Top properties, as in previous versions of Visual Basic.The following
example changes the form’s y-coordinate to the 100-pixel point:

frmPalette.Top = 100

In Visual Basic .NET, you can also achieve the same result by using the
Location object and its X and Y properties.The following snippet also adjusts the
form’s y-coordinate to the 100-pixel point:

frmPalette.Location.Y = 100

However, the power of the Location object lies in that you can use it to
change both the x-coordinate and the y-coordinate of a form simultaneously.The
following code adjusts both the x-coordinate and the y-coordinate to the respec-
tive 100-pixel points:

frmPalette.Location = New Point(100, 100)

WARNING

Do not try to implicitly set the x-coordinate and y-coordinate of the
Location object to quickly change the form’s location by increments. The
following code will not change the form’s location. The Location prop-
erty returns a Location structure containing a copy of the form’s x-coor-
dinate and y-coordinate, and the y-coordinate of this copied structure is
incremented by 100. However, the copied and incremented structure is
then discarded:

frmPalette.Location.Y += 100

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 293

294 Chapter 7 • Creating Windows Forms

In Visual Basic .NET, you can also quickly change a form’s location by
increments.The following example adjusts the form’s y-coordinate to 100 pixels
farther than the current setting:

frmPalette.Top += 100

You can use the DesktopLocation property instead of the Location property to
adjust a form’s location.The DesktopLocation property determines the location of
a form relative to the Windows taskbar.This is useful if the taskbar is not auto-
matically hidden and has been docked to the left or top of the monitor, which
obscures the desktop coordinates (0, 0). Setting the desktop location of a form to
(0, 0) ensures that it appears flush with and not covered by the taskbar, as the fol-
lowing example shows:

frmPalette.DesktopLocation = New Point(0, 0)

Form Events
Events occur for forms when the user open or closes a form, moves between
forms, or interacts with the surface of a form. Events that occur when the user
interacts with a form can be triggered by using the mouse or keyboard.The
Windows Form framework exposes many events of the Form class.Table 7.4
describes these events.

Table 7.4 Form Events

Event Description

Activated Occurs when the form is activated in code or
by the user.

ChangeUICues (inherited Occurs when the focus or keyboard or both
from Control) cues have changed.
Click (inherited from Occurs when the form is clicked.
Control)
Closed Occurs when the form is closed.
Closing Occurs when the form is closing.
ControlAdded (inherited Occurs when a new form is added.
from Control)
ControlRemoved (inherited Occurs when a form is removed.
from Control)

www.syngress.com

Continued

153_VBnet_07 8/15/01 12:31 PM Page 294

Creating Windows Forms • Chapter 7 295

Deactivate Occurs when the form loses focus and is not
the active form.

DoubleClick (inherited from Occurs when the form is double-clicked.
Control)
DragDrop (inherited from Occurs when a drag-and-drop operation is
RichControl) completed.
DragEnter (inherited from Occurs when an object is dragged into the
RichControl) control’s bounds.
DragLeave (inherited from Occurs when an object has been dragged into
RichControl) and out of the control’s bounds.
DragOver (inherited from Occurs when an object has been dragged over
RichControl) the control’s bounds.
Enter (inherited from Occurs when the form is entered.
Control)
GiveFeedback (inherited Occurs during a drag operation.
from RichControl)
GotFocus (inherited from Occurs when the form receives focus.
Control)
HandleCreated (inherited Occurs when a handle is created for the form.
from Control)
HandleDestroyed (inherited Occurs when the form’s handle is destroyed.
from Control)
HelpRequested (inherited Occurs when the user requests Help for a
from RichControl) control.
InputLangChange Occurs after the input language of the form has

changed.
InputLangChangeRequest Occurs when the user attempts to change the

input language for the form.
Invalidated (inherited from Occurs when a control’s display is updated.
RichControl)
KeyDown (inherited from Occurs when a key is pressed down while the
Control) form has focus.
KeyPress (inherited from Occurs when a key is pressed while the form
Control) has focus.
KeyUp (inherited from Occurs when a key is released while the form
Control) has focus.

www.syngress.com

Table 7.4 Continued

Event Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 295

296 Chapter 7 • Creating Windows Forms

Layout (inherited from Occurs when a form’s layout properties have
Control) been changed.
Leave (inherited from Occurs when the form is left.
Control)
LostFocus (inherited from Occurs when the form loses focus.
Control)
MDIChildActivate Occurs when an MDI child form is activated or

closed within an MDI application.
MenuComplete Occurs when a menu in a form loses focus.
MenuStart Occurs when a menu in a form receives focus.
MouseDown (inherited Occurs when the mouse pointer is over the form
from Control) and a mouse button is pressed.
MouseEnter (inherited Occurs when the mouse pointer enters the form.
from Control)
MouseHover (inherited Occurs when the mouse pointer hovers over
from Control) the form.
MouseLeave (inherited Occurs when the mouse pointer leaves the form.
from Control)
MouseMove (inherited Occurs when the mouse pointer is moved over
from Control) the form.
MouseUp (inherited from Occurs when the mouse pointer is over the form
Control) and a mouse button is released.
MouseWheel (inherited Occurs when the mouse wheel moves while the
from Control) form has focus.
Move (inherited from Occurs when the form is moved.
Control)
Paint (inherited from Occurs when the control is redrawn.
RichControl)
PropertyChanged (inherited Occurs when a property of the form has
from Control) changed.
QueryAccessibilityHelp Occurs when AccessibleObject is providing help
(inherited from RichControl) to accessibility applications.
QueryContinueDrag Occurs during a drag-and-drop operation and
(inherited from RichControl) allows the drag source to determine whether

the drag-and-drop operation should be canceled.

www.syngress.com

Table 7.4 Continued

Event Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 296

Creating Windows Forms • Chapter 7 297

Resize (inherited from Occurs when the form is resized.
Control)
Validated (inherited from Occurs when the form is done validating.
Control)
Validating (inherited from Occurs when the form is validating.
Control)

Creating Multiple Document
Interface Applications
MDI applications allow simultaneous display of multiple documents, with each
document displayed in its own window. MDI applications consist of an MDI
parent form and MDI child forms.An MDI application allows you to determine
the child form that has the focus. Often MDI applications also allow the user to
quickly switch between child windows and to tile, cascade, and arrange child
windows. In the following sections, we discuss these topics in detail. First, let’s
look closely at how to create an MDI parent form.

Creating an MDI Parent Form
The MDI parent form is at the heart of an MDI application. It is the container
for the multiple documents—the child forms—within an MDI application.You
can use the IsMDIContainer property to create an MDI parent form. Follow these
steps to create an MDI parent form:

1. Create a new form and open it in the Code window.

2. In the constructor for your form, add the following code:

Me.IsMDIContainer = True

It is convenient for the user to interact with MDI child forms when the
parent form is maximized.You can maximize the parent form by setting its
WindowState property to Maximized.

www.syngress.com

Table 7.4 Continued

Event Description

153_VBnet_07 8/15/01 12:31 PM Page 297

298 Chapter 7 • Creating Windows Forms

Creating MDI Child Forms
MDI child forms are forms that operate within an MDI parent form in an MDI
application. In an MDI application, these are often the forms with which the user
interacts the most. Creating MDI child forms is a step-by-step procedure that we
walk through in Exercise 7.1.The following exercise creates MDI child forms via
a button on a parent form.

Exercise 7.1 Creating an MDI Child Form
In this exercise, you will create an MDI parent form and an MDI child form. New
instances of the child form will be displayed through a button on the parent form.

Creating an MDI Parent Form

1. From the File menu, select New Project.

2. In the Visual Basic Projects list, select the Windows Application
template and then click OK.

3. In the Properties Window, set the IsMDIContainer property to
True, and then set the WindowState property to Maximized.

Creating an MDI Child Form

1. From the Project menu, select Add Windows Form.

2. In the Local Project Items list, select the Windows Form template
and then click Open.

Displaying an MDI Child Form

1. Select the MDI parent form.

2. On the Toolbox, select the Win Forms tab and double-click the
Button control to put it on the form.

3. On the MDI parent form, double-click the button. Replace the event
handler for the Click event with the following code to create a new
MDI child form when the button is clicked:

Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 298

Creating Windows Forms • Chapter 7 299

Dim frmNewMDIChild As New Form2()

frmNewMDIChild.MDIParent = Me

frmNewMDIChild.Show()

End Sub

The user can now click the button on the MDI parent form to
create new child forms.As child forms are created, your task as the
developer becomes to manage them. Fortunately, the Windows Forms
framework exposes properties and methods to make that an easy task.

Determining the Active MDI Child Form
In an MDI application, the active child form is the child form that has the focus
or was most recently active.At times, you will need to identify the active child
form. For example, suppose you have a Close menu item in the File menu on
your parent form. Because your application can have many instances of the same
child form, you need to set apart the child form to be closed: the active child
form.You can use the ActiveForm property of the parent form to distinguish the
active child form.The following code on the parent form closes the active child
form:

Protected Sub mnuFileClose_Click(ByVal sender as System.Object, _

ByVal e as System.EventArgs)

frmMDIParent.ActiveForm.Close()

End Sub

MDI applications often offer other ways to interact with child forms as well.
In the next section, we look closely at arranging child forms.

Arranging MDI Child Forms
MDI parent forms often sport a Window menu with Arrange, Cascade,Tile
Horizontal, and Tile Vertical submenus.The user can click these menus to arrange
child forms.You can provide this functionality by using the LayoutMDI method
of the parent form and the MDILayout enumeration.You can choose from four
values of the MDILayout enumeration, which are described in Table 7.5.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 299

300 Chapter 7 • Creating Windows Forms

Table 7.5 Settings of the MDILayout Enumeration

Setting Description

ArrangeIcons Displays child form icons arranged along the lower portion
of the parent form.

Cascade Displays cascading child forms.
TileHorizontal Displays horizontally tiled child forms.
TileVertical Displays vertically tiled child forms.

Suppose that you want to tile child forms horizontally when the user clicks
the appropriate menu.The following snippet shows just that:

Protected Sub mnuWindowTileHorizontal_Click _

(ByVal sender as System.Object, ByVal e as System.EventArgs)

frmMDIParent.LayoutMDI(MDILayout.TileHorizontal)

End Sub

We have now discussed creating and manipulating forms. Generally, forms
provide only a framework for the objects with which the user interacts the most:
the controls. In the following sections, we discuss adding controls to forms.

Adding Controls to Forms
Most forms contain controls that display information to the user or collect infor-
mation from the user.These controls are most often added to the form at design
time.You can add a control to a form at design time in several ways:

1. From the View menu, select Toolbox.

2. On the Toolbox window, select the Win Forms tab.

3. Double-click the appropriate control.

Or:

1. Click the appropriate control.

2. On the form, click or drag the mouse.

You can arrange controls on forms in many ways.You can anchor, dock, layer,
and position controls on forms. In the following sections, we discuss these dif-
ferent ways to arrange controls on forms.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 300

Creating Windows Forms • Chapter 7 301

Anchoring Controls on Forms
The controls on a resizable form should resize and reposition properly when the
user resizes the form. In previous versions of Visual Basic, this required extensive
coding or a custom component to carry out control resizing and repositioning. In
Visual Basic .NET, you can use the Anchor property of Windows Forms controls.
The Anchor property determines to which edges of the container a control is
bound.When a control is anchored to an edge, the distance between the control’s
closest edge and the specified edge will remain constant. Say for example that
you have a combo box that is anchored to the top, left, and right edges of a form
(see Figure 7.2).

When the user resizes the form, the combo box resizes horizontally to main-
tain the same distance from the left and right edges of the form—its width
increases to maintain the same distance from the right edge.The combo box also
repositions itself vertically to maintain the same distance from the top edge of the
form (see Figure 7.3).The code would look like the following snippet:

cboTopLeftRight.Anchor = AnchorStyles.TopLeftRight

NOTE

Windows Forms controls are anchored to the top and left form edges
by default.

www.syngress.com

Figure 7.2 A Combo Box Anchored to the Top, Left, and Right Edges
of a Form

153_VBnet_07 8/15/01 12:31 PM Page 301

302 Chapter 7 • Creating Windows Forms

You can choose from 16 different anchor styles, including None and All.
Table 7.6 describes the different control anchor styles.You can also dock controls
on forms, which we will discuss in the following section.

Table 7.6 Anchor Styles for Controls

Setting Description

All Each edge of the control anchors to the corresponding
edge of its container.

Bottom The control is anchored to the bottom edge of its
container.

BottomLeft The control is anchored to the bottom and left edges of
its container.

BottomLeftRight The control is anchored to the bottom, left, and right
edges of its container.

BottomRight The control is anchored to the bottom and right edges
of its container.

Left The control is anchored to the left edge of its container.
LeftRight The control is anchored to the left and right edges of its

container.
None The control is not anchored to any edges of its container.
Right The control is anchored to the right edge of its container.

www.syngress.com

Figure 7.3 The Combo Box Anchored to the Top, Left, and Right Edges of a
Form after Resizing

Continued

153_VBnet_07 8/15/01 12:31 PM Page 302

Creating Windows Forms • Chapter 7 303

Top The control is anchored to the top edge of its container.
TopBottom The control is anchored to the top and bottom edges of

its container.
TopBottomLeft The control is anchored to the top, left, and bottom

edges of its container.
TopBottomRight The control is anchored to the top, right, and bottom

edges of its container.
TopLeft The control is anchored to the top and left edges of its

container.
TopLeftRight The control is anchored to the left, top, and right edges

of its container.
TopRight The control is anchored to the top and right edges of its

container.

NOTE

Some controls have a limit to their height. If you anchor a control with a
height limit to the bottom of its form, the control will not exceed its
height limit.

Docking Controls on Forms
At times you may want to dock a control to an edge of its form. For example,
status bars are often docked to the bottom form edge.You can dock controls
using the Dock property.The Dock property determines to which form edges a
control is docked. Of special note is the Fill setting of the Dock property, which
makes a control fill its container (either a form or a container control).You can
choose from six different dock styles, including None and Fill.Table 7.7 describes
the different control dock styles.

www.syngress.com

Table 7.6 Continued

Setting Description

153_VBnet_07 8/15/01 12:31 PM Page 303

304 Chapter 7 • Creating Windows Forms

Table 7.7 Dock Styles for Controls

Member
Name Description

Bottom The control’s bottom edge is docked to the bottom of its
containing control.

Fill All the control’s edges are docked to all edges of its containing
control and sized appropriately.

Left The control’s left edge is docked to the left edge of its
containing control.

None The control is not docked.
Right The control’s right edge is docked to the right edge of its

containing control.
Top The control’s top edge is docked to the top of its containing

control.

Layering Objects on Forms
When your form contains a number of controls, you may need to manipulate
their visual layering.You can layer controls visually using their z-order. Z-
ordering is the visual layering of controls on a form along its depth, or z-axis.
The control at the top of the z-order overlaps all other controls.All other con-
trols overlap the control at the bottom of the z-order. Use the BringToFront
method to bring a control to the top of the z-order.To send a control to the
bottom of the z-order, use the SendToBack method of the control as shown in the
following example:

lblFileSystem.SendToBack()

Similarly, you can layer MDI child forms on an MDI parent form using the
BringToFront and SendToBack methods of the child forms.

Positioning Controls on Forms
We have seen how to position forms previously in this chapter.You can position
controls on forms in the same fashion.As you can with forms, you can position
controls using the Location property.The following code sets the location of a text
box to the pixel point (50, 50):

txtLabel.Location = New Point(50, 50)

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 304

Creating Windows Forms • Chapter 7 305

You can also use the Left and Right properties or the X and Y properties of
the Location object to change one control coordinate at a time. Both of the fol-
lowing statements adjust the x-coordinate of the text box to the 50-pixel point:

txtLabel.Left = 50

txtLabel.Location.X = 50

You can also quickly change a control’s location by increments.The following
example adjusts the x-coordinate of our text box to 50 pixels farther than the
current setting:

txtLabel.Left += 50

WARNING

Do not try to implicitly set the x-coordinate and y-coordinate of the
Location object to quickly change the control’s location by increments.
The following code will not change the control’s location. The Location
property returns a Location structure containing a copy of the control’s
x-coordinate and y-coordinate, and the y-coordinate of this copied struc-
ture is incremented by 50. However, the copied and incremented struc-
ture is then discarded:

txtLabel.Location.X += 50

Dialog Boxes
Dialog boxes display information to the user and collect information from the
user.They are useful because they present visual cues that are familiar to the
Windows user.Technically, a dialog box is merely a form with a border style of
fixed dialog.As we have seen, this adjusts the appearance of the dialog box in
several ways:

■ A dialog box is not resizable.

■ A dialog box can include a title bar, a control-menu box, and Maximize
and Minimize buttons (but they usually do not include the latter three).

■ A dialog box has a recessed border relative to the body of the form.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 305

306 Chapter 7 • Creating Windows Forms

You can use the dialog boxes that are predefined in the .NET Framework or
create your own.

Displaying Message Boxes
A message box displays application-related information to the user and collects an
acknowledgement or a choice from the user. For example, when you delete a file
in Windows Explorer, a message box confirms whether you want to delete the
file and collects your choice.

You can display a message box using the Show method of the MessageBox
class.At a minimum, the Show method takes a message parameter.The following
code displays a message box informing the user of the completion of a backup:

Messagebox.Show("The backup of 'My C Drive (C:)' is complete.")

Often message boxes collect a choice from the user.The Show method returns
a value that you can use to determine the user’s choice.The following snippet
displays a message box confirming the deletion of a file:

If Messagebox.Show("Are you sure you want to send 'Error.log' to the " _

& "Recycle Bin?", "Confirm File Delete", MessageBox.YesNo _

+ MessageBox.IconQuestion) = DialogResult.Yes Then

'Send file to Recycle Bin

End If

The .NET Framework includes other preformatted dialog boxes, the likes of
which are used throughout Windows. In the next section, we discuss those dialog
boxes.

Common Dialog Boxes
At times, you can use preconfigured dialog boxes that are included in the
Windows Forms framework in lieu of creating your own.When you use standard
Windows dialog boxes, the user can easily recognize the functionality of the
dialog box.

The OpenFileDialog Control
The Windows Forms OpenFileDialog control is the same Open File dialog box
that you have used throughout Windows—for example, when opening a document

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 306

Creating Windows Forms • Chapter 7 307

in Microsoft Word. By using this preconfigured dialog box, you can present func-
tionality that your users are already familiar with. By default, the Open File
dialog box displays a Look In box, an Outlook bar, and a list box displaying the
contents of the current folder.The dialog box also displays a File Name box and a
Files Of Type box (see Figure 7.4).

The Open File dialog box exposes several properties that you can use to
write your file-opening logic. For example, you can use the FileName property to
set the file first shown in the dialog or to check the last file selected by the user.
Table 7.8 shows the other properties of the OpenFileDialog control.

Table 7.8 Properties of the OpenFileDialog Control

Property Description

(Name) Indicates the name used in code to identify the dialog.
AddExtension Controls whether extensions are automatically added to

filenames.
CheckFileExists Checks that the specified file exists before returning

from the dialog.
CheckPathExists Checks that the specified path exists before returning

from the dialog.
DefaultExt The default filename extension. If the user types in a

filename, this extension is added at the end of the
filename if one isn’t specified.

www.syngress.com

Figure 7.4 The Open File Dialog Box

Continued

153_VBnet_07 8/15/01 12:31 PM Page 307

308 Chapter 7 • Creating Windows Forms

DereferenceLinks Controls whether shortcuts are dereferenced before
returning from the dialog.

FileName The file first shown in the dialog, or the last one selected
by the user.

Filter The file filters to display in the dialog.
FilterIndex The index of the file filter selected in the dialog. The first

item has an index of 1.
InitialDirectory The initial directory for the dialog.
Modifiers Indicates the visibility level of the dialog.
Multiselect Controls whether multiple files can be selected in the

dialog.
ReadOnlyChecked The state of the read-only check box in the dialog.
RestoreDirectory Controls whether the dialog restores the current

directory before closing.
ShowHelp Enables the Help button.
ShowReadOnly Controls whether to show the read-only check box in

the dialog.
Title The string to display in the title bar of the dialog.
ValidateNames Controls whether or not the dialog ensures that the

filenames do not contain invalid characters or
sequences.

As with all preconfigured dialog boxes provided by the Windows Forms
framework, you can display the Open File dialog box by using the ShowDialog
method. For example, say that you wanted to display the Open File dialog box
and set the file first displayed by the dialog box to File1.txt.Your code would
look like the following snippet:

With OpenFileDialog1

.FileName = "File1.txt"

.ShowDialog()

End With

Similarly, you can use the other properties to access functionality provided by
the Open File dialog box.You will see more examples as we discuss the other
preconfigured dialog boxes. Let’s look at the Save File dialog box next.

www.syngress.com

Table 7.8 Continued

Property Description

153_VBnet_07 8/15/01 12:31 PM Page 308

Creating Windows Forms • Chapter 7 309

The SaveFileDialog Control
The Save File dialog box is similar to the Open File dialog box.The Save File
dialog box allows the user to specify options for saving a file.You have also seen
this dialog box throughout Windows—for example, when saving an unsaved doc-
ument in Microsoft Word.The Save File dialog box displays a Save In box, an
Outlook bar, and a list box showing the contents of the current folder.The dialog
box also displays a File Name box and a Save As Type box (see Figure 7.5).

Like the Open File dialog box, the Save File dialog box also exposes several
properties that you can use to write your file-saving logic.Table 7.9 describes the
properties of the SaveFileDialog control.

Table 7.9 Properties of the SaveFileDialog Control

Property Method

(Name) Indicates the name used in code to identify the dialog.
AddExtension Controls whether extensions are automatically added to

filenames.
CheckFileExists Checks that the specified file exists before returning from

the dialog.
CheckPathExists Checks that the specified path exists before returning from

the dialog.
CreatePrompt Controls whether to prompt the user when a new file is

about to be created. It is only applicable if the
ValidateNames property is set to True.

www.syngress.com

Figure 7.5 The Save File Dialog Box

Continued

153_VBnet_07 8/15/01 12:31 PM Page 309

310 Chapter 7 • Creating Windows Forms

DefaultExt The default filename extension. If the user types in a
filename, this extension is added at the end of the
filename if one is not specified.

DereferenceLinks Controls whether shortcuts are dereferenced before
returning from the dialog.

FileName The file first shown in the dialog, or the last one selected
by the user.

Filter The file filters to display in the dialog.
FilterIndex The index of the file filter selected in the dialog. The first

item has an index of 1.
InitialDirectory The initial directory for the dialog.
Modifiers Indicates the visibility level of the dialog.
OverwritePrompt Controls whether to prompt the user when an existing file

is about to be overwritten. It is only applicable if the
ValidateNames property is set to True.

RestoreDirectory Controls whether the dialog restores the current directory
before closing.

ShowHelp Enables the Help button.
Title The string to display in the title bar of the dialog.
ValidateNames Controls whether or not the dialog ensures that filenames

do not contain invalid characters or sequences.

You can use these properties to write your file-saving logic. For example, say
that you wanted to enforce a filename filter in your dialog box to first display
only text files with the extension .txt and also allow the user the option to see all
files.You can use the Filter property to specify the filename filter string, which
determines the choices that appear in the Save As Type box. Let’s see how this
would appear in code:

With SaveFileDialog1

.Filter = "Text files (*.txt)|*.txt|All files (*.*)|*.*"

.ShowDialog()

End With

www.syngress.com

Table 7.9 Continued

Property Method

153_VBnet_07 8/15/01 12:31 PM Page 310

Creating Windows Forms • Chapter 7 311

The first part of the filter displays the Text files (*.txt) in the Save As Type box
and specifies the mask for these filenames, namely *.txt:

Text files (*.txt)|*.txt

The second part of the filter displays the text All files (*.*) in the Save As
Type box and specifies the mask for all filenames, namely *.*:

All files (*.*)|*.*

Notice that the two masks are separated by the pipe symbol.The two file-
name masks appear in the order specified, text files first and all files second (see
Figure 7.6).

The OpenFileDialog control exposes the Filter property as well.As you can see,
the preconfigured dialog boxes have several properties in common.We discuss
how to use more of these properties as we look at the other preconfigured dialog
boxes. Let’s look at the font dialog box next.

The FontDialog Control
The Windows Forms FontDialog control is another preconfigured dialog box.The
Font dialog box displays the fonts that are installed on the user’s computer.The
dialog box allows the user to select a font, font style, and size.The user can also
select effects such as Strikeout and Underline, and a script. In addition, the Font
dialog box displays a sample of how the font will appear (see Figure 7.7).

www.syngress.com

Figure 7.6 Using the Filter Property of the SaveFileDialog Control

153_VBnet_07 8/15/01 12:31 PM Page 311

312 Chapter 7 • Creating Windows Forms

The FontDialog control exposes several methods that you can use to dynami-
cally manipulate the dialog box.Table 7.10 displays the properties of the
FontDialog control.

Table 7.10 Properties of the FontDialog Control

Property Description

(Name) Indicates the name used in code to identify the dialog.
AllowScriptChange Controls whether the character set of the font can be

changed.
AllowSimulations Controls whether GDI font simulations are allowed.
AllowVectorFonts Controls whether vector fonts can be selected.
AllowVerticalFonts Controls whether vertical fonts can be selected.
Color The color selected in the dialog.
FixedPitchOnly Controls whether only fixed-pitch fonts can be

selected.
Font The font selected in the dialog.
FontMustExist Controls whether to report an error if the selected font

does not exist.
MaxSize The maximum point size that can be selected (or 0 to

disable).
MinSize The minimum point size that can be selected (or 0 to

disable).
Modifiers Indicates the visibility level of the dialog.

www.syngress.com

Figure 7.7 The Font Dialog Box

Continued

153_VBnet_07 8/15/01 12:31 PM Page 312

Creating Windows Forms • Chapter 7 313

ScriptsOnly Controls whether to exclude OEM and Symbol
character sets.

ShowApply Controls whether to show the Apply button.
ShowColor Controls whether to show a color choice.
ShowEffects Controls whether to show the underline, strikeout, and

font color selections.
ShowHelp Controls whether to show the Help button.

You can use these properties to control which buttons and selections are
shown on the Font dialog box. For example, the following snippet specifies that
the Apply button, a color choice, the underline, strikeout, and color selections,
and the Help button be shown.As with other preconfigured dialog boxes, you
can display the Font dialog box using the ShowDialog method:

With FontDialog1

.ShowApply = True

.ShowColor = True

.ShowEffects = True

.ShowHelp = True

.ShowDialog()

End With

You can see the results of this snippet in Figure 7.8.

The ColorDialog Control
The Windows Forms ColorDialog control allows the user to select a color from a
palette and to add custom colors to that palette.You may have seen it in other
Windows applications, such as the Display control panel.The color dialog box
displays an array of basic colors, an array of custom colors, and a Define Custom
Colors button (see Figure 7.9).

www.syngress.com

Table 7.10 Continued

Property Description

153_VBnet_07 8/15/01 12:31 PM Page 313

314 Chapter 7 • Creating Windows Forms

The color dialog box has a unique set of properties.You can use the Color
property to determine the color the user has selected and then take appropriate
action. Other properties of the ColorDialog control are described in Table 7.11.

Table 7.11 Properties of the ColorDialog Control

Property Description

(Name) Indicates the name used in code to identify the dialog.
AllowFullOpen Enables and disables the Define Custom Colors button.
AnyColor Controls whether any color can be selected.

www.syngress.com

Figure 7.8 Using the ShowApply, ShowColor, ShowEffects, and ShowHelp
Properties of the FontDialog Control

Figure 7.9 The Color Dialog Box

Continued

153_VBnet_07 8/15/01 12:31 PM Page 314

Creating Windows Forms • Chapter 7 315

Color The color selected in the dialog.
FullOpen Controls whether the custom color section of the dialog is

initially displayed.
Modifiers Indicates the visibility level of the dialog.
ShowHelp Controls whether the Help button is displayed.
SolidColorOnly Controls whether only solid colors can be selected.

The PrintDialog Control
The Windows Forms PrintDialog control is another preconfigured dialog box that
you can use in lieu of creating your own.The Print dialog box allows the user to
select a printer, choose the pages to print, and determine other print-related set-
tings in Windows applications.The dialog box also allows users to print many
parts of their documents: print all, print a selected page range, or print a selection.

You can use the properties of the PrintDialog control to configure the appear-
ance of your Print dialog box.Table 7.12 describes the properties of the
PrintDialog control.

Table 7.12 Properties of the PrintDialog Control

Property Description

(Name) Indicates the name used in code to identify the dialog.
AllowPrintToFile Enables and disables the Print To File check box.
AllowSelection Enables and disables the Selection radio button.
AllowSomePages Enables and disables the Pages radio button.
Document The PrintDocument from which to get printer settings.
Modifiers Indicates the visibility level of the dialog.
PrintToFile Controls whether the Print To File check box is checked.
ShowHelp Controls whether the Help button is displayed.
ShowNetwork Controls whether the Network button is displayed.

For example, you can use the AllowPrintToFile property to enable the Print To
File check box. Let’s look at how this would appear in code:

www.syngress.com

Table 7.11 Continued

Property Description

153_VBnet_07 8/15/01 12:31 PM Page 315

316 Chapter 7 • Creating Windows Forms

With PrintDialog1

.AllowPrintToFile = True

.ShowDialog()

End With

The Print dialog box is related to the Print Preview dialog box, which we
discuss in the next section.

The PrintPreviewDialog Control
The PrintPreviewDialog control displays how a document will appear when
printed.The Print Preview dialog box contains buttons for printing, zooming in,
displaying one or multiple pages, and closing the dialog box (see Figure 7.10).

The PrintPreviewDialog control is unique in that it contains another control:
PrintPreviewControl.The contained PrintPreviewControl exposes properties of its
own, such as the Columns and Rows properties, which determine the number of
pages displayed horizontally and vertically on the control. (You can access the
Columns property using the syntax PrintPreviewDialog1.PrintPreviewControl
.Columns.) Because the PrintPreviewControl is automatically contained within the
PrintPreviewDialog control when you add the dialog to your form, you do not
have to add the PrintPreviewControl to the form.Table 7.13 describes the proper-
ties of the PrintPreviewControl.

www.syngress.com

Figure 7.10 The Print Preview Dialog Box

153_VBnet_07 8/15/01 12:31 PM Page 316

Creating Windows Forms • Chapter 7 317

Table 7.13 Properties of the PrintPreviewDialog Control

Property Description

(Bindings) This collection holds all the bindings of properties of
the dialog to data sources.

(Name) Indicates the name used in code to identify the
dialog.

AccessibleDescription The description that will be reported to accessibility
clients.

AccessibleName The name that will be reported to accessibility clients.
AccessibleRole The role that will be reported to accessibility clients.
AllowDrop Determines if the control will receive drag-and-drop

notifications.
Anchor The anchor of the control.
AutoZoom Determines whether to automatically zoom to fill

available space.
BackColor The background color used to display text and

graphics in the control.
BackgroundImage The background image used for the control.
CausesValidation Indicates whether the control causes and raises

validation events.
Columns The number of pages across.
ContextMenu The shortcut menu to display when the user right-

clicks the dialog.
Cursor The cursor that appears when the mouse passes over

the dialog.
Dock The docking location of the dialog, indicating which

borders are docked to the container.
Document The PrintDocument to be previewed.
Enabled Indicates whether the control is enabled.
Font The font used to display text in the control.
ForeColor The foreground color used to display text and

graphics in the control.
IMEMode Determines the IME status of the control when

selected.
Location The position of the top-left corner of the control with

respect to its container.
Locked Determines if the user can move or resize the control.

www.syngress.com
Continued

153_VBnet_07 8/15/01 12:31 PM Page 317

318 Chapter 7 • Creating Windows Forms

Modifiers Indicates the visibility level of the control.
RightToLeft Indicates whether the control should draw right-to-

left for RTL languages.
Rows The number of pages down.
Size The size of the control in pixels.
StartPage The first page displayed by the control.
TabIndex Determines the index in the Tab order that the

control will occupy.
TabStop Indicates whether the user can use the Tab key to

give focus to the control.
Text The text contained in the control.
Visible Determines whether the control is visible or hidden.
Zoom The magnification applied by the control.

However, like other preconfigured dialog boxes, the PrintPreviewDialog control
also exposes properties of its own.These properties are described in Table 7.14.

Table 7.14 Properties of the PrintPreviewDialog Control

Property Description

(Bindings) This collection holds all the bindings of properties of
the dialog to data sources.

(Name) Indicates the name used in code to identify the dialog.
AcceptButton The accept button of the form. If this is set, the

button is clicked whenever the user presses Enter.
AccessibleDescription The description that will be reported to accessibility

clients.
AccessibleName The name that will be reported to accessibility

clients.
AccessibleRole The role that will be reported to accessibility clients.
AllowDrop Determines if the dialog will receive drag-and-drop

notifications.
Anchor The anchor of the dialog.
AutoScale If set to True, the dialog will automatically scale with

the screen font.

www.syngress.com

Table 7.13 Continued

Property Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 318

Creating Windows Forms • Chapter 7 319

AutoScroll Determines whether scroll bars will automatically
appear if controls are placed outside the dialog’s
client area.

AutoScrollMargin The margin around controls during autoscroll.
AutoScrollMinSize The minimum logical size for the autoscroll region.
BackColor The background color used to display text and

graphics in the dialog.
BackgroundImage The background image used for the dialog.
BorderStyle Controls the appearance of the border for the dialog.

This will also affect how the caption bar is displayed,
and what buttons appear on it.

CancelButton The cancel button of the dialog. If this is set, the
button is clicked whenever the user presses the Esc
key.

CausesValidation Indicates whether the dialog causes and raises
validation events.

ContextMenu The shortcut menu to display when the user right-
clicks the dialog.

ControlBox Determines whether the dialog has a Control/System
menu box.

Cursor The cursor that appears when the mouse passes over
the dialog.

Dock The docking location of the dialog, indicating which
borders are docked to the container.

DockPadding Determines the size of the border for docked
controls.

Document The PrintDocument to be previewed.
Enabled Indicates whether the dialog is enabled.
Font The font used to display text in the dialog.
ForeColor The foreground color used to display text and

graphics in the dialog.
HelpButton Determines whether the dialog has a Help button on

the caption bar.
Icon Indicates the icon for the dialog. This is displayed in

the dialog’s System menu box and when the dialog
is minimized.

www.syngress.com

Table 7.14 Continued

Property Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 319

320 Chapter 7 • Creating Windows Forms

IMEMode Determines the IME status of the dialog when
selected.

IsMDIContainer Determines whether the dialog is an MDI container.
KeyPreview Determines whether keyboard events for controls on

the dialog are registered with the dialog.
Location The position of the top-left corner of the dialog with

respect to its container.
MaximizeBox Determines whether the dialog has a Maximize box

in the upper-right corner of its caption bar.
Menu The main menu of the dialog. This should be set to a

component of type MainMenu.
MinimizeBox Determines whether the dialog has a Minimize box

in the upper-right corner of its caption bar.
Modifiers Indicates the visibility level of the dialog.
PrintPreviewControl The PrintPreviewControl to use as the dialog’s core.
RightToLeft Indicates whether the dialog should draw right-to-

left for RTL languages.
ShowInTaskbar Determines whether the dialog appears in the

Windows Taskbar.
Size The size of the dialog in pixels.
SizeGripStyle Determines when the SizeGrip will be displayed for

the dialog.
StartPosition Determines the position of the dialog when it first

appears.
TabStop Indicates whether the user can use the Tab key to

give focus to the dialog.
Text The text contained in the dialog.
TopMost Determines whether the dialog is above all other

non-topmost forms, even when deactivated.
TransparencyKey A color that will appear transparent when painted

on the dialog.
Visible Determines whether the dialog is visible or hidden.
WindowState Determines the initial visual state of the dialog.

www.syngress.com

Table 7.14 Continued

Property Description

153_VBnet_07 8/15/01 12:31 PM Page 320

Creating Windows Forms • Chapter 7 321

You can use these properties to configure the appearance of the Print
Preview dialog box. For instance, you can use the WindowState property to show
the dialog box as maximized in code that would appear like the following
snippet:

With PrintPreviewDialog1

.WindowState = FormWindowState.Maximized

.ShowDialog()

End With

Another related dialog box is the Page Setup dialog box, which we discuss in
the next section.

The PageSetupDialog Control
The Windows Forms PageSetupDialog control displays a dialog box that allows the
user to set page details for printing in Windows applications.The Page Setup
dialog box allows the user to set border and margin adjustments, headers and
footers, and page orientation (portrait or landscape).

You can also use the properties of the PageSetupDialog control to configure
the behavior of the Page Setup dialog box.Table 7.15 describes properties of the
PageSetupDialog control.

Table 7.15 Properties of the PageSetupDialog Control

Property Description

(Name) Indicates the name used in code to identify the dialog.
AllowMargins Enables and disables editing of margins.
AllowOrientation Enables and disables the Orientation radio buttons.
AllowPaper Enables and disables editing of paper size.
AllowPrinter Enables and disables the Printer button.
Document The PrintDocument from which to get printer settings.
MinMargins The smallest margin the user is allowed to select.
Modifiers Indicates the visibility level of the dialog.
ShowHelp Controls whether the Help button is displayed.
ShowNetwork Controls whether the Network button is displayed.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 321

322 Chapter 7 • Creating Windows Forms

For example, you can use the AllowMargins property to enable editing of mar-
gins and the ShowNetwork property to display the Network button.The code
would appear as in the following snippet:

With PageSetupDialog1

.AllowMargins = True

.ShowNetwork = True

.ShowDialog()

End With

We have now discussed the preconfigured dialog boxes provided by the
Windows Forms framework.These dialog boxes provide a lot of functionality, but
at times they may not suit your needs.You can create your own dialog boxes to
provide exactly the functionality that you require.You will learn how to do so in
the following section.

Creating Dialog Boxes
If the preformatted dialog boxes included in the .NET Framework do not suit
your needs, you can create your own. Creating a dialog box is another step-by-
step procedure, which is outlined here:

1. Create a form.

2. Set the BorderStyle property of the form to FixedDialog.

3. Set the ControlBox, MinimizeBox, and MaximizeBox properties of
the form to False.

4. Customize the appearance of the form appropriately.

Customize event handlers in the Code window appropriately.

NOTE

Dialog boxes do not usually include sizeable borders, menu bars,
Minimize and Maximize buttons, window scroll bars, or status bars.

Dialog boxes are displayed modally to prevent the user from performing tasks
outside of the dialog box.You can display a dialog box modally by using the

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 322

Creating Windows Forms • Chapter 7 323

ShowDialog method, as we have seen earlier in this chapter. Like the Show method
of the MessageBox class, the ShowDialog method also returns input from the user
in the form of a dialog result. For example, the following snippet determines the
input from the user and handles it accordingly:

Dim frmNewEmployee As frmDialogBox = New frmDialogBox()

If frmNewEmployee.DialogResult = DialogResult.OK Then

'Handle form data

End If

Creating and Working with Menus
Menus hold commands grouped by a common topic. Menus make it easy for
your users to navigate your application as they see menus they have already used
in Windows, such as the File menu.As an added benefit, using a menu to hold
commands avoids using precious real estate on your forms. Let’s look at creating
menus.

Adding Menus to a Form
You can add menus to a form using the MainMenu control. Menus are often
added to a form at design time.You can use the new Menu Designer in Visual
Basic .NET to add menus to your forms at design time.

Exercise 7.2 Adding a Menu
to a Form at Design Time
In this exercise, you will add a File menu with an Exit menu item to a form at
design time:

1. From the File menu, select New Project.

2. In the Visual Basic Projects list, select the Windows Application
template, and then click OK.

3. In the Toolbox, select the Win Forms tab, and then double-click the
MainMenu control.A menu is added to the form displaying the text
Type Here (see Figure 7.11), and the MainMenu control is added to the
component tray.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 323

324 Chapter 7 • Creating Windows Forms

4. In the Menu Designer, click the text Type Here to select the menu,
and then type &File (see Figure 7.12).

5. Click the area below the File menu item to add another entry to the
same menu, and type E&xit. (see Figure 7.13).

The Windows Forms framework includes four menu enhancements that you
can use to convey information to the user.Table 7.16 describes these menu
enhancements.

www.syngress.com

Figure 7.11 The Menu Designer

Figure 7.12 The File Menu

153_VBnet_07 8/15/01 12:31 PM Page 324

Creating Windows Forms • Chapter 7 325

Table 7.16 Menu Enhancements

Enhancement Description

Check marks Indicate whether a feature is turned on or off (such as
whether a ruler is displayed along the margin of a word-
processing application) or to indicate which of a list of files
is being displayed (such as in a Window menu).

Shortcut keys Allow access to menu items using keyboard commands.
Access keys Allow keyboard navigation of menus (pressing the Alt key,

and the underlined access key chooses the desired menu
or menu item).

Separator bars Used to group related commands within a menu and make
menus easier to read.

Check marks allow the user to conveniently toggle a feature on or off in
your application. In an MDI application, they are also useful when you want to
use a Window menu to indicate which MDI child form has the focus.What if
you wanted to add a check mark to a menu at design time? Complete the
following steps:

1. In the Menu Designer, select the menu item.

2. Click the area to the left of the menu item.
A check mark appears.You can remove the check mark by repeating

the same steps.

www.syngress.com

Figure 7.13 The File Menu and the Exit Menu Item

153_VBnet_07 8/15/01 12:31 PM Page 325

326 Chapter 7 • Creating Windows Forms

Shortcut keys allow the user to use keyboard command to access menu items.
For example, in many applications you can save your work by pressing Ctrl+S.To
add a shortcut key to a menu item at design time, perform the following steps:

1. Use the View menu to open the Properties window.

2. In the Menu Designer, select the menu item.

3. In the Properties window, set the Shortcut property to one of the
values offered in the drop-down list.

Access keys allow the user to navigate menus using the keyboard—pressing
the ALT key and the underlined access key.When the menu opens and shows
items with access keys, the user just needs to press the access key to select the
menu item. Use the following steps to add an access key to a menu item at
design time:

1. In the Menu Designer, select the menu item.

2. When setting the Text property, enter an ampersand (&) prior to the
letter you want to be underlined as the access key. For example, typing
&File as the Text property of a menu item will result in a menu item
that appears as File.

Separator bars are used to group related commands within a menu and make
menus easier to read.To add a separator bar as a menu item at design time, you
should do the following: In the Menu Designer, right-click the location where
you want a separator bar, and choose New Separator.

You can also add a menu to a form and add menu enhancements to menu
items at runtime.The next section covers working with menus at runtime.

Dynamically Creating Menus
We have seen how to add a menu to a form at design time.You can also add a
menu to a form at runtime.We walk through this process in Exercise 7.3.

Exercise 7.3 Adding a Menu
to a Form at Design Time
In this exercise, you will add a File menu with an Exit menu item to a form at
runtime:

1. From the File menu, select New Project.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 326

Creating Windows Forms • Chapter 7 327

2. In the Visual Basic Projects list, select the Windows Application
template, and then click OK.

3. In the Code window, type the following code to add a MainMenu
control to Form1 within a public method AddMenu:

Public Sub AddMenu()

Dim mmMainMenu As New MainMenu()

Menu = mmMainMenu

End Sub

4. Within the AddMenu method, use the following code to create
MenuItem objects to add to the MainMenu object’s collection:

Dim mnuFile As New MenuItem()

Dim mnuFileExit As New MenuItem()

5. Within the AddMenu method, set the Text property for each of these
menu items:

mnuFile.Text = "&File"

mnuFileExit.Text = "E&xit"

6. Within the AddMenu method, create the top-level File menu item and
add the Exit menu item:

mmMainMenu.MenuItems.Add(mnuFile)

mnuFile.MenuItems.Add(mnuFileExit)

When you call the AddMenu method, Form1 is displayed as in
Figure 7.14.

www.syngress.com

Figure 7.14 The File Menu and the Exit Menu Item at Runtime

153_VBnet_07 8/15/01 12:31 PM Page 327

328 Chapter 7 • Creating Windows Forms

Adding Status Bars to Forms
A status bar is a horizontal control that is usually positioned at the bottom of a
form. Status bars are used to display textual information such as date and time or
descriptions of menu items. Status bars also displays modes of the keyboard, such
as when the user presses the Insert, Num Lock, or Scroll Lock keys.Table 7.17
shows the properties of the StatusBar control.

Table 7.17 Properties of the StatusBar Control

Property Description

(Bindings) This collection holds all the bindings of properties of
the status bar to data sources.

(Name) Indicates the name used in code to identify the
status bar.

AccessibleDescription The description that will be reported to accessibility
clients.

AccessibleName The name that will be reported to accessibility clients.
AccessibleRole The role that will be reported to accessibility clients.
AllowDrop Determines if the status bar will receive drag-and-

drop notifications.
Anchor The anchor of the status bar.
CausesValidation Indicates whether the status bar causes and raises

validation events.
ContextMenu The shortcut menu to display when the user right-

clicks the status bar.
Cursor The cursor that appears when the mouse passes over

the status bar.
Dock The docking location of the status bar, indicating

which borders are docked to the container.
Enabled Indicates whether the status bar is enabled.
Font The font used to display text in the status bar.
IMEMode Determines the IME status of the status bar when

selected.
Location The position of the top-left corner of the status bar

with respect to its container.
Locked Determines if the status bar can be moved or resized.
Modifiers Indicates the visibility level of the status bar.

www.syngress.com

Continued

153_VBnet_07 8/15/01 12:31 PM Page 328

Creating Windows Forms • Chapter 7 329

Panels The panels in the status bar.
RightToLeft Indicates whether the status bar should draw right-

to-left for RTL languages.
ShowPanels Determines if the status bar displays panels, or if it

displays a single line of text.
Size The size of the status bar in pixels.
SizingGrip Determines whether the status bar has a sizing grip.
TabIndex Determines the index in the Tab order that the status

bar will occupy.
TabStop Indicates whether the user can use the Tab key to give

focus to the status bar.
Text The text contained in the status bar.
Visible Determines whether the status bar is visible or

hidden.

You can add panels to a status bar at design time or at runtime.We discuss
both methods. First, let’s take a look at adding panels to a status bar at design
time. For example, to add a panel with the text Spell Check to a status bar:

1. In the Toolbox, select the Win Forms tab, and then double-click the
StatusBar control.

2. In the Properties Window, set the ShowPanels property to True.

3. In the Properties Window, select the Panels property, and then choose
the ellipsis box.

4. In the StatusBarPanel Collection Editor, select the Add button.

5. In the Properties box, set the Text property to Spell Check and then
set the AutoSize property to Contents.

You can also add a panel to a status bar or change a panel’s text at runtime.
This is useful when you want to describe the functionality of menu items as the
mouse moves over them.Typically, you would create a panel at design time and
change only its text at runtime, but let’s see how you would add a panel to a
status bar dynamically:

Dim sbpStatusBarPanel As New StatusBarPanel()

www.syngress.com

Table 7.17 Continued

Property Description

153_VBnet_07 8/15/01 12:31 PM Page 329

330 Chapter 7 • Creating Windows Forms

With StatusBar1

.ShowPanels = True

.Panels.Add(sbpStatusBarPanel)

End With

Now you can change the text of the panel dynamically. For example, as the
user moves the mouse over the New menu item in the File menu, you can
describe the functionality as follows:

StatusBar1.Panels(0).Text = "Creates a new file."

Adding Toolbars to Forms
A toolbar is another control that is often docked to an edge of a form. In the
.NET Framework, toolbars display buttons that can appear as standard buttons,
toggle-style buttons, or drop-down style buttons.Toolbar buttons can appear as
raised or flat—when the mouse pointer moves over a flat button, its appearance
changes to three-dimensional.Toolbars can also display drop-down menus that
activate commands.As is common throughout Windows, a button can display an
image along with text.Table 7.18 describes the properties of the Toolbar control:

Table 7.18 Properties of the Toolbar Control

Property Description

(Bindings) This collection holds all the bindings of properties of
the toolbar to data sources.

(Name) Indicates the name used in code to identify the
toolbar.

AccessibleDescription The description that will be reported to accessibility
clients.

AccessibleName The name that will be reported to accessibility clients.
AccessibleRole The role that will be reported to accessibility clients.
AllowDrop Determines if the toolbar will receive drag-and-drop

notifications.
Anchor The anchor of the toolbar.
Appearance Controls the appearance of the toolbar.
AutoSize Controls whether the toolbar will automatically size

itself based on button size.

www.syngress.com

Continued

153_VBnet_07 8/15/01 12:31 PM Page 330

Creating Windows Forms • Chapter 7 331

BackgroundImage The background image used for the toolbar.
BorderStyle Controls what type of border the toolbar will have.
Buttons The collection of toolbar buttons that make up the

toolbar.
ButtonSize Suggests the size of buttons in the toolbar. Button

sizes might still be different based on text, drop-down
arrows, and others.

CausesValidation Indicates whether the toolbar causes and raises
validation events.

ContextMenu The shortcut menu to display when the user right-
clicks the toolbar.

Cursor The cursor that appears when the mouse passes over
the toolbar.

Divider Controls whether the toolbar will display a 3D line at
the top of its client area.

Dock The docking location of the toolbar, indicating which
borders are docked to the container.

DropDownArrows Controls whether the toolbar will display an arrow on
the side of drop-down buttons.

Enabled Indicates whether the control is enabled.
Font The font used to display text in the control.
ImageList The ImageList control from which the toolbar will get

button images.
IMEMode Determines the IME status of the toolbar when

selected.
Location The position of the top-left corner of the toolbar with

respect to its container.
Locked Determines if the toolbar can be moved or resized.
Modifiers Indicates the visibility level of the toolbar.
ShowToolTips Indicates whether tool tips will be shown for each

button, if available.
Size The size of the toolbar in pixels.
TabIndex Determines the index in the Tab order that the toolbar

will occupy.

www.syngress.com

Table 7.18 Continued

Property Description

Continued

153_VBnet_07 8/15/01 12:31 PM Page 331

332 Chapter 7 • Creating Windows Forms

TabStop Indicates whether the user can use the Tab key to give
focus to the toolbar.

TextAlign Controls how the text is positioned relative to the
image in each button.

Visible Determines whether the toolbar is visible or hidden.
Wrappable Indicates if more than one row of buttons is allowed.

This amount of functionality may seem daunting, but you do not need to be
familiar with all these properties to create a toolbar.As a minimum, you should
be aware of the Buttons property, which is the collection of buttons that that
make up a toolbar.You can use the Buttons property to add buttons to a toolbar
at design time or at runtime. Let’s discuss the most challenging method: how to
add a button to a toolbar at runtime.

As we have seen with other collections, you can use the Add method of the
Buttons collection to add a button to a toolbar. For example, to add a Save
button to a toolbar, use the following code:

Dim tbbSave As New ToolBarButton()

tlbToolbar.Buttons.Add(tbbSave)

We have now seen how to create forms and add controls to forms. In the
next section, we discuss binding data sources to forms.

Data Binding
We have now discussed many ways of displaying information to the user and col-
lecting information from the user. In most applications, the information displayed
comes from a data source and the information collected goes to a data source.
The Windows Forms framework allows you to bind data sources to forms, which
is a very convenient way to open and save datasets.There are two types of data
binding, and we discuss them in the following sections.

Simple Data Binding
In simple data binding, a single value within a data set is bound to a property of a
component. For example, the Text property of a text box can be bound to the

www.syngress.com

Table 7.18 Continued

Property Description

153_VBnet_07 8/15/01 12:31 PM Page 332

Creating Windows Forms • Chapter 7 333

FirstName column of an Employees table.The following snippet shows the code
for this scenario:

Dim dtEmployee As DataTable

Dim txtFirstName As New Textbox

dtEmployee = dsDataSet.Tables("Employee")

txtFirstName.Bindings.Add("Text", dtEmployee, "FirstName")

Because the binding is simple, only one first name will be shown at a time.
This makes a text box a good choice for simple data binding—text boxes contain
only one piece of information at a time: the value of the Text property. Other
controls such as combo boxes and list boxes expose an Items collection that can
contain more than one piece of information at a time.These controls are good
candidates for complex data binding, which we discuss in the next section.

Complex Data Binding
In complex data binding, a whole dataset is bound to a component. For example, a
combo box can be data bound to the same dataset and display all first names in
its drop down box. Let’s look at the code:

Dim dtEmployee As DataTable

Dim cboFirstName As New ComboBox

dtEmployee = dsDataSet.Tables("Employee")

cboFirstName.DataSource = dtEmployee

cboFirstName.DisplayMember = "FirstName"

In contrast to the text box in the previous section, the combo box we used in
this example was bound using complex data binding.As you know, the drop-
down of the combo box can contain more than one item. In this example, all
employee first names will appear in the drop-down. Controls with an Items col-
lection make good candidates for complex data binding—grids are an especially
popular choice.When you bind data to a component, you can choose from a
number of data sources, which we discuss in the following section.

Data Sources for Data Binding
When you bind data to a component you can choose from several data sources. In
Visual Basic .NET, a data source is any grouping of data that implements the IList

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 333

334 Chapter 7 • Creating Windows Forms

interface.The IList interface represents a collection of objects that can be individu-
ally indexed.This means that you can use regular collections and even arrays as
data sources for data binding.Although not a comprehensive list,Table 7.19
describes possible data sources that are commonly used for data binding.

Table 7.19 Data Sources for Data Binding

Data Source Description

DataTable The representation of a table. DataTable contains two collec-
tions: DataColumn, representing the columns of data in a
given table (which ultimately determine the kinds of data that
can be entered into that table), and DataRow, representing
the rows of data in a given table. This is the actual data
within the table.

DataView A customized view of a single DataTable that may be filtered,
searched, or sorted. A DataView is the data snapshot used by
complex bound controls.

DataSet The in-memory cache that consists of tables, relations, and
constraints. Each table has a collection of columns. These
columns represent the arrangement of the DataSet. Each
table can then have multiple rows, representing the data
within the DataSet, which are aware of their original state
along with their current state. In this manner, the DataSet
can track changes that have occurred.

DataSetView A customized view of the entire DataSet, analogous to a
DataView, but with relations included. A TableSettings collec-
tion allows you to set default filters and sort options for any
views that the DataSetView has for a given table.

Array An ordered collection of data contained in a variable and ref-
erenced by a single variable name. Each element of the array
can be referenced by a numerical subscript.

Collection An object that contains zero or more objects. Collections
normally contain objects of the same class.

In the next section, we discuss the Data Form Wizard, an easy way to quickly
generate a data-bound form.

Using the Data Form Wizard
The Data Form Wizard allows you to quickly generate a data-bound form.The
wizard allows you to specify a dataset, tables and fields, and other display options.
The wizard then produces and binds controls on the form to display data.After

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 334

Creating Windows Forms • Chapter 7 335

you produce the controls, you can change their properties to suit your needs.
Let’s walk through producing a data-bound form:

1. From the Data tab of the Toolbox, drag a DataFormWizard onto the
form.The wizard is launched (see Figure 7.15).

2. In the wizard’s second pane (shown in Figure 7.16), select a previously
created dataset.

www.syngress.com

Figure 7.15 The Data Form Wizard

Figure 7.16 The Data Form Wizard—The Second Pane

153_VBnet_07 8/15/01 12:31 PM Page 335

336 Chapter 7 • Creating Windows Forms

3. In the third pane, do not check the Include Update Method box (see
Figure 7.17).

4. In the fourth pane, select the appropriate table and the columns (see
Figure 7.18).

5. In the fifth pane, under How do you want to display your data?,
select Single records (see Figure 7.19).

www.syngress.com

Figure 7.17 The Data Form Wizard—The Third Pane

Figure 7.18 The Data Form Wizard—The Fourth Pane

153_VBnet_07 8/15/01 12:31 PM Page 336

Creating Windows Forms • Chapter 7 337

6. Click Finish. On the form, the wizard creates a Load button and one
control for each column.When the Data Form Wizard has finished, you
have a form that is ready to run and display data (see Figure 7.20).

www.syngress.com

Figure 7.19 The Data Form Wizard—The Fifth Pane

Figure 7.20 The Form Created by the Data Form Wizard

153_VBnet_07 8/15/01 12:31 PM Page 337

338 Chapter 7 • Creating Windows Forms

7. Press F5.

8. When the form is displayed, click the Load button.

The dataset is populated with records from the database, and the data-bound
controls display what is in the dataset.You can easily change the appearance and
the behavior of the controls created by the Data Form Wizard by changing their
properties. In the next chapter, we discuss changing control properties to suit
your needs.The Windows Forms Class Viewer is another useful tool included in
the .NET Framework.We discuss the class viewer in the next section.

Using the Windows Forms Class Viewer
The Windows Forms class viewer allows you to quickly look up information
about a class or series of classes based on a search pattern.The class viewer dis-
plays information by reflecting on the type using the Common Language
Runtime reflection API.

To use the Windows Forms class viewer, start wincv.exe from the command
line and type part or all of a type name into the text box at the top of the form.
The list box on the left hand side of the form will then display a list of all the
types that wincv finds based on the name you entered.When you select a type
from the list, the type definition is displayed in the area on the right.

You can use the Options button to copy the contents of the display to the
clipboard.You can then conveniently paste the clipboard contents in a Windows
application. For example, the Figure 7.21 shows the definition for the type
System.WinForms.Button.

We have now discussed the Data Form Wizard and the Windows Forms class
viewer, two handy .NET Framework tools.Another useful .NET Framework
tool is the Windows Forms ActiveX Control Importer, which we discuss in the
next section.

Using the Windows Forms
ActiveX Control Importer
As was mentioned at the beginning of this chapter,Windows Forms can host
only Windows Forms Controls—classes that are derived from System.WinForms
.Control. In order to host an ActiveX Control on a form, it must appear to be a
Windows Forms Control.Also, an ActiveX Control requires hosting in an
ActiveX Control Container.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 338

Creating Windows Forms • Chapter 7 339

All is not lost if you created ActiveX controls in previous versions of Visual
Basic.You can use the ActiveX Control Importer to convert the type definitions
found within the COM type library for an ActiveX Control into a Windows
Forms Control.

In order to achieve hosting, there is a base class System.WinForms.AxHost that
derives from System.WinForms.RichControl.This control appears as a Windows
Forms control to your Windows Form and an ActiveX Control Container to your
ActiveX control.To host the ActiveX Control, use the Windows Forms ActiveX
Control Importer to create a wrapper control that derives from System.WinForms
.AxHost.This generated control hosts the ActiveX Control and exposes its
properties, methods, and events (PMEs) as PMEs of the generated control.

www.syngress.com

Figure 7.21 The Definition for the Type System.WinForms.Button in the
Windows Forms Class Viewer

153_VBnet_07 8/15/01 12:31 PM Page 339

340 Chapter 7 • Creating Windows Forms

Summary
The Windows Forms framework exposes forms, their properties, methods, and
events. MDI applications make use of unique forms: MDI parent and child forms.
A dialog boxes is also a specific type of form with a particular border style and
title bar.You can add controls to your forms to display information to the user
and collect information from the user.You can also add menus, status bars, and
toolbars to your forms.You can open a dataset to display information from the
user.After you collect information from the user you can save the dataset.
Windows Forms data binding makes this all quick and easy.

Solutions Fast Track

Application Model

Windows Forms is the new platform for Microsoft Windows–based
application development, based on the .NET Framework.

Windows Forms provides a clear, object-oriented, extensible set of
classes that enable you to develop rich Windows-based applications.
Additionally, in a multi-tier distributed solution,Windows Forms can act
as the local user interface.

The properties of a form determine its appearance and behavior.You can
use the Properties window to change properties of a form at design-
time.You can change many properties of a form at runtime as well.

Manipulating Windows Forms

The form is the primary vehicle for user interaction within a Windows-
based application.You can combine controls and code to collect infor-
mation from the user and respond to it, work with data stores, and query
and write to the Registry and file system on the user’s computer.

When you add a Windows form to your project, many of the form’s
properties are set to commonly used values by default.Although these
values are convenient, they will not always suit your needs.

A modal form must be closed before you can continue working with
the rest of the application.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 340

Creating Windows Forms • Chapter 7 341

Contrary to a modal form, a modeless form allows the user to shift the
focus between the form and another form without closing the initial
form.

A top-most form stays in front of non-topmost forms even when inactive.

Form Events

Events occur for forms when the user open or closes a form, moves
between forms, or interacts with the surface of a form.

Events that occur when the user interacts with a form can be triggered
by using the mouse or keyboard.

Creating Multiple Document Interface Applications

The MDI parent form is at the heart of an MDI application. It is the
container for the multiple documents, the child forms, within an MDI
application.

MDI child forms are forms that operate within an MDI parent form in
an MDI application. In an MDI application, these are often the forms
with which the user interacts the most.

In an MDI application, the active child form is the child form that has
the focus or was most recently active.

Adding Controls to Forms

Most forms contain controls that display information to the user or
collect information from the user.

When a control is anchored to an edge, the distance between the
control’s closest edge and the specified edge will remain constant.

The Dock property determines to which form edges a control is docked.

Z-ordering is the visual layering of controls on a form along its depth,
or z-axis.The control at the top of the z-order overlaps all other con-
trols.All other controls overlap the control at the bottom of the z-order.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 341

342 Chapter 7 • Creating Windows Forms

Dialog Boxes

Dialog boxes display information to the user and collect information
from the user.They are useful because they present visual cues that are
familiar to the Windows user.

Technically, a dialog box is merely a form with a border style of fixed
dialog.

A message box displays application-related information to the user and
collects an acknowledgement or a choice from the user.

At times you can use preconfigured dialog boxes that are included in the
Windows Forms framework in lieu of creating your own.When you use
standard Windows dialog boxes, the user can easily recognize the func-
tionality of the dialog box.

If the preformatted dialog boxes included in the .NET Framework do
not suit your needs, you can create your own.

Creating and Working with Menus

Menus hold commands grouped by a common topic.

Menus make it easy for your users to navigate your application because
they see menus they have already used in Windows, such as the File
menu.

As an added benefit, using a menu to hold commands avoids using
precious real estate on your forms.

You can add menus to a form using the MainMenu control.

Adding Status Bars to Forms

A status bar is a horizontal control that is usually positioned at the
bottom of a form.

Status bars are used to display textual information such as date and time,
or descriptions of menu items.

Status bars also displays modes of the keyboard, such as when the user
presses the Insert, Num Lock, or Scroll Lock keys.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 342

Creating Windows Forms • Chapter 7 343

Adding Toolbars to Forms

A toolbar is another control that is often docked to an edge of a form.

In the .NET Framework, toolbars display buttons that can appear as
standard buttons, toggle-style buttons, or drop-down style buttons.

Toolbars can also display drop-down menus that activate commands.

Data Binding

The Windows Forms framework allows you to bind data sources to
forms, which is a very convenient way to open and save datasets.

In simple data binding, a single value within a data set is bound to a
property of a component.

In complex data binding, a whole dataset is bound to a component.

Using the Windows Forms Class Viewer

The Windows Forms class viewer allows you to quickly look up infor-
mation about a class or series of classes based on a search pattern.

The class viewer displays information by reflecting on the type using the
Common Language Runtime reflection API.

To use the Windows Forms class viewer, start wincv.exe from the com-
mand line and type part or all of a type name into the text box at the
top of the form.

Using the Windows Forms ActiveX Control Importer

In order to host an ActiveX Control on a form, it must appear to be a
Windows Forms Control.Also, an ActiveX Control requires hosting in
an ActiveX Control Container.

In order to achieve hosting there is a base class System.WinForms.AxHost
that derives from System.WinForms.RichControl.This control appears as a
Windows Forms control to your Windows Form and an ActiveX
Control Container to your ActiveX control.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 343

344 Chapter 7 • Creating Windows Forms

To host the ActiveX Control, use the Windows Forms ActiveX Control
Importer to create a wrapper control that derives from System.WinForms
.AxHost.This generated control hosts the ActiveX Control and exposes
its properties, methods, and events (PMEs) as PMEs of the generated
control.

Q: What is a form?

A: A form is a representation of a window. Most forms are used to display con-
trols that display information to the user or collect input from the user.

Q: What are modal and modeless forms?

A: A modal form must be closed before you can continue working with the rest
of the application.A modeless form allows the user to shift the focus between
the form and another form without closing the initial form.

Q: What is an MDI application?

A: Multiple Document Interface applications allow simultaneous display of mul-
tiple documents, with each document displayed in its own window. MDI
applications consist of an MDI parent form and MDI child forms.

Q: What is a dialog box?

A: Technically, a dialog box is merely a form with a border style of Fixed Dialog
and other visual cues.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_07 8/15/01 12:31 PM Page 344

Creating Windows Forms • Chapter 7 345

Q: What is z-ordering?

A: Z-ordering is the visual layering of controls on a form along its depth, or z-
axis.You can layer controls visually using their z-order.The control at the top
of the z-order overlaps all other controls.All other controls overlap the con-
trol at the bottom of the z-order.

Q: What is the difference between simple and complex data binding?

A: In simple data binding, a single value within a data set is bound to a property
of a component. In complex data binding, a whole dataset is bound to a
component.

www.syngress.com

153_VBnet_07 8/15/01 12:31 PM Page 345

153_VBnet_07 8/15/01 12:31 PM Page 346

Windows Forms
Components and
Controls

Solutions in this chapter:

■ Built-In Controls

■ Creating Custom Windows Components

■ Creating Custom Windows Controls

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 8

347

153_VBnet_08 8/15/01 1:41 PM Page 347

348 Chapter 8 • Windows Forms Components and Controls

Introduction
Now that we have learned how to work with Windows Forms, we will take a
look at Windows Controls.Visual Basic .NET comes with an extensive amount
of built-in controls for use in your applications.This allows applications to be
developed more rapidly.There are controls for displaying labels, allowing user
input of text, and working with numbers.There are controls for users to make
choices, and various ways of displaying information to the user.As in previous
versions of Visual Basic, you can also use controls created by third-party vendors.
This allows you great flexibility in utilizing the controls that best fit your needs.
Controls are manipulated by their properties and methods.A control can be con-
figured at design time with its design-time properties and further controlled at
runtime with its runtime properties and methods.

So what do you do if you can’t find a control that does exactly what you
need? One option is to compromise and accept the control(s) closest to your
needs.This is not always acceptable, however. In Visual Basic .NET, you will still
have the ability to develop your own custom-made controls, which allows you to
create the exact desired functionality.You can even develop your own control to
become one of those third-part vendors that sell controls.You can create design-
time properties as well as runtime properties and methods to provide the devel-
oper with access to manipulate your control.You even have the ability to bind
your control to a data source.

You don’t always need to have controls with a GUI. Sometimes you just want
to create a component that only provides programmatic functionality.This allows
you to create libraries or objects that greatly facilitate reuse of code.You also
might need a middle-tier component to provide business logic for a multi-tier
application.This is what Windows components are for.These are similar to Visual
Basic 6.0 ActiveX DLLs.Whatever the needs of your application, you can use
existing controls as necessary, or develop your own custom controls and
components.

Built-In Controls
Visual Basic .NET offers numerous controls you can use to build an
application. Each of these controls has a particular function. In some cases, you
can choose more than one control to achieve the results you want. For example,
if you want to display text that cannot be edited by the user, you can use a label,
link label, read-only text box, or read-only rich text box. However, we will see in

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 348

www.syngress.com

this chapter that not all of these allow the user to copy text to the Clipboard, and
only one of these displays a bulleted list of items.

It is important to familiarize yourself with the built-in controls and their gen-
eral functions so you can choose the right control for a particular application.
Knowing the limitations of the built-in controls also allows you to identify appli-
cations for which no built-in control is appropriate.These applications call for
custom Windows controls.

In this section, we will look closely at a number of controls built into Visual
Basic .NET.Table 8.1 displays the controls discussed in this chapter according to
their general function.

Table 8.1 Windows Forms Controls by Function

Control Function

Informational Only
Label Displays text that cannot be edited by the user
LinkLabel Displays text that is a link to another window or

Web site

Text Edit

TextBox Displays text that can be edited by the user
RichTextBox Displays text in Rich Text Format (RTF)

Selection from List

ComboBox Displays a drop-down list of items
DomainUpDown Displays a list of text items through which the user

can scroll with a spin button
NumericUpDown Displays a list of numeric items through which the

user can scroll with a spin button
ListBox Displays a list of items
ListView Displays text in a text-only, text-with-small-icons, text-

with-large-icons, or report view
TreeView Displays hierarchical information

Graphics Display

PictureBox Displays graphics

Windows Forms Components and Controls• Chapter 8 349

Continued

153_VBnet_08 8/15/01 1:41 PM Page 349

350 Chapter 8 • Windows Forms Components and Controls

Control Function

Value Setting
CheckBox Presents options that are not mutually exclusive
CheckedListBox Displays a list of items, each along with a check mark
RadioButton Presents mutually exclusive options
TrackBar Displays a scale on which the user can set a value

Date Setting

DateTimePicker Displays a graphical calendar from which the user can
set a date

Command Controls

Button Starts, stops, or interrupts a process

Grouping Controls

Panel Holds a scrollable group of controls
GroupBox Holds a captioned group of controls
Tab Provides a tabbed page for organizing and efficiently

accessing grouped objects

There are some properties that are shared by many controls, like the Name
property, which indicates the name used in code to identify the object.Table 8.2
displays common properties of controls.As we look at each control in the
following sections, we will discuss the properties unique to them.

Table 8.2 Common Properties of Controls

Property Description

(Bindings) This collection holds all the bindings of properties of
this control to data sources

(Name) Indicates the name used in code to identify the object
AccessibleDescription The description that will be reported to accessibility

clients
AccessibleName The name that will be reported to accessibility clients

www.syngress.com

Table 8.1 Continued

Continued

153_VBnet_08 8/15/01 1:41 PM Page 350

Windows Forms Components and Controls• Chapter 8 351

Property Description

AccessibleRole The role that will be reported to accessibility clients
Anchor The anchor of the control. Anchors define to which

edges of the container a certain control is bound.
When a control is anchored to an edge, the distance
between the control’s closest edge and the specified
edge will remain constant

CausesValidation Indicates whether this control causes and raises
validation events

ContextMenu The shortcut menu to display when the user
right-clicks the control

Dock The docking location of the control, indicating which
borders are docked to the container

Enabled Indicates whether the control is enabled
IMEMode Determines the IME (Input Method Editor) status of

the object when selected
Location The position of the top-left corner of the control with

respect to its container
Locked Determines if the control can be moved or resized
Modifiers Indicates the visibility level of the object
Size The size of the control in pixels
Visible Determines whether the control is visible or hidden

Label Control
The Windows Forms Label control allows you to display text that cannot be
edited by the user.You can use labels to add descriptive captions to other controls
to help identify their purpose. It is common practice to provide labels for con-
trols that do not have a label themselves, such as text boxes, including a colon in
the label’s caption.

Labels cannot receive focus, but you can use labels to quickly move focus
to other controls by creating access keys.When you use a label to create an access
key, the user can press the Alt key, plus the character you designate, to move the
focus to the control that follows the label in the tab order.

www.syngress.com

Table 8.2 Continued

153_VBnet_08 8/15/01 1:41 PM Page 351

352 Chapter 8 • Windows Forms Components and Controls

You can also use labels to display information about runtime events or pro-
cesses in your application. For example, in an e-mail manager application, you can
use a label to inform the user when your application is connecting to the mail
server, checking for new messages, and disconnecting from the mail server.The
Text property is the default property of a label.Table 8.3 shows other properties
of the Label control.

Table 8.3 Label Properties

Property Description

AllowDrop Determines if the label will receive drag-drop
notifications

AutoSize Enables automatic resizing based on font size. Note
that this is only valid for labels that don’t wrap text

BackColor The background color used to display text and
graphics in the label

BorderStyle Determines if the label has a visible border
Cursor The cursor that appears when the mouse passes over

the label
Font The font used to display text in the label
ForeColor The foreground color used to display text and

graphics in the label
Image The image that will be displayed on the face of the

label
ImageAlign The alignment of the image that will be displayed in

the face of the label
ImageIndex The index of the image in the image list to display in

the face of the label
ImageList The image list to get the image to display in the face

of the label
RightToLeft Indicates whether the label should draw right-to-left

for RTL languages
TabIndex Determines the index in the tab order that this label

will occupy
Text The text contained in the label
TextAlign Determines the position of the text within the label
UseMnemonic If True, the first character preceded by an ampersand

(&) will be used as the label’s mnemonic key

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 352

Windows Forms Components and Controls• Chapter 8 353

A foremost property of the Label control is the Text property, which contains
the label’s caption. In previous versions of Visual Basic, the Caption property was
used to specify the text displayed in the label.As with most properties of the
label, you can set the caption at design-time or runtime.To set a label’s caption at
design-time, use the Properties window to set the Text property to an appropriate
string.To set a label’s caption at runtime, set the Text property programmatically,
as shown next:

'Set the label's caption

lblStatus.Text = "Finding Server..."

The AutoSize property helps you size a label to fit smaller or larger captions,
which is useful if the caption changes run-time. Use the AutoSize property to fix
the size of a label or make it dynamically resize to hold the value of the Text
property.To make a label dynamically resize to hold its text, set the AutoSize
property to True:

'Make the label dynamically resize to fit its contents

lblStatus.AutoSize = True

NOTE

If the AutoSize property is set to False, the text wraps to the next line,
but the label does not grow.

The TextAlign property helps you change the horizontal alignment of text
within a label.You can choose to align a label’s caption with the left margin or
right margin of the label, or to center the caption within a label’s margins. For
example, to center a label’s caption within its margins, set the TextAlign property
as shown in the following:

'Center text within the label's caption

lblStatus.TextAlign = HorizontalAlignment.Center

You can use labels to assign access keys to other controls.When you use a
label to create an access key, the user can press the ALT key, plus the character you
designate, to move the focus to the control that follows the label in the tab order.
Since labels cannot receive focus, focus automatically moves to the control that
follows it in the tab order.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 353

354 Chapter 8 • Windows Forms Components and Controls

LinkLabel Control
The Windows Forms LinkLabel control allows you to add Web-style links to
your Windows Forms applications.The LinkLabel control retains all properties,
methods, and events of the Label control, and you can use a link label for every-
thing with which you can use a label. In addition, the LinkLabel control allows
you to set part of its caption as a link to an object or Web page. For instance, you
can use a link label in the About box of your application to provide a link to
your company’s Web page.Table 8.4 shows the properties of the LinkLabel con-
trol, in addition to the properties of the Label control.

Table 8.4 LinkLabel Properties

Property Description

ActiveLinkColor Determines the color of the hyperlink when the user
is clicking the link

DisabledLinkColor Determines the color of the hyperlink when disabled
LinkArea Portion of the text in the label to render as a

hyperlink
LinkBehavior Determines the underline behavior of the hyperlink
LinkColor Determines the color of the hyperlink
LinkVisited Determines if the hyperlink should be rendered as

visited
VisitedLinkColor Determines the color of the hyperlink when the

LinkVisited property is set to True

The ActiveLinkColor, DisabledLinkColor, LinkColor, and VisitedLinkColor prop-
erties determine the color of the link. For example, when the link is clicked, you
can change its color to indicate it has been visited.The LinkColor property deter-
mines the color of the link when it is in its default state—when the user is not
clicking the link, the link is not disabled, and the link is not rendered as visited.
When the user is clicking the link, its color is determined by the ActiveLinkColor
property.The DisabledLinkColor property determines the color of the link when it
is disabled.When the link is rendered as visited, the VisitedLinkColor property
determines the color of the link.To change the color of a link using defined
color constants, set the ActiveLinkColor, DisabledLinkColor, LinkColor, and
VisitedLinkColor properties as shown next:

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 354

Windows Forms Components and Controls• Chapter 8 355

'Set the link color using defined color constants

with lnkWebSite

.ActiveLinkColor = color.Red

.DisabledLinkColor = color.Blue

.LinkColor = color.Blue

.VisitedLinkColor = color.Purple

end with

You can also change the color of a link using decimal values for red, green,
and blue. For instance, you can change the color of the same link using decimal
values for red, green, and blue as shown in the following:

'Set the link color using decimal values for red, green, and blue

With lnkWebSite

.ActiveLinkColor = Color.FromARGB(255, 0, 0)

.DisabledLinkColor = Color.FromARGB(0, 0, 255)

.LinkColor = Color.FromARGB(0, 0, 255)

.VisitedLinkColor = Color.FromARGB(128, 0, 128)

End With

The LinkArea property holds the portion of the link label’s caption that acti-
vates the link.The LinkArea.X property determines the start of the link area, and
the LinkArea.Y property determines the length of the link area. In the following
example, the link area starts before the first character of the link label’s caption,
and ends after the last character of the caption:

'Set the link area to all of the caption

With lnkWebSite

.LinkArea.X = 0

.LinkArea.Y = Len(linklabel1.Text)

End With

You can choose, however, to only use part of the link label to activate the
link. For example, to have only the third character of the caption to comprise the
link area, set the LinkArea property as follows:

With lnkWebSite

.LinkArea.X = 3

.LinkArea.Y = 1

End With

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 355

356 Chapter 8 • Windows Forms Components and Controls

It is common to indicate that a link can be clicked by showing an underline
with the link.The LinkBehavior property determines when the link shows an
underline, be it always, never, when the mouse hovers over the link, or the system
default setting. For example, to set the link to always appear with an underline,
set the LinkBehavior property as follows:

'Set the link to always appear with an underline

lnkWebSite.LinkBehavior = LinkBehavior.AlwaysUnderline

Another useful property of the link label is the LinkVisited property, which
determines when the link is to be marked as visited.You may, for instance, have a
link label on a form with which you want to display another form.After the
second form is displayed, you want to give the user an indication that the form
was displayed.To mark the link as visited in the color specified by the
VisitedLinkColor property, set the LinkVisited property to True:

Protected Sub lnkWebSite_LinkClicked(ByVal sender As Object,

ByVal e As System.EventArgs)

Dim frmDetails As New Form()

'Display another form

frmDetails.Show()

'Mark the link as visited

lnkWebSite.LinkVisited = True

End Sub

The Click event of the link label is an important one, since the Click event
determines what happens when the link is selected. Use the LinkClicked event
handler to take appropriate action when the link is clicked.To start the default
Web browser and link to a Web page:

1. In the LinkClicked event handler, use the Process.Start method to start
the default browser with a URL.To use the Process.Start method, you
need to add a reference to the System.Diagnostics namespace.

2. Set the LinkVisited property to True.

The following example shows how to start the default Web browser and link
to the Microsoft Web site:

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 356

Windows Forms Components and Controls• Chapter 8 357

Private Sub lnkWebSite_LinkClicked (ByVal Sender As Object, _

ByVal e As EventArgs)

'Open the default Web browser and link to the Microsoft Web site

System.Diagnostics.Process.Start("http://www.microsoft.com")

'Mark the link as visited

lnkWebSite.LinkVisited = True

End Sub

TextBox Control
The Windows Forms TextBox control allows you to display text to the user and
collect text from the user.You can also use text boxes to add basic formatting to
your application such as password text boxes.A password text box is one that
displays a placeholder character instead of each character entered.Text boxes can
display multiple lines. By default, a text box holds up to 2,048 characters, but
when displaying multiple lines, a text box holds up to 32K of text.Text boxes are
most commonly used for editable text, but they can also be made read-only.Table
8.5 shows the properties of the TextBox control.

Table 8.5 TextBox Properties

Property Description

AcceptsReturn Indicates if return characters are accepted as input for
multiline edit controls

AcceptsTab Indicates if tab characters are accepted as input for
multiline edit controls

AutoSize Enables automatic resizing based on font size for
single-line edit controls

BackColor The background color used to display text and
graphics in the control

BorderStyle Indicates whether or not the edit control should have
a border

CharacterCasing Indicates if all characters should be left alone or
converted to uppercase or lowercase

Cursor The cursor that appears when the mouse passes over
the control

Font The font used to display text in the control

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 357

358 Chapter 8 • Windows Forms Components and Controls

Property Description

ForeColor The foreground color used to display text and
graphics in the control

HideSelection Indicates that the selection should be hidden when
the edit control loses focus

Lines The lines of text in a multiline edit, as in an array of
string values

MaxLength Specifies the maximum number of characters that can
be entered into the edit control. Zero implies no
maximum

MultiLine Controls whether the text of the edit control can span
more than one line

PasswordChar Indicates the character to display for password input
for single-line edit controls

ReadOnly Controls whether the text in the edit control can be
changed or not

RightToLeft Indicates whether the control should draw right-to-
left for RTL languages

ScrollBars Indicates, for multi-line edit controls, which scroll bars
will be shown for this control

TabIndex Determines the index in the tab order that this
control will occupy

TabStop Indicates whether the user can use the Tab key to
give focus to the control

Text The text contained in the control
TextAlign Indicates how the text should be aligned for edit

controls
WordWrap Indicates if lines are automatically word-wrapped for

multi-line edit controls

NOTE

Use a Label control with the TextBox control to help the user identify the
purpose of the TextBox control and to indicate when it is disabled.

www.syngress.com

Table 8.5 Continued

153_VBnet_08 8/15/01 1:41 PM Page 358

Windows Forms Components and Controls• Chapter 8 359

You can display multiple lines in a TextBox control by using the MultiLine,
WordWrap, and ScrollBars properties.To display multiple lines in a TextBox
control:

1. Set the MultiLine property to True.

2. Set the ScrollBars property to None, Horizontal, or Both.

3. Set the WordWrap property to False or True.

Now let’s see how this is done in code:

With txtTextBox

'Set the MultiLine property to True

.MultiLine = True

'Set the ScrollBars property

.ScrollBars = vbBoth

'Set the WordWrap property

.WordWrap = True

End With

You can create a read-only text box by using the ReadOnly property. If the
ReadOnly property is set to True, the Copy command is available, but the Cut
and Paste commands are unavailable.

NOTE

Create a read-only text box by using a TextBox control instead of a Label
control when you want to allow the user to select the text. For example,
if you use a TextBox control to create a read-only text box, the user can
copy the text to the Clipboard.

You can use the MaxLength and PasswordChar properties to create a password
text box that displays a placeholder character instead of each character entered.To
create a password text box:

1. Set the PasswordChar property to a placeholder character.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 359

360 Chapter 8 • Windows Forms Components and Controls

2. Set the MaxLength property to the maximum number of characters
allowed. If the user attempts to exceed this number, the system emits a
beep and does not accept any more characters.

Now let’s see how this is done in code:

With txtTextBox

'Set PasswordChar property to the asterisk

.PasswordChar = "*"

'Set the MaxLength property to 10

.MaxLength = 10

End With

There are several ways to programmatically place quotation marks in the text
of a TextBox control.You can use an additional set of quotation marks, use the
ASCII character (34), or define a constant for the quotation marks character, as
shown in the following example:

With txtTextBox

'Insert an additional set of quotation marks

.Text = """Wow, five!"" the woman said."

'Use the ASCII character (34)

.Text = Chr(34) & "Wow, five!" & Chr(34) _

& " the woman said."

'Define a constant for the quotation marks character

Const strQuotationMarks = """"

.Text = strQuotationMarks & "Wow, five!" _

strQuotationMarks & " the woman said."

End With

The default insertion point for a Windows Forms TextBox control is to the
left of any text when it first receives the focus.After the focus moves away from,
and then back to, the TextBox control, the insertion point is at the position
where the user last placed it.You can use the SelectionStart and SelectionLength

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 360

Windows Forms Components and Controls• Chapter 8 361

properties to control the insertion point to, for instance, select all existing text to
speed data entry:

With txtTextBox

'Set the SelectionStart property to the left of any

'text

.SelectionStart = 0

'Set the SelectionLength property to select all text

.SelectionLength = Len(txtTextBox)

End With

Button Control
The Windows Forms Button control performs an action when the button is
clicked, making it look as if the button is being pushed in and released.When the
user clicks the button, the Click event handler is invoked.To respond to a button
click, write code in the button’s Click event handler, as shown in the following
example:

Private Sub btnCancel_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs)

frmForm.Hide()

End Sub

NOTE

The button does not support a double-click event. If the user attempts to
double-click a button, its Click event handler will be invoked twice if the
button is still visible and available after the first click.

Like the other controls we discussed, the Button has a number of properties
that are not among the properties common to all built-in controls.Table 8.6
shows the properties of the Button control.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 361

362 Chapter 8 • Windows Forms Components and Controls

Table 8.6 Button Properties

Property Description

BackColor The background color used to display text and
graphics in the control

BackgroundImage The background image used for the control
Cursor The cursor that appears when the mouse passes over

the control
DialogResult The dialog result produced in a modal form by

clicking the button
FlatStyle Determines the display of the button when users

move the mouse over the control and click
Font The font used to display text in the control
ForeColor The foreground color used to display text and

graphics in the control
Image The image that will be displayed on the face of the

control
ImageAlign The alignment of the image that will be displayed in

the face of the control
ImageIndex The index of the image in the image list to display in

the face of the control
ImageList The image list to get the image to display in the face

of the button
RightToLeft Indicates whether the button should draw right-to-

left for RTL languages
TabIndex Determines the index in the tab order that the button

will occupy
TabStop Indicates whether the user can use the Tab key to

give focus to the button
Text The text contained in the button
TextAlign The alignment of the text that will be displayed in the

face of the button

The user can click the Button control in several ways:

■ The user uses a mouse to click the button.

■ The user chooses the button by pressing the Spacebar or Enter key
when the button has the focus.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 362

Windows Forms Components and Controls• Chapter 8 363

■ The user presses Enter when the button is the “accept” button
of the form.

■ The user presses Esc when the button is the “cancel” button of
the form.

■ The user presses the access key (Alt + the underlined letter) for
the button.

In addition, you can click the Button control programmatically in the
following ways:

■ Invoke the button’s Click event.

■ Call the PerformClick method.

When you designate a Button control to be the accept button on the form,
the button is clicked when the user presses Enter, even if another control has the
focus—except when that other control is another button or a multiline text box.
This basically makes it the default button on the form.When you designate a
Button control to be the cancel button on the form, the button is clicked when
the user presses Esc, even if another control has the focus.A button can be both
the accept button and the cancel button on the form.The following code shows
you how to do this:

With frmForm

'Designate btnButton as the accept button and the

'cancel button of frmForm

'Set the AcceptButton property to btnButton

.AcceptButton = btnButton

'Set the CancelButton property to btnButton

.CancelButton = btnButton

End With

NOTE

If the action represented by a Button control requires additional informa-
tion, such as the folder in which to save a document, include an ellipsis
(…) in the button’s Caption property.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 363

364 Chapter 8 • Windows Forms Components and Controls

CheckBox Control
The Windows Forms CheckBox control indicates True/False or Yes/No options.
The CheckBox control appears as a square box with an accompanying label.
When a choice is set, a check mark appears in the box.When the choice is not
set, the box is empty. Use the CheckBox control to present an independent or
non-exclusive choice, a True/False or Yes/No selection to the user.You can group
multiple check boxes using a GroupBox control to display multiple choices from
which the user may select more than one.

The CheckBox control has two important properties: Checked and
CheckedState.The Checked property returns either True or False, and indicates
whether the choice is set.The CheckedState property returns CheckState.Checked
when the choice is set, and CheckState.Unchecked when the choice is not set. If
the ThreeState property is set to True, the CheckedState property also returns
CheckState.Indeterminate, used when the choice is set for some but not all
elements of the selection.

Since grouped controls can be moved around together on the form designer,
group multiple boxes using the GroupBox control to enhance visual appearance
and aid in GUI design Table 8.7 shows the properties of the CheckBox control.

Table 8.7 CheckBox Properties

Property Description

AllowDrop Determines if the check box will receive drag-drop
notifications

Appearance Controls the appearance of the check box
AutoCheck Causes the check box to automatically change state

when clicked
BackColor The background color used to display text and

graphics in the check box
BackgroundImage The background image used for the check box
CheckAlign Determines the location of the check box inside the

control
Checked Indicates whether the check box is checked or

unchecked
Cursor The cursor that appears when the mouse passes over

the check box
FlatStyle Determines the display of the check box when users

move the mouse over the check box and click

www.syngress.com
Continued

153_VBnet_08 8/15/01 1:41 PM Page 364

Windows Forms Components and Controls• Chapter 8 365

Property Description

Font The font used to display text in the check box
ForeColor The foreground color used to display text and

graphics in the check box
Image The image that will be displayed on the face of the

check box
ImageAlign The alignment of the image that will be displayed in

the face of the check box
ImageIndex The index of the image in the image list to display in

the face of the check box
ImageList The image list to get the image to display in the face

of the check box
RightToLeft Indicates whether the check box should draw

right-to-left for RTL languages
TabIndex Determines the index in the tab order that the check

box will occupy
TabStop Indicates whether the user can use the Tab key to

give focus to the check box
Text The text contained in the check box
TextAlign The alignment of the text that will be displayed in the

face of the check box
ThreeState Controls whether or not the user can select the

indeterminate state of the check box

RadioButton Control
The Windows Forms RadioButton control is used to give the user a single
choice within a set of two or more mutually exclusive choices. Radio buttons
appear as a set of small circles.When an option button choice is set, a dot appears
in the middle of the circle.When the item is not the current setting, the circle
next to the current setting is empty. If the user chooses any radio button in a
group, that value becomes the setting for the group; the dot appears in that
button and all the other buttons in the group remain empty. Group radio buttons
by adding them to a form.To add separate groups, you need to add them to a
Panel control or a GroupBox control.

www.syngress.com

Table 8.7 Continued

153_VBnet_08 8/15/01 1:41 PM Page 365

366 Chapter 8 • Windows Forms Components and Controls

The radio button and the check box are used for different functions. Use a
radio button when you want the user to choose only one option.When you
want the user to choose all appropriate options, use a check box.Table 8.8 shows
the properties of the RadioButton control.

Table 8.8 RadioButton Properties

Property Description

AllowDrop Determines if the radio button will receive drag-drop
notifications

Appearance Controls whether the radio button appears as normal
or as a Windows push button

AutoCheck Causes the radio button to automatically change
state when clicked

BackColor The background color used to display text and
graphics in the radio button

BackgroundImage The background image used for the radio button
CheckAlign Determines the location of the check box inside the

radio button
Checked Indicates whether the radio button is checked or not
Cursor The cursor that appears when the mouse passes over

the radio button
FlatStyle Determines the display of the radio button when

users move the mouse over the radio button and click
Font The font used to display text in the radio button
ForeColor The foreground color used to display text and

graphics in the radio button
Image The image that will be displayed on the face of the

radio button
ImageAlign The alignment of the image that will be displayed in

the face of the radio button
ImageIndex The index of the image in the image list to display in

the face of the radio button
ImageList The image list to get the image to display in the face

of the radio button
RightToLeft Indicates whether the radio button should draw

right-to-left for RTL languages
TabIndex Determines the index in the tab order that the radio

button will occupy

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 366

Windows Forms Components and Controls• Chapter 8 367

Property Description

TabStop Indicates whether the user can use the Tab key to
give focus to the radio button

Text The text contained in the radio button
TextAlign The alignment of the text that will be displayed in the

face of the radio button

RichTextBox Control
Much like the TextBox control, the Windows Forms RichTextBox control allows
you to display text to the user and collect text from the user. In addition to the
many features it shares with the TextBox control, the RichTextBox control allows
you to change the font, size, and color of text.You can use a rich text box to add
advanced formatting, such as indents, hanging indents, and bulleted paragraphs, to
your application.You can also use a rich text box to save text to a file, or load
text from a file.Table 8.9 shows the properties of the RichTextBox control.

Table 8.9 RichTextBox Properties

Property Description

AcceptsTab Indicates if tab characters are accepted as input for
the rich text box

AutoSize Enables automatic resizing based on font size for a
single-line rich text box

AutoWordSelection Turns on/off automatic word selection
BackColor The background color used to display text and

graphics in the rich text box
BorderStyle Indicates whether or not the rich text box should

have a border
BulletIndent Defines the indent for the bullets in the rich text box
Cursor The cursor that appears when the mouse passes over

the rich text box
Delimiter Defines the delimiter characters (Asian version of OS

only)
DetectURLs Turns on/off automatic URL highlighting

www.syngress.com

Table 8.8 Continued

Continued

153_VBnet_08 8/15/01 1:41 PM Page 367

368 Chapter 8 • Windows Forms Components and Controls

Property Description

FollowPunctuation Defines the non-leading punctuation (Asian version of
OS only)

Font The font used to display text in the rich text box
ForeColor The foreground color used to display text and graphics

in the rich text box
HideSelection Indicates that the selection should be hidden when the

rich text box loses focus
LeadPunctuation Defines the leading punctuation (Asian version of OS

only)
Lines The lines of text in a multi-line rich text box, as in an

array of string values
MaxLength Specifies the maximum number of characters that can

be entered into the rich text box. Zero implies no
maximum

Multiline Controls whether the text of the rich text box can span
more than one line

OutlineMode Turns on/off outline mode
ReadOnly Controls whether the text in the rich text box can be

changed or not
RightMargin Defines the right margin dimensions
RightToLeft Indicates whether the rich text box should draw

right-to-left for RTL languages
ScrollBars Defines the behavior of the scroll bars of the rich text box
SelectionMargin Turns on/off the selection margin
TabIndex Determines the index in the tab order that the rich text

box will occupy
TabStop Indicates whether the user can use the Tab key to give

focus to the rich text box
Text The text contained in the rich text box
WordBreak Enables the word-break mode (Asian version of OS only)
WordPunctuation Defines the type of punctuation table to be used for

word operations (Asian version of OS only)
WordWrap Indicates if lines are automatically word-wrapped for

multi-line rich text boxes

www.syngress.com

Table 8.9 Continued

153_VBnet_08 8/15/01 1:41 PM Page 368

Windows Forms Components and Controls• Chapter 8 369

You can change the font, size, and color of text in the RichTextBox control
by using the SelFont, SelFontSize, and SelColor properties.Also, you can quickly
open a Rich Text Format file using a rich text box.This is handy when you want
your application to display a README file that changes with every version of
your application.You make changes to the file, not your code, and you can simply
open the file with a rich text box. Use an OpenFileDialog control to navigate to
the file you want to open, as in the following example:

With OpenFileDialog1

'Show only RTF files

.Filter = "Rich Text Format|*.rtf"

.ShowDialog()

End With

richtextbox2.LoadFile(openfiledialog1.FileName)

Often, when opening files, you only want to show those with a certain
extension.This makes it easier for the user to locate a file.You can do this with
the Filter property of the Open File dialog box:

.Filter = "Rich Text Format|*.rtf"

Use this line to show only RTF files in the Open File dialog box. Files with
other extensions will not appear.

TreeView Control
The Windows Forms TreeView control is used to display hierarchical informa-
tion, such as e-mail folders and messages, as well as folders and files on a
computer.A tree view contains cascading branches of nodes, and each node
consists of an image and a label. Node images are taken from an ImageList con-
trol.At the top-most level in a tree view are root nodes that can be expanded or
collapsed if the nodes have child nodes (nodes that descend from other nodes).
Table 8.10 shows the properties of the TreeView control.

Table 8.10 TreeView Properties

Property Description

AllowDrop Determines if the tree view will receive drag-drop
notifications

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 369

370 Chapter 8 • Windows Forms Components and Controls

Property Description

BackColor The background color used to display text and graphics
in the tree view

BorderStyle The border style of the tree view
CheckBoxes Indicates whether check boxes are displayed beside

nodes
Cursor The cursor that appears when the mouse passes over

the tree view
Font The font used to display text in the tree view
ForeColor The foreground color used to display text and graphics

in the tree view
FullRowSelect Indicates whether the highlight spans the width of the

tree view
HideSelection Removes highlight from the selected node when the

tree view loses focus
HotTracking Indicates whether nodes give feedback when the mouse

is moved over them
ImageIndex The default image index for nodes
ImageList The image list from which node images are taken
Indent The indentation width of child nodes in pixels
ItemHeight The height of every item in the tree view
LabelEdit Indicates whether or not the user can edit the label text

of nodes
Nodes The root nodes in the tree view
PathSeparator The string delimiter used for the path returned by a

node’s FullPath property
RightToLeft Indicates whether the control should draw right-to-left

for RTL languages
Scrollable Indicates whether the tree view will display scroll bars if

it contains more nodes than can fit in the visible area
SelectedImage The default image index for selected nodes
ShowLines Indicates whether lines are displayed between sibling

nodes and between parent and child nodes
ShowPlusMinus Indicates if plus/minus buttons are shown next to parent

nodes

www.syngress.com

Table 8.10 Continued

Continued

153_VBnet_08 8/15/01 1:41 PM Page 370

Windows Forms Components and Controls• Chapter 8 371

Property Description

ShowRootLines Indicates whether lines are displayed between root
nodes

Sorted Indicates whether nodes are sorted
TabIndex Determines the index in the tab order that this control

will occupy
TabStop Indicates whether the user can use the Tab key to give

focus to the tree view

ListBox Control
A Windows Forms ListBox control displays a list of choices which the user can
select from. List boxes are best used for displaying large number of choices.There
are situations in which you can display choices with either a group of check
boxes or a list box. In general, use a group of check boxes when the number of
choices is small. For clarity, use a list box when the number of choices is large.

A vertical scroll bar accompanies a list box if the items displayed exceed the
height of the box.A list box will also sport a horizontal scrollbar if the
MultiColumn property is set to True. In that case, values are displayed in columns
horizontally.Table 8.11 shows the properties of the ListBox control.

Table 8.11 ListBox Properties

Property Description

AllowDrop Determines if the list box will receive drag-drop
notifications

BackColor The background color used to display text and graphics
in the list box

BorderStyle Controls what type of border is drawn around the list
box

ColumnWidth Indicates how wide each column should be in a multi
column list box

Cursor The cursor that appears when the mouse passes over
the list box

DataSource Indicates the list that the list box will use to get its
items

www.syngress.com

Table 8.10 Continued

Continued

153_VBnet_08 8/15/01 1:41 PM Page 371

372 Chapter 8 • Windows Forms Components and Controls

Property Description

DisplayMember Indicates the property to display for the items in the list
box

DrawMode Indicates whether the system or the user paints items in
the list box

Font The font used to display text in the list box
ForeColor The foreground color used to display text and graphics

in the list box
HorizontalExtent The width, in pixels, by which a list box can be scrolled

horizontally. Only valid if HorizontalScrollbar is True
HorizontalScrollbar Indicates whether the list box will display a horizontal

scrollbar for items beyond the right edge of the list box
IntegralHeight Indicates whether the list can contain only complete

items
ItemHeight The height, in pixels, of items in a fixed-height owner-

drawn list box
Items The items in the list box
MultiColumn Indicates if values should be displayed in columns

horizontally
RightToLeft Indicates whether the list box should draw right-to-left

for RTL languages
ScrollAlwaysVisible Indicates if the list box should always have a scrollbar

present, regardless of how many items are in it
SelectionMode Indicates if the list box is to be single-select, multi-

select, or unselectable
Sorted Controls whether the list is sorted
TabIndex Determines the index in the tab order that the list box

will occupy
TabStop Indicates whether the user can use the Tab key to give

focus to the list box
UseTabStops Indicates if tab characters should be expanded into full

spacing
ValueMember Indicates the property to use as the actual value for the

items in the list box

www.syngress.com

Table 8.11 Continued

153_VBnet_08 8/15/01 1:41 PM Page 372

Windows Forms Components and Controls• Chapter 8 373

The SelectionMode property determines how many items in the list can be
selected at a time. If the SelectionMode property is set to
SelectionMode.MultiSimple, the user can select more than one item by simply
clicking the items in the list. If the SelectionMode property is set to
SelectionMode.MultiExtended, the user can select more than one item by
holding down the Ctrl key or Shift key and clicking items in the list.

As with other controls, the SelectedIndex property holds the index of the
selected item in the list box. If more than one item is selected, the SelectedIndex
property contains the index of the first selected item in the box. Keep in mind
that the SelectedIndex property is zero-based like other index properties in VB
.NET. For example, the SelectedIndex property equals 0 when the first item in a
list box is selected.

You can use the Add or Insert method to add items to a list box.The Add
method adds new items at the end of an unsorted list box.The Insert method
allows you to specify where to insert the item you are adding. In the following
example, the name “John Doe” is added to a list box first.Then the name “Jane
Doe” is inserted at the first position in the list, rather than at the last position:

'Add the name "John Doe" to the Employees list box

lstEmployees.Items.Add("John Doe")

'Insert the name "Jane Doe" at the first position in the list box

lstEmployees.Items.Insert(0, "Jane Doe")

You can use the Remove method to remove an item from a list box.
Continuing our example, the following statement removes the first name from
the list box:

'Remove the first name from the Employees list box

lstEmployees.Items.Remove(0)

You can also quickly remove all items from a list box.To remove all items
from a list box, simply use the Clear method of the Items collection.

'Remove all names from the Employees list box

lstEmployees.Items.Clear()

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 373

374 Chapter 8 • Windows Forms Components and Controls

CheckedListBox Control
The Windows Forms CheckedListBox control, an extension of the ListBox con-
trol, gives you all the capability of a list box and also allows you to display a
check mark next to the items in the list box. Use the checked list box instead of
the list box to display additional information about the items you display. For
example, a checked list box is a good choice to display steps of an installation,
with the check marks indicating which steps have been completed.Table 8.12
shows the properties of the CheckedListBox control.

Table 8.12 CheckedListBox Properties

Property Description

AllowDrop Determines if the checked list box will receive drag-drop
notifications

BackColor The background color used to display text and graphics
in the checked list box

BorderStyle Controls what type of border is drawn around the
checked list box

CheckOnClick Indicates if the check box should be toggled with the
first click of an item

ColumnWidth Indicates how wide each column should be in a multi
column checked list box

Cursor The cursor that appears when the mouse passes over
the checked list box

DataSource Indicates the list that the checked list box will use to get
its items

DisplayMember Indicates the property to display for the items in the
checked list box

Font The font used to display text in the checked list box
ForeColor The foreground color used to display text and graphics

in the checked list box
HorizontalExtent The width, in pixels, by which a list box can be scrolled

horizontally (Only valid if HorizontalScrollBar is True)
HorizontalScrollbar Indicates whether the checked list box will display a

horizontal scrollbar for items beyond the right edge of
the checked list box

IntegralHeight Indicates whether the list can contain only complete
items

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 374

Windows Forms Components and Controls• Chapter 8 375

Property Description

Items The items in the checked list box
MultiColumn Indicates if values should be displayed in columns

horizontally
RightToLeft Indicates whether the control should draw right-to-left

for RTL languages
ScrollAlwaysVisible Indicates if the checked list box should always have a

scrollbar present, regardless of how many items are in it
SelectionMode Indicates if the checked list box is to be single-select,

multiselect, or unselectable
Sorted Controls whether the checked list box is sorted
TabIndex Determines the index in the tab order that the checked

list box will occupy
TabStop Indicates whether the user can use the ab key to give

focus to the control
ThreeDCheckBoxes Indicates whether the check values should be shown as

flat or 3D check marks
UseTabStops Indicates if tab characters should be expanded into full

spacing
ValueMember Indicates the property to use as the actual value for the

items in the checked list box

You can change the appearance of the check boxes that appear next to the
items by using the ThreeDCheckBoxes property.The check boxes can appear as flat
or 3D check marks.The CheckOnClick property determines if the items are tog-
gled with the first click of an item.To toggle items with the first click, set the
CheckOnClick property to True.

You can quickly add multiple items to a checked list box.Adding multiple
items to a checked list box is a multistep process.To add items to a checked list
box:

1. Create an array of type System.Object.

2. Set each member of the array to a string—the string becomes the text
displayed in the list.

3. Set the Items collection’s All property to the array.

www.syngress.com

Table 8.12 Continued

153_VBnet_08 8/15/01 1:41 PM Page 375

376 Chapter 8 • Windows Forms Components and Controls

For example, suppose you want to display the days of the week in a checked
list box. Follow the steps just outlined in the manner shown next:

'Create an array of type System.Object

Dim objDaysOfTheWeek(7) As System.Object

'Set each member of the array to a string

objDaysOfTheWeek(0) = "Monday"

objDaysOfTheWeek(1) = "Tuesday"

objDaysOfTheWeek(2) = "Wednesday"

objDaysOfTheWeek(3) = "Thursday"

objDaysOfTheWeek(4) = "Friday"

objDaysOfTheWeek(5) = "Saturday"

objDaysOfTheWeek(6) = "Sunday"

'Set the Items collection's All property to the array

clbDaysOfTheWeek.Items.All = objDaysOfTheWeek

ListView Control
The ListView control can display text in four different views: text-only, text-
with-small-icons, text-with-large-icons, or report.A list view is similar to the
right pane that displays the contents of the selected folder in Windows Explorer.
Just as you can use the View menu in Windows Explorer to change how the
icons in the right pane appear, you can change how items in a list view appear.

The list view comes in handy when you want to display items that contain
multiple pieces of information, because it can show more than one column. For
example, you can use a list view on an About box to display version information
of key files used by your application.Your list view would have three columns
with the headings “File,”“Version,” and “Full Path.”All the information you need
to support your user would be readily available.We will look at code snippets that
allow you to create a version information box.Table 8.13 shows the properties of
the ListView control.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 376

Windows Forms Components and Controls• Chapter 8 377

Table 8.13 ListView Properties

Property Description

Activation Indicates the type of action required by the user to
activate an item, and the feedback given

Alignment Indicates how items are aligned within the list view
AllowColumnReorder Indicates whether the user can reorder columns in the

Report view
AllowDrop Determines if the list view will receive drag-drop

notifications
AutoArrange Indicates whether items are kept arranged automatically
BackColor The background color used to display text and graphics

in the list view
BorderStyle The border style of the list view
CheckBoxes Indicates whether check boxes are displayed beside

items
Columns The columns shown in Report view
Cursor The cursor that appears when the mouse passes over

the list view
Font The font used to display text in the list view
ForeColor The foreground color used to display text and graphics

in the list view
FullRowSelect Indicates whether all subitems are highlighted along

with the item when selected
GridLines Displays grid lines around items and subitems
HeaderStyle The style of the column headers in Report view
HideSelection Removes highlighting from the selected item when the

list view loses focus
HoverSelection Allows items to be selected by hovering over them with

the mouse
LabelEdit Allows item labels to be edited in place by the user
LabelWrap Determines whether label text can wrap to a new line
LargeImageList The image list used by the list view for images in Large

Icon view
ListItems The items in the list view
MultiSelect Allows multiple items to be selected

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 377

378 Chapter 8 • Windows Forms Components and Controls

Property Description

RightToLeft Indicates whether the list view should draw right-to-left
for RTL languages

Scrollable Indicates whether the list view will display scrollbars if it
contains more items than can fit in the client area

SmallImageList The image list used by the list view for images in all
views except for the Large Icon view

Sorting Indicates the manner in which items are to be sorted
StateImageList The image list used by the list view for custom states
TabIndex Determines the index in the tab order that the list view

will occupy
TabStop Indicates whether the user can use the Tab key to give

focus to the list view
View Selects one of four different views in which items can

be shown

The View property is an important property of the list view, because it deter-
mines one of four different views in which items can be shown: text-only, text-
with-small-icons, text-with-large-icons, or report.The self-explanatory text-only
view renders items in much the same manner as a list box.The text-with-small-
icons, text-with-large-icons, and report views are similar to the Small Icons, Large
Icons, and Detail views in Windows Explorer.

The ListItems property holds the items in a list view. If a ListView control has
multiple columns, the items have subitems that hold information in the columns
beyond the first. For example, a list view with one row and three columns has
one item (to hold the information in the first column) and two subitems (to hold
the information in the second and third columns).

Another useful property of the list view is the HeaderStyle property.The
HeaderStyle property determines the style of the column headers in Report view.
The property can be set to show no headers, clickable headers, and non-clickable
headers.

Before we delve into our example, you should be familiar with the Sorting
property of the list view.The Sorting property indicates the manner in which
items are to be sorted. Items can remain unsorted, or you can sort them by
ascending or descending order.

www.syngress.com

Table 8.13 Continued

153_VBnet_08 8/15/01 1:41 PM Page 378

Windows Forms Components and Controls• Chapter 8 379

Let’s create our version information box. Our box will have three columns to
show a file’s name, its version, and its full path. Declare three variables to hold
these values:

Dim strFile As String

Dim strVersion As String

Dim strFullPath As String

Declare an array of strings to hold subitems in the list view.The array has size
two to show two columns in addition to the first in the list view.

Dim strSubItems(2) As String

Our ListView control will show information about the common control DLL
comctl32.dll.The following statement assigns the appropriate values to the vari-
ables we declared:

'Set the file's name, version, and full path

strFile = "comctl32.dll"

strVersion = "5.81"

strFullPath = "C:\WINNT\system32\COMCTL32.DLL"

We now need to fill our subitem array with the file’s version and full path.
These will be displayed in the second and third columns of the list view:

'Fill the subitem array

strSubItems(0) = strVersion

strSubItems(1) = strFullPath

We are now ready to set properties of the list view.We want to display the
items in Report view, have clickable headers, and display items in ascending
order:

With lvwVersionInformation

.View = View.report

.HeaderStyle = ColumnHeaderStyle.Clickable

.Sorting = SortOrder.Ascending

The following statements add three columns to the list view.The column
headings are “File,”“Version,” and “Full Path,” and the column widths are 100,
100, and 200.The text in all columns aligns with the left margin:

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 379

380 Chapter 8 • Windows Forms Components and Controls

.Columns.Add("File", 100, HorizontalAlignment.Left)

.Columns.Add("Version", 100, HorizontalAlignment.Left)

.Columns.Add("Full Path", 200, HorizontalAlignment.Left)

To add the item to the list view, use the Add method of the Columns prop-
erty.The first parameter is the name of the file, the second is the index of an
appropriate image, and the third is the array of subitems:

.ListItems.Add(strFile, 0, strSubItems)

End With

The list view now shows the version information of the common control
DLL.The following is the full code listing for the example:

Dim strFile As String

Dim strVersion As String

Dim strFullPath As String

Dim strSubItems(2) As String

'Set the file's name, version, and full path

strFile = "comctl32.dll"

strVersion = "5.81"

strFullPath = "C:\WINNT\system32\COMCTL32.DLL"

'Fill the subitem array

strSubItems(0) = strVersion

strSubItems(1) = strFullPath

With lvwVersionInformation

'Set the view to Report view

.View = View.report

'Set the header style to clickable

.HeaderStyle = ColumnHeaderStyle.Clickable

'Display items in ascending order

.Sorting = SortOrder.Ascending

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 380

Windows Forms Components and Controls• Chapter 8 381

'Add File, Version, and Full Path columns

.Columns.Add("File", 100, HorizontalAlignment.Left)

.Columns.Add("Version", 100, HorizontalAlignment.Left)

.Columns.Add("Full Path", 200, HorizontalAlignment.Left)

'Add item

.ListItems.Add(strFile, 0, strSubItems)

End With

ComboBox Control
The Windows Forms ComboBox control displays a list from which the user can
select one or more choices.The ComboBox control appears as a text box and an
associated list box.As text is typed into the text box, the list scrolls to the nearest
match. In addition, when the user selects an item in the list box, it automatically
uses that entry to replace the content of the text box and selects the text.

Because a combo box is similar to a list box, you may wonder when to use
one or the other, but there are differences. Unlike a list box, a combo box allows
the user to type an item that does not appear in the list. In general, use a combo
box to present to the user a list of merely suggested choices, and use a list box to
strictly limit the user’s input to only the choices you present. In addition, as a
combo box generally consumes less space on a form than a list box, a combo box
may be a better choice when such space is at a premium.

The combo box has three different styles: simple, drop down, and drop-down
list. In the simple style, the combo box has an edit box along with a list box. In
the drop down style, the combo box looks like an edit box, but you can click it
to see a drop down containing its items.The drop-down list style is similar to the
drop down style. However, in the drop down list style, the user can only choose
an item in the list. No item can be entered that does not appear in the list.Table
8.14 shows the properties of the ComboBox control.

Table 8.14 ComboBox Properties

Property Description

AllowDrop Determines if the combo box will receive drag-drop
notifications

BackColor The background color used to display text and graphics
in the combo box

www.syngress.com
Continued

153_VBnet_08 8/15/01 1:41 PM Page 381

382 Chapter 8 • Windows Forms Components and Controls

Property Description

Cursor The cursor that appears when the mouse passes over
the combo box

DataSource Indicates the list that the combo box will use to get its
items

DisplayMember Indicates the property to display for the items in the
combo box

Font The font used to display text in the combo box
ForeColor The foreground color used to display text and graphics

in the combo box
IntegralHeight Indicates whether the list portion can contain only

complete items
ItemHeight The height, in pixels, of items in an owner-drawn combo

box
Items The items in the combo box
MaxDropDownItems The maximum number of entries to display in the drop-

down list
MaxLength Specifies the maximum number of characters that can

be entered into the combo box
RightToLeft Indicates whether the combo box should draw right-to-

left for RTL languages
Sorted Controls whether items in the list portion are sorted
Style Controls the appearance and functionality of the combo

box
TabInde Determines the index in the tab order that the combo

box will occupy
TabStop Indicates whether the user can use the Tab key to give

focus to the combo box
Text The text contained in the combo box
ValueMember Indicates the property to use as the actual value for the

items in the combo box

www.syngress.com

Table 8.14 Continued

153_VBnet_08 8/15/01 1:41 PM Page 382

Windows Forms Components and Controls• Chapter 8 383

You can add items to the combo box at design-time.To add items to a
combo box at design-time:

1. Select the ComboBox control on the form.

2. If necessary, use the View menu to open the Properties window.

3. In the Properties window, click the Items property, then click the
ellipsis.

4. In String Collection Editor, type the first item, then press Enter.

5. Type the next items, pressing Enter after each item.

6. Click OK.

There are a variety of ways to programmatically add items to a combo box.
You can simply add an item to the list, letting the combo box control the posi-
tion of insertion based on whether or not it is sorted.Alternatively, you can make
explicit the point at which to insert an item.To simply add an item to a combo
box, use the Add method of the Items collection:

'Add an item

cboUser.Items.Add("(New User)")

To add an item to a combo box, specifying the point of insertion, use the
Insert method of the Items collection.This is useful when you want to specifi-
cally insert an item at a particular spot.This does not work when the Sorted prop-
erty is set to True.As with other index properties, the point of insertion is
zero-based; in the example that follows, the item is added at the first position in
the list:

'Add an item at the first position

cboUser.Items.Insert(0, "(New User)")

Now, let’s look at removing an item.You can remove an item by its index or
by its value. For instance, to remove the first item in a list (by specifying its zero-
based position), use the Remove method of the Items collection as follows:

'Remove the first item

cboUser.Items.Remove(0)

You can also remove an item by its value. Here is a snippet that specifies the
value of the item to be removed:

'Remove the item "(New User)"

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 383

384 Chapter 8 • Windows Forms Components and Controls

cboUser.Items.Remove("(New User)")

Sometimes you want to remove the selected item.You can use the SelectedItem
and Remove methods for this. Let’s look at how this is done in code:

'Remove the selected item

cboUser.Items.Remove(cboUser.SelectedItem)

DomainUpDown Control
The DomainUpDown control displays a list from which the user can select only
one choice.You can use a combo box for everything you can use a domain up-
down control for. However, a domain up-down control is generally used when
the items have an inherent order, like days of the week, or months of the year.

The Domain UpDown control consists of an edit box and up-down buttons.
The edit box displays the currently selected item.The user can select the next or
previous item in the list by clicking the up-down buttons or pressing the Up
Arrow and Down Arrow keys.Table 8.15 shows the properties of the
DomainUpDown control.

Table 8.15 DomainUpDown Properties

Property Description

AllowDrop Determines if the up-down control will receive drag-
drop notifications

BackColor The background color used to display text and graphics
in the up-down control

BorderStyle Indicates the border style of the up-down control
Cursor The cursor that appears when the mouse passes over

the up-down control
Font The font used to display text in the up-down control
ForeColor The foreground color used to display text and graphics

in the up-down control
InterceptArrowKeys Indicates whether the up-down control will increment

and decrement the value when the Up Arrow and
Down Arrow keys are pressed

Items The allowable values of the up-down control
ReadOnly Indicates whether or not the up-down control is

read-only

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 384

Windows Forms Components and Controls• Chapter 8 385

Property Description

RightToLeft Indicates whether the up-down control should draw
right-to-left for RTL languages

Sorted Controls whether items in the domain list are sorted
TabIndex Determines the index in the tab order that this control

will occupy
TabStop Indicates whether the user can use the Tabkey to give

focus to the up-down control
Text The text contained in the up-down control
TextAlign Indicates how the text should be aligned in the edit box
UpDownAlign Indicates how the up-down control will position the up-

down buttons relative to its edit box
Wrap Indicates whether or not values wrap around at either

end of the item list

The Text property holds the text contained in the up-down control.Another
important property is the Items collection, which holds the items in the up-down
control.You can use the Items property to programmatically add items to, and
remove items from, the up-down control.We have added items to and removed
items from many of the controls we discussed previously. However, you will often
want to add items to an up-down control at design-time.To add items to an up-
down control on a form at design-time:

1. Click the DomainUpDown control on the form.

2. In the Properties window, click the Items property, then click the
ellipsis.

3. In the String Collection Editor window, type the first item, then press
Enter.

4. Type the next items, pressing Enter after each item.

5. Click OK.

When the ReadOnly property is set to True, the Items property holds the only
allowable values of the up-down control. In other words, the Items property is the
domain of a read-only up-down control, which is where the control gets its

www.syngress.com

Table 8.15 Continued

153_VBnet_08 8/15/01 1:41 PM Page 385

386 Chapter 8 • Windows Forms Components and Controls

name.The user cannot type a new value in a read-only up-down control. Instead,
a keystroke selects the item in the control that starts with the letter pressed.

You can change the horizontal alignment of the up-down buttons.The
default alignment of the up-down buttons is with the right margin of the
control.To align the up-down buttons to the left of the edit box, set the
UpDownAlign property as follows:

'Align the up-down buttons to the left of the edit box

dudDaysOfTheWeek.UpDownAlign = LeftRightAlignment.Left

The DomainUpDown control is similar to another control, the
NumericUpDown control. In the next section, we will take a closer look at the
numeric up-down control.

NumericUpDown Control
The NumericUpDown control allows the user to quickly change a numeric
value by a chosen increment.The numeric up-down control shares many proper-
ties with the domain up-down control, but it is used to display numbers instead
of text.The numeric up-down control is a great choice when collecting input
such as a number of employees and a number of days from the user.Table 8.16
shows the properties of the NumericUpDown control.

Table 8.16 NumericUpDown Properties

Property Description

AllowDrop Determines if the up-down control will receive drag-
drop notifications

BackColor The background color used to display text and graphics
in the up-down control

BorderStyle Indicates the border style of the up-down control
Cursor The cursor that appears when the mouse passes over

the up-down control
DecimalPlaces Indicates the number of decimal places to display
Font The font used to display text in the up-down control
ForeColor The foreground color used to display text and graphics

in the up-down control
Hexadecimal Indicates whether the up-down control should display

its value in hexadecimal

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 386

Windows Forms Components and Controls• Chapter 8 387

Property Description

Increment Indicates the amount to increment/decrement on each
button click

InterceptArrowKeys Indicates whether the up-down control will increment
and decrement the value when the Up Arrow and
Down Arrow keys are pressed

Maximum Indicates the maximum value for the up-down control
Minimum Indicates the minimum value for the up-down control
ReadOnly Indicates whether or not the edit box is read-only
RightToLeft Indicates whether the up-down control should draw

right-to-left for RTL languages
TabIndex Determines the index in the tab order that the up-down

control will occupy
TabStop Indicates whether the user can use the Tab key to give

focus to the up-down control
TextAlign Indicates how the text should be aligned in the edit box
ThousandsSeparator Indicates whether thousands separators will be inserted

between every three digits
UpDownAlign Indicates how the up-down control will position the

up-down buttons relative to its edit box
Value The current value of the up-down control

The numeric up-down control has several unique properties.The Value prop-
erty holds the current value of the numeric up-down control.The user can use
the up-down buttons to increment or decrement the current value by the value
of the Increment property.

The default value of the Increment property is 1.You can set the Increment
property to a smaller value and display decimal places by increasing the value of
the DecimalPlaces property.Along with displaying decimal places, you can also dis-
play thousands separators between every three digits.

The Minimum and Maximum properties indicate the minimum and maximum
values of the up-down control.The value of the up-down control cannot be
decremented past the value of the Minimum property.Also, the current value
cannot be incremented past the value of the Maximum property.

www.syngress.com

Table 8.16 Continued

153_VBnet_08 8/15/01 1:41 PM Page 387

388 Chapter 8 • Windows Forms Components and Controls

PictureBox Control
The Windows Forms PictureBox control is used to display images in bitmap, GIF,
icon, or JPEG formats. For example, you can use a picture box to display the logo
of your company in the About box of your application.You can also change the
image displayed in a picture box at runtime.Table 8.17 contains the properties of
the PictureBox control.

Table 8.17 PictureBox Properties

Property Description

BackColor The background color used to display text and graphics
in the picture box

BackgroundImage The background image used for the control
BorderStyle Controls what type of border the picture box should

have
Cursor The cursor that appears when the mouse passes over

the picture box
Image The image displayed in the picture box
SizeMode Controls how the picture box will handle image

placement and control sizing
TabIndex Determines the index in the tab order that the picture

box will occupy

You can programmatically change the image displayed in a picture box, which
is particularly useful when you use a single form to display different pieces of
information. For instance, you may choose to create one dialog box to display
errors or status at different times during the run, and display different images for
different messages.To set a picture at runtime, use the FromFile method of the
Image class as follows:

'Display the company logo

Dim strImagePath As String = "Company Logo.jpg"

picCompanyLogo.Image = Image.FromFile(strImagePath)

You can also set a picture at design-time.To set a picture at design-time:

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 388

Windows Forms Components and Controls• Chapter 8 389

1. Select the picture box on the form.

2. If necessary, use the View menu to open the Properties window.

3. Select the Image property. Choose the picture in the Open File
dialog box.

If you use a picture box to display images of different sizes, use the SizeMode
property to size the picture box to prevent image cropping.You can set the
SizeMode property to the following values:

■ PictureBoxSizeMode.AutoSize to automatically resize the picture box

■ PictureBoxSizeMode.CenterImage to center the image in the picture box

■ PictureBoxSizeMode.Normal for not resizing either the image or the
picture box

■ PictureBoxSizeMode.StretchImage to stretch the image to the size of the
fixed picture box

You can allow the picture box to automatically resize as follows:

'Allow the picture box to automatically resize

picCompanyLogo.SizeMode = PictureBoxSizeMode.AutoSize

At times you may want to clear the picture box and remove the image.To
clear a picture box, simply set its Image property to Nothing. Here is what it
would like in code:

'Clear the picture box

picCompanyLogo.Image = Nothing

TrackBar Control
The Windows Forms TrackBar control is a control similar to the ScrollBar that
allows the user to scroll through a range of values.The track bar is great for
adjusting volume, contrast, and brightness levels. It consists of a slider and tick
marks.The user can adjust the value of the track bar by dragging the slider, using
the arrow keys, or using the Page Up or Page Down keys.Table 8.18 shows the
properties of the TrackBar control.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 389

390 Chapter 8 • Windows Forms Components and Controls

Table 8.18 TrackBar Properties

Property Description

AllowDrop Determines if the track bar will receive drag-drop
notifications

AutoSize Indicates whether the track bar will resize itself
automatically based on a computation of the default
scrollbar dimensions

BackColor The background color used to display text and graphics
in the track bar

Cursor The cursor that appears when the mouse passes over
the track bar

LargeChange The number of positions the slider moves in response to
mouse clicks or the Page Up and Page Down keys

Maximum The maximum value for the position of the slider on the
track bar

Minimum The minimum value for the position of the slider on the
track bar

Orientation The orientation of the track bar
RightToLeft Indicates whether the track bar should draw right-to-left

for RTL languages
SmallChange The number of positions the slider moves in response to

keyboard input (arrow keys)
TabIndex Determines the index in the tab order that the track bar

will occupy
TabStop Indicates whether the user can use the Tab key to give

focus to the track bar
TickFrequency The number of positions between tick marks
TickStyle Indicates where the ticks appear on the track bar
Value The position of the slider

The track bar shares most of its properties with other controls.You should be
familiar with the Value property, which indicates the position of the slider.You
should also know about the SmallChange and LargeChange properties.The
SmallChange property determines the number of positions the slider moves to the
right when the user uses the Right Arrow and Down Arrow keys, and to the
left when the user uses the Left Arrow and Up Arrow keys.The LargeChange
property determines the number of positions the slider moves in response to

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 390

Windows Forms Components and Controls• Chapter 8 391

mouse clicks or when the Page Up and Page Down keys are pressed.The
LargeChange property also determines the number of positions the slider moves
when the user clicks to the left or right of the slider.

The Maximum and Minimum properties determine the maximum and min-
imum values for the position of the slider on the track bar.The TickFrequency
property holds the number of positions between tick marks.

As for appearance, the TickStyle property indicates where the ticks appear on
the track bar, which can be at the bottom right or top left of the slider, at both
sides, or not at all. For example, to make the tick marks appear on both sides of
the slider, use the TickStyle property as follows:

'Show tick marks at both sides of the slider

trkVolume.TickStyle = TickStyle.Both

Next, we will look at a powerful control: the DateTimePicker control.

DateTimePicker Control
The Windows Forms DateTimePicker control allows you to display and collect
dates and times for the user.The date-time picker is a great replacement for a
masked edit control with a date-time mask, because it allows you to display cal-
endar information as you collect input from the user. For example, the date-time
picker allows the user to view the days of the week around the day selected, or to
view different months, as if flipping through a calendar.Another advantage of the
date-time picker is that it disallows invalid input.While you can quickly set up a
masked edit control to disallow alpha characters in a numeric field, it requires
coding to disallow other invalid input such as 13 in a month field.

The date-time picker consists of a text box with an accompanying calendar
drop down.The user can input a date in several ways. First, the user can enter a
date by simply typing it into the text box.As discussed before, the date-time
picker validates the entry and disallows it if it is invalid. Second, the user can use
the drop down to navigate to a date.Third, the user can use the drop down and
quickly click on Today’s Date to enter the current date, regardless of the month
displayed in the drop down.

The date-time picker can also show only time.The date-time picker shows
only time when the Format property is set to Time. In that case, the date-time
picker does not show a drop-down calendar, but you can still use it to collect
only times that are valid.

The most important property of the date-time picker is the Value property,
which holds the selected date and time.The Value property is set to the current

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 391

392 Chapter 8 • Windows Forms Components and Controls

date by default.To change the date before displaying the control, use the Value
property as follows:

'Change the date to the following day

dtpEffectiveDate.Value = _

DateAdd(Microsoft.VisualBasic.DateInterval.Day, 1, Date.Today)

Table 8.19 shows the other properties of the DateTimePicker control.

Table 8.19 DateTimePicker Properties

Property Description

AllowDrop Determines if the date-time picker will receive
drag-drop notifications

CalendarFont The font used to display the calendar
CalendarForeColor The color used to display text within a month
CalendarMonthBackground The background color displayed within the

month
CalendarTitleBackColor The background color displayed in the calendar’s

title
CalendarTitleForeColor The color used to display text within the

calendar’s title
CalendarTrailingForeColor The color used to display header day and trailing

day text. Header and trailing days are the days
from the previous and following months that
appear on the current month calendar

Cursor The cursor that appears when the mouse passes
over the control

CustomFormat The custom format string used to format the
date or time displayed in the date-time picker

DropDownAlign Controls whether the month drop down is
aligned to the left or right of the date-time
picker

Font The font used to display text in the date-time
picker

Format Determines whether dates and times are dis
played using standard or custom formatting

MaxDate The maximum date selectable
MinDate The minimum date selectable

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 392

Windows Forms Components and Controls• Chapter 8 393

Property Description

ReadOnly Determines whether the user can free-form edit
the date field. If this is set to False, then
onUserString events will be fired

RightToLeft Indicates whether the control should draw right-
to-left for RTL languages

ShowCheckBox Determines whether a check box is displayed in
the date-time picker. When the check box is
unchecked, no value is selected

ShowUpDown Controls whether an up-down button is used to
modify dates instead of a drop-down calendar

TabIndex Determines the index in the tab order that this
control will occupy

TabStop Indicates whether the user can use the Tab key
to give focus to the date-time picker

Value The current date/time value for the date-time
picker

ValueSet Determines if the None check box is checked,
indicating the user has selected a value

The CheckBox property is another key property of the date-time picker.
Ordinarily, the CheckBox property is set to False and the date-time picker always
holds a value.There may be times, however, when you want to allow the user not
to specify a value—for example, if you are using a date-time picker to collect an
employee’s date of termination, but the employee is still active. In such a case, set
the CheckBox property to True as follows:

dtpDateOfTermination.CheckBox = True

When the CheckBox property is set to True, the edit portion of the date-time
picker displays a check box.Your user can now uncheck the box to indicate that
there has not been a date of termination.When an employee is terminated, the
user can check the box, and select the appropriate date. It is important to note
that when the check box is unchecked, the date-time picker Value property
returns Null.

You should be familiar with another property of the date-time picker, the
Format property.The Format property allows you to use standard formatting

www.syngress.com

Table 8.19 Continued

153_VBnet_08 8/15/01 1:41 PM Page 393

394 Chapter 8 • Windows Forms Components and Controls

strings or custom formats to display the date.To display a custom format, use the
Format property along with the CustomFormat property as follows:

'Display the day of week

dtpDayOfWeek.Format = _

System.WinForms.DateTimePickerFormats.Custom

dtpDayOfWeek.CustomFormat = "dddd"

You should also be familiar with the MinDate and MaxDate properties.The
MinDate property is the minimum date selectable and the MaxDate is the max-
imum date selectable.The user cannot choose a date before the minimum date.
This is useful when you need to compare dates. For example, you would not
want the user to enter a date of termination that occurs before the date of hire.

Panel Control
The Windows Forms Panel control is used to group other controls.A panel
allows you to give the user a logical visual cue of controls that belong together.
For example, on a dialog box that displays properties of a file, you could place all
check boxes describing the attributes of the file—Archive, Normal, System, Hidden,
and ReadOnly—on one panel to help the user identify them as one group. In
addition, a panel is also useful at design-time, as you can move all controls on a
panel simultaneously by moving only the panel.Table 8.20 shows the properties
of the Panel control.

Table 8.20 Panel Properties

Property Description

AllowDrop Determines if the panel will receive drag-drop
notifications

AutoScroll Determines whether scroll bars will automatically appear
if controls are placed outside the form’s client area

AutoScrollMargin The margin around controls during autoscrolls
AutoScrollMinSize The minimum logical size for the autoscroll region
BackColor The background color used to display text and graphics

in the panel
BackgroundImage The background image used for the panel
BorderStyle Indicates whether or not the panel should have a border
Cursor The cursor that appears when the mouse passes over

the panel

www.syngress.com
Continued

153_VBnet_08 8/15/01 1:41 PM Page 394

Windows Forms Components and Controls• Chapter 8 395

Property Description

DockPadding Determines the size of the border for docked controls
DrawGrid Indicates whether or not to draw the positioning grid
Font The font used to display text in the panel
ForeColor The foreground color used to display text and graphics

in the panel
GridSize Determines the size of the positioning grid
RightToLeft Indicates whether the panel should draw right-to-left

for RTL languages
SnapToGrid Determines if controls should snap to the positioning

grid
TabIndex Determines the index in the order that the panel will

occupy
TabStop Indicates whether the user can use the Tab key to give

focus to the panel

Let’s look at how you can add check boxes to a panel in code.The following
snippet adds check boxes describing file attributes to a panel:

'Add file attribute checkboxes to a panel

With pnlAttributes.Controls

.Add(chkArchive)

.Add(chkNormal)

.Add(chkSystem)

.Add(chkHidden)

.Add(chkReadOnly)

End With

The BorderStyle property indicates whether a panel should have a border.You
can add a 3D border or a flat border to a panel.Your panel can also have no
border. Let’s look at the code for these options:

pnlAttributes.BorderStyle = WinForms.BorderStyle.Fixed3D

pnlAttributes.BorderStyle = WinForms.BorderStyle.FixedSingle

pnlAttributes.BorderStyle = WinForms.BorderStyle.None

www.syngress.com

Table 8.20 Continued

153_VBnet_08 8/15/01 1:41 PM Page 395

396 Chapter 8 • Windows Forms Components and Controls

You can change the background color used to display graphics and text in a
panel.When you change a panel’s background color, the background color of all
the controls it contains also changes to the color you set.

'Change background color to gray

panel1.BackColor = Color.Gray

Your panel can also display a background image, which appears behind the
controls contained within the panel.To display a background image, set the
BackgroundImage property as follows:

pnlAttributes.BackgroundImage = Image.FromFile("Background.jpg")

GroupBox Control
Like the Panel Control, the GroupBox control is used to group other controls. In
contrast to the Panel control, the GroupBox cannot have scrollbars and only the
GroupBox allows you to display a caption with a group of controls.This is similar
to the Frame control in previous versions of Visual Basic. Nonetheless, you can
use the Add method we discussed in the previous section to create a group of
controls.The group box also allows you to set the background programmatically
using the BackColor and BackgroundImage properties discussed in the previous sec-
tion.Table 8.21 shows the other properties of the GroupBox control.

Table 8.21 GroupBox Properties

Property Description

BackColor The background color used to display text and graphics
in the group box

BackgroundImage The background image used for the control
DrawGrid Indicates whether or not to draw the positioning grid
Font The font used to display text in the group box
ForeColor The foreground color used to display text and graphics

in the group box
GridSize Determines the size of the positioning grid
RightToLeft Indicates whether the group box should draw right-to-

left for RTL languages
SnapToGrid Determines if controls should snap to the positioning

grid

www.syngress.com

Continued

153_VBnet_08 8/15/01 1:41 PM Page 396

Windows Forms Components and Controls• Chapter 8 397

Property Description

TabIndex Determines the index in the tab order that this control
will occupy

Text The text contained in the group box

TabControl Control
The Windows Forms TabControl control is used to hold controls separated by
tabs.The tab control is handy when you need to display different groups of infor-
mation on limited real estate.You can put each group of information on a sepa-
rate tab of the tab control. For example, in a payroll application you can put an
employee’s general information, such as her name and address, on one tab and
information about her dependents on another tab.

The TabPages property is an important property of the tab control, because it
controls the collection of tab pages. Often, you will want to add tab pages to a
tab control at design-time so you can add controls to each page.To add a tab
page to a tab control:

1. Select the tab control on the form.

2. If necessary, use the View menu to open the Properties window.

3. Click the TabPages property, then click the ellipsis.

4. In Tab Page Collection Editor, click Add.

5. In the TabPage1 Properties box, change the Text property to an
appropriate caption for the tab page.

6. Click OK.

The tab control has other unique properties.Table 8.22 lists the properties of
the TabControl control.

Table 8.22 TabControl Properties

Property Description

Alignment Determines whether the tabs appear on the top,
bottom, left, or right side of the tab control (left or
right are implicitly multilined)

www.syngress.com

Table 8.21 Continued

Continued

153_VBnet_08 8/15/01 1:41 PM Page 397

398 Chapter 8 • Windows Forms Components and Controls

Property Description

AllowDrop Determines if the tab control will receive drag-drop
notifications

Appearance Indicates whether the tabs are painted as buttons or
regular tabs

Cursor The cursor that appears when the mouse passes over
the tab control

DrawGrid Indicates whether or not to draw the positioning grid
DrawMode Indicates whether the user or the system paints the

captions
Font The font used to display text in the tab control
GridSize Determines the size of the positioning grid
HotTrack Indicates whether the tabs visually change when the

mouse passes over them
ImageList The image list from which the tab control takes its

images
ItemSize Determines the width of fixed-width or owner-draw

tabs and the height of all tabs
Locked Determines if the user can move or resize the control
MultiLine Indicates if more than one row of tabs is allowed
Padding Indicates how much extra space should be added

around the text/image in the tab, if the DrawMode
property value is Fixed

RightToLeft Indicates whether the tab control should draw right-to-
left for RTL languages

ShowToolTips Indicates whether tooltips should be shown for tables
that have their tooltips set

SizeMode Indicates how tabs are sized
SnapToGrid Determines if controls should snap to the positioning

grid
TabInde Determines the index in the tab order that the tab

control will occupy
TabPages The tab pages in the tab control
TabStop Indicates whether the user can use the Tab key to give

focus to the tab control

www.syngress.com

Table 8.22 Continued

153_VBnet_08 8/15/01 1:41 PM Page 398

Windows Forms Components and Controls• Chapter 8 399

Another property you should be familiar with is the MultiLine property.The
MultiLine property determines if more than one row of tabs is allowed.This prop-
erty is useful when you have a large number of tabs or long captions.You can
ensure the captions are visible by setting the MultiLine property to True.

The HotTrack property is an eye-catching, commonly used property of the tab
control.When the HotTrack property is set to True, the caption of the tabs change
colors when the mouse passes over them.The tabs change to their regular color
when the mouse is not over them.

We have now discussed the powerful controls built into Visual Basic .NET.
However, at times these controls will not quite provide the functionality you
want.When that happens, you will want to create your own controls. Next, we
will look at creating custom Windows components and controls.

Creating Custom Windows Components
The Windows Forms framework offers numerous components that you can use
to build applications. In advanced applications these components may not provide
the functionality you want. Should this be the case, you can create your own
components to provide exactly what you need. But what exactly are compo-
nents?

A component is a class with emphasis on cleanup and containment.
Components provide reusable code in the form of objects.You can think of a
component as a control without user interface capabilities.Therefore, it makes
sense to discuss how to author a component before we look at authoring con-
trols.The two are very similar, and you can use everything you know about
authoring a component when you author a control.

A good way to understand how to author a component is by walking
through the process. In the following exercise you will create a component.

Exercise 8.1: Creating a Custom
Windows Component
In this exercise, you will create a class library project for a component CFirst, add
constructors and destructors, add a property, and test the component. It is useful
to have the Toolbox, Solution Explorer, Properties, and Task List windows open
when you start creating your component:

1. Use the View menu to open the Toolbox, Solution Explorer, and the
Properties window.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 399

400 Chapter 8 • Windows Forms Components and Controls

2. From the View menu, point to Other Windows and then select Task
List to open the Task List.

Creating a Class Library Project
To create a component, you have to create a class library.Visual Basic .NET pro-
vides you with a class library project template to help you create the class library.
To create the CFirstLib class library and the CFirst component:

1. On the File menu, select New and then Project to open the New
Project dialog box. From the list of Visual Basic Projects, select the
Class Library project template, and enter CFirstLib in the Name box.

NOTE

When you create a new project, always specify its name to set the root
namespace, assembly name, and project name. Doing so also ensures
that the default component will be in the correct namespace.

2. In Solution Explorer, right-click Class1.vb and select View Code
from the shortcut menu.

3. In the Code window, locate the Class statement, Public Class Class1,
and change the name of the component from Class1 to CFirst.

NOTE

As shown by the Inherits statement immediately below the Class
statement, a component inherits from the Component class by default.
The Component class provides the ability to use designers with your
component.

4. In Solution Explorer, click Class1.vb, and in the Properties window
change the filename to CFirst.vb.

5. On the File menu, select Save CFirst.vb to save the project.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 400

Windows Forms Components and Controls• Chapter 8 401

Adding Constructors and Destructors
We now add constructors and destructors to control the way the CFirst compo-
nent is initialized and torn down.The only function of our component will be to
maintain a running count of how many CFirst objects are in memory at any
given time.When a CFirst object is initialized, the running count will be incre-
mented, and when it a CFirst object is torn down, the running count will be
decremented.To add code for the constructor and destructor of the CFirst class:

1. In the Code Editor window (either before or after the declaration of
the components container) add member variables to keep a running
total of instances of the CFirst class, and an ID number for each instance:

Public ReadOnly intInstanceID As Integer

Private Shared intNextInstanceID As Integer = 0

Private Shared intClassInstanceCount As Integer = 0

Shared member variables such as intClassInstanceCount and
intNextInstanceID are initialized the first time the CFirst class is referred
to in code and exist at the class level only.All instances of CFirst that
access these members will use the same memory locations. Read-only
members such as intInstanceID can be set only in the constructor:

2. Locate Public Sub New, the default constructor for the CFirst class.After
the call to InitializeComponent, add the following code to set the
instance ID number and to increment the instance count when a new
CFirst object is created:

intInstanceID = intNextInstanceID

intNextInstanceID += 1

intClassInstanceCount += 1

3. Add the following method after the end of the constructor to decrement
the instance count just before the CFirst object is removed from
memory:

Protected Overrides Sub Finalize()

intClassInstanceCount -= 1

End Sub

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 401

402 Chapter 8 • Windows Forms Components and Controls

Adding a Property to the Class
Now we will add a single property to our CFirst class.The shared property
intClassInstanceCount holds the number of CFirst objects in memory.

To create a property for the CFirst class, add the following property declara-
tion to the CFirst class:

Public Shared ReadOnly Property InstanceCount() As Integer

Get

Return intClassInstanceCount

End Get

End Property

Testing the Component
To test our CFirst component, we need to create a client project that uses the
component. In order to do this, we need to set the client project as the startup
project to ensure it will be the first to run when our solution is started.We will
call the client project CFirstTest.To add the CFirstTest client project as the
startup project for the solution:

1. On the File menu, select Add Project and then New Project to open
the Add New Project dialog box.

2. From the list of Visual Basic Projects, select the Windows
Application project template. In the Name box, type CFirstTest, then
click OK.

3. In Solution Explorer, right-click CFirstTest and click Set As
Startup Project on the shortcut menu.

In order to use the fully qualified name of the CFirst component
(CFirstLib.CFirst), we need to add a reference to the class library project.To add
a reference to the class library project:

1. In Solution Explorer, right-click the References node immediately
beneath CFirstTest, and select Add Reference from the shortcut menu.

2. In the Add Reference dialog box, select the Projects tab.

3. Double-click the CFirstLib class library project to add it to the
Selected Components list. CFirstLib will appear under the References
node for the CFirstTest project. Click OK.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 402

Windows Forms Components and Controls• Chapter 8 403

4. In Solution Explorer, right-click Form1.vb and select View Code
from the shortcut menu.

Adding an Imports statement allows us to refer to the component type as
CFirst, omitting the library name.This makes it easier to use the component.

To add an Imports statement, add the following Imports statement to the list
of Imports statements at the top of the Code Editor window for Form1:

Imports CFirstLib

Using the Component
You can now use the component’s properties in code.We need to add a button
to our form to create new instances of CFirst.To use the CFirst component pro-
grammatically:

1. From the Toolbox window, select the Win Forms tab, and double-
click the Button control.

2. On Form1, double-click the Button control. In the Click event han-
dler for Button1, add the following code:

Dim objCFirst As New CFirst()

MessageBox.Show("There are " & objCFirst.InstanceCount _

& " CFirst objects in memory.")

As you type the code in the Code window, the Complete Word box will
appear displaying the InstanceCount property.You can expose methods similarly.

Creating Custom Windows Controls
As we discussed, controls are components with user interface capabilities.There is
a lot of overlap between component creation and control creation. Instead of
discussing the similarities, let’s look at a common problem.You have a certain
built-in control available to you and you are happy with it, except for this one
nagging feature.The control does not do exactly what you want, or it lacks one
feature you need.You will find that often you do not need a whole new control;
you just need to be able to change an existing one.

This can be done by inheriting from a control. For a simple example, let’s
look at a Button control.You can create your own control to be placed in the

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 403

404 Chapter 8 • Windows Forms Components and Controls

Toolbox window.To keep it simple, let’s say you want to create a custom control
that inherits from the Button control but has a different background color.This is
a small change, but once we discuss how to make this small change, you can
change other controls to do more elegant things.

Exercise 8.2: Creating a Custom Windows Control
In this exercise, you will create a custom control that inherits from the Windows
Forms Button. Our custom control will resemble the Windows Forms Button
control, but our custom control will have a white background. It is useful to have
the Toolbox, Solution Explorer, Properties, and Task List windows open
when you start creating your component:

1. Use the View menu to open the Toolbox, Solution Explorer, and the
Properties window.

2. From the View menu, point to Other Windows and then select Task
List to open the Task List.

Creating a Control Library Project
As with components, we need to create a control library.Visual Basic .NET pro-
vides you with a control library project template to help you create the control
library.To create the CMyButtonLib class library and the CMyButton component:

1. On the File menu, select New and then Project to open the New
Project dialog box. From the list of Visual Basic Projects, select the
Windows Control Library project template, and enter
CMyButtonLib in the Name box.

2. In Solution Explorer, right-click Control1.vb and select View Code
from the shortcut menu.

3. In the Code window, locate the Class statement, Public Class
Control1, and change the name of the component from Control1 to
CMyButton.

4. In Solution Explorer, click Control1.vb and in the Properties
window change the filename to CMyButton.vb.

5. On the File menu, select Save CMyButton.vb to save the project.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 404

Windows Forms Components and Controls• Chapter 8 405

Adding Constructors and Destructors
We now add constructors and destructors to control the way the CMyButton
control is initialized and torn down. Our component will resemble a button con-
trol, but our component’s background color will be white.

To add code for the constructor and destructor of the CMyButton control,
locate Public Sub New, the default constructor for the CMyButton class.After
the call to InitializeComponent, add the following code to set the background
color to white:

Me.BackColor = System.Drawing.Color.White

Testing the Component
To test our CMyButton control, we need to create a client project that uses
the control:

1. On the File menu, select Add Project and then New Project to
open the Add New Project dialog box.

2. From the list of Visual Basic Projects, select the Windows
Application project template. In the Name box, type
CmyButtonTest, then click OK.

3. In Solution Explorer, right-click CMyButtonTest and click Set As
Startup Project on the shortcut menu.

In order to use the fully qualified name of the CButton control
(CMyButtonLib.CMyButton), we need to add a reference to the control library
project.To add a reference to the control library project:

1. In Solution Explorer, right-click the References node immediately
beneath CMyButtonTest, and select Add Reference from the shortcut
menu.

2. In the Add Reference dialog box, select the Projects tab.

3. Double-click the CMyButton class library project to add it to the
Selected Components list. CMyButton will appear under the
References node for the CMyButtonTest project. Click OK.

4. In Solution Explorer, right-click Form1.vb and select View Code
from the shortcut menu.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 405

406 Chapter 8 • Windows Forms Components and Controls

Adding an Imports statement allows us to refer to the component type as
CFirst, omitting the library name.This makes it easier to use the component.

To add an Imports statement, add the following Imports statement to the list
of Imports statements at the top of the Code Editor window for Form1:

Imports CMyButtonLib

Using the Component
You can now use the component’s properties in code.We need to add a button
to our form to create new instances of CFirst.

To use the CFirst component programmatically,, double-click Form1. In the
Click event handler, add the following code:

Dim btnMyButton As New CMyButton()

btnMyButton.Show()

As you type the code in the Code window, the Complete Word box will
appear displaying the properties and methods of the Button control.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 406

Windows Forms Components and Controls• Chapter 8 407

Summary
We have seen that the Window Forms framework offers many controls that you
can use.These controls have properties, methods, and events to help you accom-
plish your goals.As we have discussed, many properties of controls can be
changed at design-time and at runtime.We have seen many examples of just how
to change those properties at runtime.

Sometimes you need a reusable object for a certain functionality that is not
built into the Windows Forms framework. For these, applications components are
just the ticket. Not only do components provide a great way to reuse code, but
they also allow you to get the exact functionality you need.

Controls are components with user interface capabilities.You can create prop-
erties for controls the same way you saw properties for components created in
this chapter. More often than not, you do not need a whole new control, but
simply a change to one of the many powerful controls built into the Windows
Forms framework.You have seen how to make such a change and get a control
to do exactly what you want.

Solutions Fast Track

Built-In Controls

The Windows Forms framework offers many controls that you can use
to build applications.

The built-in controls have many properties, methods, and events in
common.

You can change many of the properties of built-in controls both at
design-time and runtime.

Creating Custom Windows Components

At times, you need a custom component to provide exactly the func-
tionality you need.

Components provide reusable code in the form of objects.

Creating a custom component is a delicate multistep process.

www.syngress.com

153_VBnet_08 8/15/01 1:41 PM Page 407

408 Chapter 8 • Windows Forms Components and Controls

Creating Custom Windows Controls

Sometimes built-in controls do not provide the functionality you need.

A control is a component with user interface capabilities.

Often, you can extend an existing control instead of creating a new one.

Q: Does Visual Basic .NET support component and control creation?

A:Yes,Visual Basic .NET allows you to create your own components and controls.
Components can be used to provide reusable code in the form of objects.

Q: Can I choose more than one control to collect a piece of information from
the user?

A:Yes, many controls allow you to collect input from the user. However, some
controls are better than others for collecting and validating specific types of
information, like dates and times.

Q: Can the properties of controls be changed at runtime?

A: Many properties of controls can be changed at runtime. However, other
properties are read-only at runtime.

Q: How do I programmatically add items to a combo box?

A:You can programmatically add items to a combo box and other controls by
using the Add method of the Items collection.

Q: Should I create my own controls?

A:You only need to create your own controls when the built-in controls do not
provide the functionality you need, or if they cannot be extended to provide
that functionality.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_08 8/15/01 1:41 PM Page 408

Using ADO.NET

Solutions in this chapter:

■ Overview of XML

■ Understanding ADO.NET Architecture

■ Using the XML Schema Definition Tool

■ Connected Layer

■ Disconnected Layer

■ Using the SQL Server Data Provider

■ Remoting

■ Data Controls

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 9

409

153_VBnet_09 8/15/01 2:30 PM Page 409

410 Chapter 9 • Using ADO.NET

Introduction
The .NET Framework leverages XML heavily. XML is steadily growing and has
gone beyond being the latest buzzword. It allows for interoperability of passing
data between disparate systems on different platforms and Microsoft has created a
number of enterprise servers that support XML, such as their Biztalk server and
even SQL Server 2000 has XML functionality built in.As industries accept stan-
dards based on XML, its use will spread to all phases of enterprise solutions.
XML is a self-describing data format and many tools are already available to
automatically create the schemas and documents. In this chapter, we discuss one
of these tools, the XML Schema Definition tool.

The ADO.NET architecture uses XML as its native data format.ADO.NET
is different from ADO 2.x.ADO.NET is filled with XML functionality, including
XML Document objects. Here we discuss working with data when connected to
the data source and when disconnected.You should already be familiar with
working with disconnected data from previous versions of ADO.This function-
ality is extended using XML and will allow for better use of data in Web pages
without a constant connection to a remote database server.ADO.NET has the
concept of a data provider, which is similar to an OLE DB provider in ADO.
ADO.NET currently has a built-in data provider for SQL Server.You gain signif-
icant performance benefits from a built-in provider.

We also discuss remoting in .NET. Remoting allows objects or components to
communicate across networks or the Internet and takes care of many of the com-
plexities of communicating across networks.This allows business objects to reside
on any computer across your network or even the Internet. It also allows the
integration of third-party business objects into your applications by calling their
methods across the Internet. Imagine that you are creating a Web application that
will accept credit cards online.With this technology, you can just make calls to
their objects across the Internet and not have to concern yourself with sup-
porting and configuring their product. Finally, in this chapter, we discuss the most
common data controls: the DataGrid, DataList, and Repeater.These controls bind
directly to a data source, display larger amounts of data in an easy-to-read format,
and are easy to configure and control.This is an important chapter. XML and
ADO.NET will be the core of most applications, and it is necessary to understand
how to handle data in the .NET Framework.

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 410

www.syngress.com

Overview of XML
XML stands for Extensible Markup Language. XML is a standard for formatting
data that is extensible, self-describing, and solves many of the problems inherent
with data manipulation and transportation. XML uses a document paradigm
whereby a document contains a few basic elements that are easy to understand
and grasp. Moving data using XML is similar to moving data in ASCII format;
however, we have more options. For example, we can represent relationships in
XML that were very difficult to do in flat ASCII files.We do not have to deal
with fixed width, delimiting characters, or even column order.

XML is a standard with broad support in many industries and has grown to
encompass almost any type of data transportation. Since it is a specification based
on industry standards, we can count on wide-scale use and acceptance as well as a
broad range of tools to get the most out of our data. Keep in mind that XML
documents are not to be read directly, but are to be transported or transformed
into another format such as HTML.

XML Documents
XML documents are the heart of the XML standard.An XML document has at
least one element that is delimited with one start tag and one end tag. XML doc-
uments are similar to HTML, except that the tags are made up by the author.
They may have attributes designated by name value pairs to further allow for data
description:

<?xml version="1.0" standalone="yes"?>

<NewXMLDocument>

<MyTable>

<Column1>Data1</Column1>

<Column2>Data2</Column2>

</MyData>

</NewXMLDocument>

XSL
XSL stands for Extensible Stylesheet Language. XSL documents are XML docu-
ments that, when combined with another XML document, transform data into
something more useful, such as highlighting specific data.This allows a developer
to separate the logic of data presentation and the actual data into two independent

Using ADO.NET • Chapter 9 411

153_VBnet_09 8/15/01 2:30 PM Page 411

412 Chapter 9 • Using ADO.NET

objects. XSL documents use special format objects to control the transformation
of data from one format (XML) to another (HTML).

XDR
XDR stands for XML Data Reduced, an XML-based schema format that is more
powerful than Data Type Definition, or DTD. For our purposes, XDR is synony-
mous with XML Schema Definition (XSD).These formats allow verification of
data types and much more during parsing and will allow XML data to be applied
in many forms that DTD could not address.This allows our XML documents to
describe their data, and allows us to constrain them to particular schemas or
structure.

ADO.NET uses XML schema files to implement a Typed DataSet.A Typed
DataSet is a wizard-generated set of controls that make use of a schema
definition to enforce DataType information and column names; and enforce
these at compile time.

XPath
XPath describes location paths of data between XML documents, and can be
used to query other XML documents. Using a syntax that is similar to navigating
a file system, we can select parts of a document.This may be useful for developers
familiar with creating XPath queries. XML Query promises to combine queries
to relational databases and XML documents with similar syntax and dialog.This
will give us a powerful tool that is independent of the data source, as long as the
data source can serve up XML.

We can use XPath queries in DataXmlNavigator and XMLNavigator objects
to return nodes for reading or updating. It is a tool useful for eliminating the
scrolling and manual search implementation for addressing data in XML docu-
ments.We can take advantage of XPath, but it is not necessary to understand this
language to make the most of XML in ADO.NET.

Understanding ADO.NET Architecture
ADO.NET is the latest extension of the Universal Data Access technology. Its
architecture is similar to ADO in some respects, but a great departure in others.
ADO.NET is much simpler, less dependant on the data source, more flexible,
and the format of data is textual instead of binary.Textual formatted data is more
verbose than binary formatted data, which makes it comparably larger.What we
get for this is ease of transportation through disconnected networks, flexibility,

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 412

Using ADO.NET • Chapter 9 413

and speed. Because ADO.NET is based on XML, it only requires that a data
provider serve up the data in XML. Once you write your data access code, you
only need to change a few parameters to connect to a different data source.

ADO.NET is based on a connectionless principle that is designed to ease the
connection limitations that we traditionally had to deal with when creating dis-
tributed solutions.We no longer have to maintain a connection, or even worry
about many of the connection options that plagued us in the past. Since the
ADO.NET classes inherit from the same core of data access classes, it will make
switching data sources much easier and less troublesome.The core ADO.NET
namespaces are described in Table 9.1.

Table 9.1 Core ADO.NET Namespaces

Namespace Description

System.Data Makes up the core objects such as DataTable,
DataColumn, DataView, and Constraints, to name a
few. This namespace forms the basis for the others.

System.Data.Common Defines generic objects shared by different data
providers, such as DataAdapter,
DataColumnMapping, and DataTableMapping.
This namespace is used by data providers and
contains collections useful for accessing data
sources. For the most part, we do not use this
namespace unless we are creating our own data
provider.

System.Data.OleDb Defines objects that we use to connect to and
modify data in various data sources. It is written
as the generic data provider and the implementa-
tion provided by the .NET Framework in Beta2
contained drivers for Microsoft SQL Server, the
Microsoft OLE DB Provider for Oracle, and Microsoft
Provider for Jet 4.0. This class is useful if your pro-
ject connects to many different data sources, but
you want more performance than the ODBC
provider.

System.Data.SqlClient A data provider namespace created specifically for
Microsoft SQL Server version 7.0 and later. When
using Microsoft SQL Server, this namespace is
written to take advantage of the Microsoft SQL
Server API directly and provides better performance
than the more generic System.Data.OleDb
namespace.

www.syngress.com

Continued

153_VBnet_09 8/15/01 2:30 PM Page 413

414 Chapter 9 • Using ADO.NET

System.Data.SQLTypes Provides classes for data types specific to Microsoft
SQL Server. These classes are designed specifically
for SQL Server and provide better performance. If
we do not use these specifically, the SQLClient
objects will do it for us, but may result in loss of
precision or type conversion errors.

System.Data.ODBC This namespace is intended to work with all
compliant ODBC drivers, and is available as a
separate download from Microsoft.

The Command, Connection, DataReader, and DataAdapter are the core
objects in ADO.NET.They form the basis for all operations regarding data in
.NET.These objects are created from the System.Data.OleDb,
System.Data.SqlClient, and the System.Data.ODBC namespaces.

Differences between ADO and ADO.NET
ADO is based on a binary format for data, with a database connection paradigm.
We were allowed to disconnect record sets in later versions of ADO, but this
required marshaling the binary representation of the data from process to process
and then reconstructing it into valid data formats.This limited us to tightly cou-
pled implementations with connection issues if we needed to operate through
firewalls, proxies, and so forth. Since ADO.NET is based on a textual standard
that does not require type conversion, marshaling, and special RPC ports for
transporting the data, Microsoft has removed many of the obstacles encountered
when creating distributed applications .

ADO uses a Recordset object that represents a table of data; however, this
view was not ideal for representing the often-relational data of today’s applica-
tions. In addition to this limitation, it has several options that confused many
developers learning the technology, such as cursor types, cursor location, and lock
types.These options generated a lot of confusion, especially if the user was not
familiar with the database from which the data was coming.

XML Support
XML is the native data format for ADO.NET. XML documents replace the
binary elements that were an integral part of ADO. XML is a standard with broad

www.syngress.com

Table 9.1 Continued

Namespace Description

153_VBnet_09 8/15/01 2:30 PM Page 414

Using ADO.NET • Chapter 9 415

support and is ideal for the type of disconnected, distributed, Internet applications
being developed today. By leveraging XML, it is easier for developers of data
providers to integrate with ADO.NET.A data provider only has to create XML
documents to work with ADO.NET, which makes it a viable alternative for those
seeking the maximum flexibility for cross database development.

ADO.NET Configuration
Configuration for ADO.NET is handled during the .NET Framework installa-
tion.We don’t need to set any registry settings or path statements to alter. It all
happens on the fly, and all we have to do is understand it and use it.With ADO
we had to contend with MDAC updates until Windows 2000 came along and
incorporated this into the architecture. In some ways, we are back to the MDAC
days, except for .NET’s strategy to do away with dll.This also allows us to run
multiple versions of data access technologies without having to worry about
ramifications or breaking old code.Yes, even ADO.NET gets its roots from the
Common Language Runtime, along with all the benefits.

Remoting in ADO.NET
XML is key to remoting in ADO.NET. XML and HTML together can be used to
create services based on the Simple Object Access Protocol, or SOAP.This allows
us to create applications that operate similar to the Browser paradigm that has
made the Internet so diverse. By offering a service—for example, credit card
authorization—we can create a listener that understands a standard SOAP request
and after verifying a valid request can return a proper response.All this is possible
with XML. XML is at the center of ADO.NET, and therefore very important to
any .NET application that will involve data of any type.

Maintaining State
Since ADO.NET uses a connectionless, XML document methodology to handle
data access, maintaining state is not optional when using the DataSet object.When
we populate the DataSet, we are retrieving a populated XML document that is a
copy of the data stored in the original data source.This mandates that we have
“state,” and comes in handy when we have lengthy operations that may tie up a
connection. It also allows us to easily enhance our applications with a data cache
of often queried but seldom modified data.We can create a DataSet at application
startup and populate it with DataTables that we can use to populate drop-down
boxes and list boxes in our application without having to access the database each

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 415

416 Chapter 9 • Using ADO.NET

time the list needs populating.Add some code to refresh the cache after an
update, and we have an in-memory database that we can use to ease the burden
on the database server.This is just one example of a use for maintaining state in
an application.ADO.NET makes this type of development exceptionally easy.

Using the XML Schema Definition Tool
We can use the XSD Schema Definition tool to create schema files used for XML
data validation. In the Beta2 version, it is command line only. Entering XSD.EXE
/? at the command prompt brings up a long list of options for creating XML
schemas.To get a simple schema definition, consider the following MyData.xml
example (see CD file Chapter 09/Chapter9 Beta2/Samples/XML/MyData.xml):

<?xml version="1.0" standalone="yes"?>

<NewDataSet>

<Shippers>

<ShipperID>1</ShipperID>

<CompanyName>Speedy Express</CompanyName>

<Phone>(503) 555-9831</Phone>

</Shippers>

<Shippers>

<ShipperID>2</ShipperID>

<CompanyName>United Package</CompanyName>

<Phone>(503) 555-3199</Phone>

</Shippers>

<Shippers>

<ShipperID>3</ShipperID>

<CompanyName>Federal Shipping</CompanyName>

<Phone>(503) 555-9931</Phone>

</Shippers>

</NewDataSet>

Running the file through XSD.EXE results in this (see CD file Chapter 09/
Chapter9 Beta2/Samples/XML/MyData.xsd):

C:>xsd c:\MyData.xml

MyData.xsd

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 416

Using ADO.NET • Chapter 9 417

<?xml version="1.0" encoding="utf-8"?>

<xsd:schema id="NewDataSet" targetNamespace="" xmlns=""

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="NewDataSet" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Shippers">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ShipperID" type="xsd:string" _

minOccurs="0" />

<xsd:element name="CompanyName" type="xsd:string" _

minOccurs="0" />

<xsd:element name="Phone" type="xsd:string"

minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

To specify our new XSD as the schema of choice for our fresh new XML
Document, we simply add this attribute to our original root tag:

<NewDataSet xmlns="x-schema:MyData.xsd">

ADO.NET uses the xsd file to implement the Strongly Typed DataSet later in
the chapter.Visual Studio.NET uses the xsd.exe to create this file and then adds it
to the assembly.

Connected Layer
ADO.NET does not support connected data operations.You can, however, use
the older ADO and OLE DB libraries by converting them to .NET.This process
involves creating a .NET wrapper around the ADO libraries. Using this wrapper

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 417

418 Chapter 9 • Using ADO.NET

and the COM Interop module, we can call any COM+ component as if it were
a native .NET library.This module is a proxy that allows us to make use of the
existing code base without having to modify any of the COM components.
Therefore, we can easily make use of the ADO functionality we have grown to
love (and sometimes hate).

To make this happen, we will use the TLBIMP, a utility that comes with the
.NET Framework. Using the Type library from the COM component to be
imported,TLBIMP creates a .NET assembly containing the necessary .NET
metadata.To import the ADO libraries into .NET, all we need to do is execute
the following command at the command prompt:

tlbimp.exe <pathto>\msado15.dll

This creates a file ADODB.dll in the current directory, unless you specify a
different path or name using the /out: switch. Usually, you don’t have to do any
of this if you are using Visual Studio.NET. Set a reference to the ADO library in
the registered COM Components list to set this up in Visual Studio.NET.

To summarize,ADO.NET does not support connected database operations. If
you need this functionality, you are going to have to revert to the ADO and OLE
DB libraries using the COM Interop module.

Data Providers
Data providers are written specifically for a database. System.Data.SqlClient is an
example of a data provider written solely for access to Microsoft SQL Server.This
provider takes advantage of SQL Server in ways that are unique to Microsoft SQL
Server. It is written to use the SQL Server API directly and is more efficient than
using the more generic OLE DB, or ODBC providers.You should not use this
provider to connect to Oracle,Access, or any other database. It is, however, inher-
iting from the same base classes that System.Data.OleDb is.Therefore, if we write
code for the SQL data provider, we can just change our connection from
SqlConnection to an OleDbConnection, change the connection string, and the rest
of the code stays the same.This is one benefit of loose coupling; for example, we
can now easily change the data provider from Access to SQL Server.

Connection Strings
Connections are simpler than ever.An easy way to get a connection string is to
create an empty text file. Rename it using “udl” (Universal Data Link) for the
extension.

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 418

Using ADO.NET • Chapter 9 419

Exercise 9.1 Creating a Connection String
1. Create a file with the name MyConnection.txt and then rename it to

MyConnection.udl.After opening MyConnection.udl from Explorer,
the Data Link Properties dialog box shown in Figure 9.1 appears.

2. Select the Provider tab and then pick your OLE DB provider. Figure
9.2 is an example of the provider-specific dialog that will prompt you for
information for building a SQL Server connection string.

The resulting text will look something like this:

[oledb]

; Everything after this line is an OLE DB initstring

Provider=SQLOLEDB.1;Password=;Persist Security Info=True; _

User ID=DBUser;Initial Catalog=Northwind;Data Source=LocalHost

You can paste this into your code without worrying about whether
the parameters are set up correctly.

www.syngress.com

Figure 9.1 Data Link Properties Dialog Box

153_VBnet_09 8/15/01 2:30 PM Page 419

420 Chapter 9 • Using ADO.NET

www.syngress.com

Connection Pooling
Connection pooling for the SqlClient connections is handled in Windows
2000 Component services. Each connection pool is differentiated using
a unique connection string using an exact matching algorithm. In other
words, all we have to do to take advantage of connection pooling is use
the same connection string. In addition, since the SqlConnection is
being hosted in Windows 2000 Component services, we can take advan-
tage of the resource management that Component services provides.

We do have some options that we can include in the connection
string to modify the default behavior of connection pooling for the
SqlConnection object. These options are well documented in the
Framework SDK.

Connection pooling for the OleDbConnection object is handled
using OLE DB session pooling, which is handled by the OLE DB provider,
not ADO.NET. As with SqlConnection pooling, we use identical connec-
tion strings to differentiate the pools, and we can modify the behavior
of the pool using connection string arguments. These arguments are not
documented in the Framework SDK; they are specific to OLE DB, and are
not the same as the SqlConnection options. Therefore, the connections
are not portable across namespaces if they modify the connection pools.

Developing & Deploying…

Figure 9.2 Connection Options for a SQL Server OLE DB Provider

153_VBnet_09 8/15/01 2:30 PM Page 420

Using ADO.NET • Chapter 9 421

Command Objects
The Command objects OleDbCommand and SqlCommand allow us to execute
statements directly against the database.They provide for simple and direct route
to our data, regardless of where the data resides.They can have a collection of
parameters that are used to pass variables in and get variables out. If you need to
get the return value of a stored procedure, the Command object is the object to
use. Command objects are particularly useful for executing INSERT, UPDATE,
and DELETE statements, but can also generate DataReader and XMLDataReader
objects for returning data:

Dim strSql As String = "SELECT * FROM Orders"

Dim sConn As String = "Provider=SQLOLEDB.1;" & _

"Password=password;" & _

"Persist Security Info=True;" & _

"User ID=sa;" & _

"Initial Catalog=Northwind;" & _

"Data Source=localhost"

Dim myConnection = New OleDbConnection(sConn)

Dim myCmd As OleDbCommand = New OleDbCommand(strSql,

myOleDbConnection)

These are useful for database operations that do not require records to be
returned.They also give us an object to use for parameterized stored procedures
and process output values and return values when necessary.

The Command objects are particularly suited for calling stored procedures,
which is the preferred method for data access. Stored procedures allow some
Relational Database Management Systems to precompile and take advantage of
statistics that it has gathered on the source tables. For example:

CREATE PROCEDURE getShippers AS

Select *

From shippers

Order By CompanyName

This stored procedure just returns an ordered list of records from the Shippers
table in the Northwind database.To call this procedure, we can use a couple of
different syntaxes.We can just specify the name of the stored procedure instead of

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 421

422 Chapter 9 • Using ADO.NET

a SQL statement, or we can create a Command object explicitly. Here is an
example of replacing a select statement with the name of a stored procedure:

'strSql = "SELECT * FROM Shippers"

strSql = "getShippers"

objOleDbCommand = New OleDbCommand(strSql, myOleDbConnection)

Here we commented out the line with the select statement in it and inserted
the stored procedure name. For a better example, let’s add an input parameter. By
adding a parameter to the stored procedure, we can now limit the rows that our
application uses and make it more efficient. For example, say we add a parameter
to the stored procedure that is used to find a shipper with a particular ShipperID.
To call it, we just add the parameter in the order required by the stored proce-
dure. In our case, with one parameter, it would look like this:

strSql = "getShippersByID 2"

This method is fine when you are only trying to get some records back from
a stored procedure, but not very useful if you are trying to get an output value or
a return value. Here is where the Parameter objects come into play.To implement
our example with a parameter:

Dim strSP As String

Dim objOleDbCmd As OleDbCommand

Dim objParam As OleDbParameter

Dim objConnection As OleDbConnection

Dim objAdapter As OleDbDataAdapter

Dim myDataSet As DataSet

Try

strSP = "getShippersByID"

Get the new connection to the database. If we have a connection that is avail-
able, we could use it instead of creating a new one—the fewer connections, the
better:

objConnection = New OleDbConnection(sConn)

objConnection.Open()

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 422

Using ADO.NET • Chapter 9 423

Instantiate a new Command object and specify the new connection we just
created. Set the type of command to stored procedure:

objOleDbCmd = New OleDbCommand(strSP, objConnection)

objOleDbCmd.CommandType = CommandType.StoredProcedure

The following code does several things. First, starting from the inner paren-
theses, we are creating a new OleDbParameter with a DataType of unsigned
integer and a size of 4.Then it adds this new parameter to the parameters collec-
tion of the Command object that we just created. Finally, we put a reference to
this newly created Parameter object in the variable objParam:

objParam = objOleDbCmd.Parameters.Add(New OleDbParameter("@ID", _

OleDbType.UnsignedInt, 4))

Here we are setting the direction of the parameter and its value.The value
is easy enough to explain, but the direction is a little more complicated. Refer
to Table 9.2 for an explanation of the different options we have for parameter
direction:

objParam.Direction = ParameterDirection.Input

objParam.value = intShipperID

This line of code sets the SelectCommand of our DataAdapter to the
newly created CommandObject objOleDbCmd.We have the option of
specifying SelectCommand, InsertCommand, DeleteCommand, and
UpdateCommand:

objAdapter.SelectCommand = objOleDbCmd

Here we fill our dataset using the Fill method of the Adapter object:

objAdapter.Fill(myDataSet)

Now, all that is left is to set the data source of our DataGrid and complete
the Error handler:

DGorders.DataSource = myDataSet

Catch e As Exception

MsgBox(e.ToString)

Finally

objConnection.Close()

End Try

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 423

424 Chapter 9 • Using ADO.NET

Table 9.2 Parameter Directions

Member Name Description

Input The parameter is an input parameter. This allows for data to
be passed into the command, but not out. We may have
more than one.

Output The parameter is an output parameter. It is used to return
variables, but cannot be used to pass data into a command.
The command must be written specifically to populate this
variable as part of its routine. We may have more than one.

InputOutput The parameter is capable of both input and output. It is used
when we need to pass data in to and out of a command in
one object. It does exactly as its name implies, it performs
both the input and the output operations. We may have more
than one.

ReturnValue The parameter represents a return value. This is similar to the
output parameter, except that we can only have one.

This example demonstrated the use of an OleDbCommand object to popu-
late a DataSet.We passed a reference of the OleDbCommand object we created
to the SelectCommand property of the DataAdapter.When we called the Fill
method, it used our OleDbCommand object to execute a DataReader and popu-
late our DataSet.

We had to create a Parameter object, set its direction to Input, and then its
value. It is interesting to note that in ADO we made up our own names for the
Parameter objects that we created. In ADO.NET, we must ensure that our param-
eters are named the same as they are in the definition of the stored procedure.
ADO.NET uses them to implement named parameters and will throw an excep-
tion if it doesn’t find a match. Of course, DataTypes must also match.

To get an output parameter, we can modify our stored procedure to return
the current day of the server just as a demonstration of the output parameter.You
can easily turn this into an example of returning the ID of a newly created
record:

objParam = objOleDbCmd.Parameters.Add(New

OleDbParameter("@CurrentDay",_

OleDbType.Date, 8))

objParam.Direction = ParameterDirection.Output

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 424

Using ADO.NET • Chapter 9 425

Accessing this value after the OleDbCommand.ExecuteNonQuery method had
been called is simple:

dtServerDate = objSQLCmd.Parameters("@CurrentDay").Value

As we can see here, using the stored procedure in the SQL statement is sim-
pler, but not as flexible.We can also access the return value using a similar tech-
nique.The only difference in using the return value is that we must declare a
parameter with the name “RETURN VALUE,” and a direction of type return
value.After that, we access it just like any other output value.The return value
from a SQL Server stored procedure can only be a DataType of Integer. If the
preceding example were something like the number of days since an order date,
we could use these lines of code to get it.The stored procedure might look
something like this:

CREATE PROCEDRUE GetDaysSinceLastOrder(@CustID nChar(5))

AS DECLARE @iDays INT

Select @iDays = DATEDIFF(dd, Max(OrderDate), GETDATE())

From Orders

Where CustomerID = @CustID

Return @iDays

The VB code to create the parameter and get the return value should look
something like this:

objParam = objOleDbCmd.Parameters.Add(New OleDbParameter("RETURN

VALUE"_ , OleDbType.Char, 5))

objParam.Direction = ParameterDirection.ReturnValue

Play around with this object; it is probably going to be one of the most used
in your toolbox. Understanding how to use the output values and returning data
from them will be essential to your high-performance development.

DataReader
The DataReader is a read-only, forward-scrolling Data object that allows us to
gain access to rows in a streaming fashion. It is typically used when we need
read-only access to data because it is much faster than using a DataSet.A DataSet
is populated behind the scenes using a DataReader, so if we don’t need the

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 425

426 Chapter 9 • Using ADO.NET

features of a DataSet, we should not create one.A DataReader is created either
from the OLE DB libraries or from the SqlClient libraries. Here is a simple
example of creating an OleDbDataReader from a Command object:

Dim myReader As OleDbDataReader = myCmd.ExecuteReader()

We now have a populated DataReader object that we can use like this:

While myReader.Read

'// do some row level data manipulation here

End While

The DataReader object allows for much greater speed, especially if you need
to access a large amount of data. It does not allow us to update information, nor
does it allow us to store information as the DataSet object does.

DataSet
A DataSet is an in-memory copy of a portion of the database in which we are
interested.This may be one table, or many tables. Imagine a small relational
database residing in a variable.This is a complete copy of the requested data. It is
completely disconnected from the original data source and doesn’t know any-
thing about where the data came from. By that, I mean that we could populate
the data from XML from our Microsoft BizTalk Server, save it to Microsoft SQL
Server, and then write it out to an XML file.

When we are finished with our operations, the entire DataSet is submitted to
the data source for processing. It takes care of standard data processing such as
updating, deleting, and inserting records.The DataSet object is a key player in the
ADO.NET object model. Examine the object model in Figure 9.3 for the
DataSet object and the collections it can contain. Due to the architecture of
ADO.NET, it is possible for several combinations of collections.Take the
Columns Collection as an example.As you can see, the DataTable object has a
Columns collection made up of DataColumn objects.The PrimaryKey property
of the DataTable contains collection of DataColumns as well.This is the same
DataColumn object in the DataTables.Columns collection, but two different
instances of it.

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 426

Using ADO.NET • Chapter 9 427

Disconnected Layer
By its very nature,ADO.NET is disconnected, which means that we do not
maintain a connection to the data source.We open a connection, retrieve the
data, and close the connection.This allows our data source to free up resources,
and respond to the next user.

This may place a higher premium on bandwidth, so we need to be as specific
as possible when requesting data.We are going to have to refrain from Select *

www.syngress.com

Figure 9.3 DataSet Object Model

DataSet

Relations

Table Collection

DataTable

Rows

DataRelation

DefaultView

ChildRelations

ParentRelations

Constraints

Columns

DataColumn

DataRow

PrimaryKey

DefaultView

DataRelation

DataRelation

DataColumn

153_VBnet_09 8/15/01 2:30 PM Page 427

428 Chapter 9 • Using ADO.NET

From MyTable statements, and instead, retrieve only the columns we are actually
using. In addition, make sure to use well thought-out Where clauses to limit the
number of rows being returned. If all you need are names beginning with “A,”
then don’t select “A–Z.” Most of this is common sense; however, when you are
battling a particular piece of functionality, it easy to let the rules slip. Just be aware
that we are bringing that entire set of data through our connection.

Using DataSet
A DataSet holds a copy of all the data we request. It may contain more than one
table, and we can set up relationships within the DataSet that may not be present
in the database. For example, we can fill the DataSet with Orders and
OrderDetails tables.We can then create a relationship between them and step
through each OrderDetail in each order.

DataSets are populated from a DataReader implicitly.ADO.NET creates a
DataReader and populates the dataset for us.We don’t see this happening; we just
call the Fill method and let ADO.NET do the work for us.The DataSet will
temporarily hold data until we pass it along in the form of a DataTable or
DataView. In addition to holding our data, the DataSet offers some features that
were reserved for relational databases in the past; for example, primary keys, rela-
tionships, and constraints, to name a few. If you have worked with relational
databases, these terms should sound familiar, and their implementations in
ADO.NET are true to their database counterparts.

Relational Schema
With the DataRelation object, we have some new functionality that we never
had before.A DataRelation object allows us to specify simple join criteria
between DataTables in our Tables collection.This allows us to simplify code
operations for situations that call for a hierarchy, or otherwise shaped data. Shaped
data is one of the primary reasons why XML is so useful in our data operations.
XML lends itself to building data in a parent-child relationship, instead of a flat
file format. If you have been working with databases for any length of time, you
can see the similarities.A parent-child relationship is typically thought of as a
one-to-many relationship. One table contains the parent, or header records such
as the order date, customer information, OrderID, and so forth, and the other can
contain the line items for the order. In this scenario, we can have one order with
many items.There are entire books written about the theories behind these con-
cepts; for our purposes, we will restrict ourselves to a simple one-to-many
parent-child relationship. In the past, to get Orders and OrderDetail records in

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 428

Using ADO.NET • Chapter 9 429

one set of data, for every row in the OrderDetails record, we had all the Order
record information as well.This required some ugly code to get the parent-child
relationship in front of the end user.

To set up a DataRelation, we need two DataTable objects in our DataSet: a
Primary key and a Foreign key.These will establish our Parent objects and our
Child objects. For example:

Dim myds As DataSet = New DataSet("Orders")

Dim MyCol() As DataColumn

Add a Primary key to the DataTable to define the parent in the relationship:

MyCol(0) = myds.Tables("Orders").Columns("OrderID")

myds.Tables("Orders").PrimaryKey = MyCol

Add the relation using the Primary key we just created. Note: Do not use the
Primary key of the Child object; this will essentially restrict us to one item per
order and break our business rule:

myds.Relations.Add("Orders",

myds.Tables("Orders").Columns("OrderID"), _

myds.Tables("OrderDetail").Columns("OrderID"))

We can also place constraints on a DataTable object to give us even more
relational power.A ForeignKeyConstraint object requires a matching record in
the Parent DataTable. For example, we could not add a OrderDetail record
without first have a matching Order record. For example:

Private myDataSet As DataSet

Private Sub CreateConstraint()

Declare parent column and child column variables:

Dim dColOrder As DataColumn

Dim dColOrderDet As DataColumn

Dim myFK As ForeignKeyConstraint

Set parent and child column variables:

dColOrder = MyDataSet.Tables("Orders").Columns("OrderID")

dColOrderDet =

MyDataSet.Tables("OrderDetails").Columns("OrderID")

myFK = New ForeignKeyConstraint("OrderFK", dColOrder, dColOrderDet)

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 429

430 Chapter 9 • Using ADO.NET

Set rules to indicate what action is to be performed when a Foreign key is
enforced:

myFK.DeleteRule = Rule.Cascade

myFK.UpdateRule = Rule.Cascade

In this instance, if we were to delete the parent record, the DeleteRule would
cascade the delete to the OrderDetails table and delete the child records as well.
With the UpdateRule, if the Primary key is updated, the Foreign key is updated
as well.This ensures that our records stay related, even if we change the Primary
key value. Changing Primary keys is taboo in database design, but this allows us
to break the rules occasionally.

The AcceptRejectRule.Cascade rule will cascade the changes at the data
source during the AcceptChanges method of the DataSet object. It is important to
realize that we have created the relationship outside of the database.The database
need not have these relationships defined:

myFK.AcceptRejectRule = AcceptRejectRule.Cascade

Add the constraint to the parent and set EnforceConstraints to true.This is
the final step to set up the relationships in our DataSet object:

myDataSet.Tables("Orders").Constraints.Add myFKC

myDataSet.EnforceConstraints = True

End Sub

Collection of Tables
A DataSet contains a collection of tables.These tables are tabbed representations
of our data and are the key to the DataSet’s versatility. Essentially identical to the
tables in our database, or other data source, they are added to our DataSet in the
same way we add objects to other collections. Once in our DataSet, we can
define properties such as the DataRelations, Primary keys, and so forth.
DataTables can be created programmatically, or retrieved from a database through
a SqlDataAdapter/OleDbDataAdapter object using the Fill method.

After we populate our DataSet with DataTable objects, we can access these
tables using an index or the name we gave the table when we added it to the
DataSet.The collection uses a zero-based index, so the first DataTable is at index 0:

ds.Tables(0)

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 430

Using ADO.NET • Chapter 9 431

The preceding code is more efficient, but harder to read; the following code
is easier to read, but a little less efficient. How inefficient is yet to be determined,
but, generally speaking, your users won’t be able to tell.Therefore, unless you
have a compelling reason to use the index, the following code will be easier to
maintain:

ds.Tables("Orders")

The Tables collection is the basis for DataSet operations. From the collection
we can pull tables into separate DataTable variables and DataView objects, we can
bind them to DataGrids and DataLists, or act on them in the collection as in the
previous examples.

Data States
Data has many states.When we change data,ADO.NET performs some amazing
trickery on our behalf.ADO.NET maintains the various states, and versions of
our data as we manipulate it.This allows us to perform all sorts of validation
based on previous values since the last AcceptChanges call.As data is added,
updated, or deleted in our application, we can access the versions of the data, dis-
play it to the user, and give them some pretty powerful undo functionality. It is
important to note that this is available until we accept the changes and send them
back to the data source.

A table is comprised of DataRow objects.The DataRow objects allow access
to the entire row of data, but we also have versioning capability built into the
row.The DataRow maintains the versions of data listed in Table 9.3.

Table 9.3 Possible DataRowVersion Values for a DataRow Object

Member
Name Description

Default Default values for a row that was added.
Original Values in the DataTable when the DataTable was added to the

DataSet.
Proposed Data that has been added or updated, but not committed.
Current Current data in the row as of the last time the row was

committed.

For example, suppose our business rule will not allow us to save a change to a
record if the OrderAmount has not been updated.We first check to see if the

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 431

432 Chapter 9 • Using ADO.NET

row has a version; if it does, we compare the proposed value and the current one.
If they match, the OrderAmount was not changed, and we reject the changes:

If MyRow.HasVersion(DataRowVersion.Proposed) Then

If MyRow("OrderAmount"), DataRowVersion.Proposed) = _

MyRow("OrderAmount"), DataRowVersion.Current) Then

Ds.RejectChanges()

End IF

End IF

In addition to row versions, we also have a RowState property that can give
us more information about the condition of a row.Table 9.4 lists the possible
states a row can be in.

Table 9.4 Possible RowState Values for a DataRow Object

Member
Name Description

Unchanged No changes since last AcceptChanges call.
New The row was added to the table, but AcceptChanges has not

been called.
Modified A change has been made, but AcceptChanges has not been

called.
Deleted The Delete method was used to delete the row from the table.
Detached The row has either been deleted, but AcceptChanges has not

been called, or the row has been created, but not added to the
table.

With this type of versioning and state information we can really leverage
ADO.NET to enforce some pretty bizarre and wonderful business rules.This is
especially true where you are sending and receiving DataSets through a Web ser-
vice, or remoting to and from dissimilar systems.

Populating with the DataSet Command
The DataAdapter object allows us to populate DataTables in a DataSet.We call
the Fill method after constructing the object. Pass in the DataSet, and a name for
our DataTable object, and ADO.NET takes care of the rest. For example, to use
an OleDbDataAdapter to populate a DataTable:

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 432

Using ADO.NET • Chapter 9 433

Dim myDS As DataSet = New DataSet("myDataSet")

Dim myAdapter As OleDbDataAdapter = New OleDbDataAdapter(_

"SELECT * FROM Orders", sConn)

myAdapter.Fill(myDS, "Orders")

That is pretty easy.To use the SQL data provider, you just have to substitute
SqlDataAdapter for OleDbDataAdapter.The Fill method is constructed the same
way, but results in tighter integration with SQL Server and allows for better per-
formance.

Populating with XML
We can populate a DataSet directly from a well-formed XML file. By well formed,
I mean an XML file that adheres to W3C guidelines for properly formatted
XML tags. Using the ReadXML method of a DataSet object, we can populate a
DataSet with XML.This allows us to access and manipulate XML data as easily as
we manipulate any other type of data. Once we are finished manipulating it, we
can use the WriteXML method to save back to the original file, or create a new
file.A simple example to read a file in, manipulate some data, and write a file out
looks like this:

dsXML = New DataSet()

dsXML.ReadXml("Orders.xml")

DataGrid1.DataSource = dsXML

All we did was write a few lines of code, and the DataSet took care of
parsing the XML file, generating the DataTable and DataColumn objects, and
then importing the data from the XML file.When we run our project we see the
contents of the XML file in our data grid.To write the file out, we use the fol-
lowing syntax:

dsXML.WriteXML("Orders.xml")

Notice that in both examples, I am not specifying a path to these files. Our
application expects to find them in the same folder in which the executable
resides.An easy way to create an XML file for the example is to connect to a
database, populate a DataSet, and use the WriteXML method to extract the data
into an XML file.This is also useful if you need to quickly generate an XML file
to transmit data to a distant location, or for archival purposes.ADO.NET—
specifically, the DataSet—allows us to quickly and easily work with XML data,
from the data aspect.We can make changes to the schema of the XML by

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 433

434 Chapter 9 • Using ADO.NET

making changes to the DataColumn and DataTable objects in our newly created
DataSet.These changes will be reflected when we write the data out.

It may not be obvious here, but by using the ReadXML method, we are not
connecting to the XML file as we would a database; we are importing the data.
This effectively means that we are copying the data, so if you need to persist your
changes, you also need to write out the XML file when you are finished with
the data.

Populating Programmatically
We can create a DataTable object and populate it manually.That is, we can con-
struct an empty DataTable, and then, using the DataTable methods to add
columns and rows, we can create and populate a DataTable without having to
connect to a database. For example, I want to create a table to hold connection
strings, but it will be a local file that my application uses.The application will
load this file on startup, and I can cycle through the connections to find an avail-
able database server—sort of like a poor man’s failover. Here is a portion of that
code; refer to the chapter samples for a more entertaining example.

Create an empty DataTable:

Dim myTbl As New DataTable("tblConn")

Dim myDS As New DataSet("ConnString")

Create the columns to hold our connection information:

Dim colProvider As New DataColumn("Provider")

Create the DataRow:

Dim rowConn As DataRow

Add the new table to the DataSet:

myDS.Tables.Add(mTbl)

Now, add the columns to the DataTable:

colProvider.DataType = System.Type.GetType("System.String")

myDS.Tables("tblConn").Columns.Add(colProvider)

First, create the row:

rowConn = mDS.Tables("tblConn").NewRow

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 434

Using ADO.NET • Chapter 9 435

Second, add the new row into the DataTable:

myDS.Tables("tblConn").Rows.Add(rowConn)

Populate the columns with data:

rowConn("Provider") = "SQLOLEDB.1"

From here on we can use the DataTable just as if it were created from a
multi-terabyte server. Get the idea behind the portability of our code? Same
code, just change the source and we open up new avenues for our application to
expand into.

Using the SQL Server Data Provider
The SQL Server data provider is written explicitly to provide data access to
Microsoft SQL Server version 7 and later.This set of classes takes advantage of
the SQL Server API in a way that makes it more efficient for data access than
going through the OLE DB libraries.Think of it as native access to Microsoft
SQL Server for ADO.NET.

Some of the ADO.NET objects are a little different for the SQL libraries.
They implement the same interfaces; the only difference is really the name as far
as we are concerned. Of course, the underlying implementation is different as well.

The SQL Server data provider’s core objects are SqlConnection,
SqlDataAdapter, SqlCommand, and SqlDataReader.There are other objects and
events, but these are the main ones we will focus on day to day.The examples in
the chapter can be executed against these objects by changing the namespace
from System.Data.OleDb to System.Data.SqlClient.Then, change the object
types from OleDbxx to Sqlxx. For example:

Dim myDS As DataSet = New DataSet("myDataSet")

Dim myAdapter As OleDbDataAdapter = New OleDbDataAdapter(_

"SELECT * FROM Orders", sConn)

myAdapter.Fill(myDS, "Orders")

becomes:

Dim myDS As DataSet = New DataSet("myDataSet")

Dim myAdapter As SqlDataAdapter = New SqlDataAdapter(_

"SELECT * FROM Orders", sConn)

myAdapter.Fill(myDS, "Orders")

www.syngress.com

153_VBnet_09 8/15/01 2:30 PM Page 435

436 Chapter 9 • Using ADO.NET

This makes it easy to change from, say, Oracle to SQL Server, at least from
this standpoint.The devil is in the details, so take this type of project cautiously.
Switching an RDBMS is not trivial, but ADO.NET goes a long way to making
life easier for the VB.NET programmer. However, we still have to work out the
structural differences in the databases, for instance.

If, on the other hand, the RDBMS your project is to reside on is not chosen,
you could safely use the OLE DB or ODBC provider and continue developing.
You won’t get the tight integration to any database product, but that is not always
the most important aspect of a project. Many times, the driving force behind a
project is time to market, and it may not be wise to let deadlines slip waiting on
the often-political process of choosing a relational database.Think of the OLE
DB managed provider as the great RDBMS equalizer, at least from the data
access point of view.

NOTE

While generating SQL command text, use the FormatDateTime method
to convert DataTime information into localized strings. This will return a
string that will work with SQL Server. SQL Server currently does not rec-
ognize the ISO 8601 date format and will throw an error:

'// Will result in "1999-05-16T12:40:30"

MyDate.ToString()

Imports Microsoft.VisualBasic

'// would result in "5/16/1999"

FormatDateTime(MyDate, DateFormat.ShortDate)

TDS
TDS stands for TypedDataSet, also known as a Strongly TypedDataSet.A
TypedDataSet is bit of wizardry that the Visual Studio IDE does for us.What we
are talking about here is basically early binding to our tables and data columns.
They are created by using a class derived from the DataSet class and are com-
bined with a Schema Definition file to provide the impression of early binding.
What I mean by early binding is that the VB compiler will enforce the column
naming and datatyping during compile time. See CD file Chapter 09/
Chapter9 Beta2/Samples/XML/MyData.xsd.

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 436

Using ADO.NET • Chapter 9 437

Exercise 9.2 Using TypedDataSet
1. Open Visual Studio and create a new Windows Application.

2. From the Server Explorer, expand the Server tab | SQL Server
Databases | Databases | Northwind | Tables, and drag the Orders
Table onto the form. See Figure 9.4 for a view of the Server Explorer.

My Server name in this graphic is QDSDOTNET, so expect your
server name to appear here.

3. Visual Studio will create two Data objects, a SqlConnection object and a
SqlDataAdapter object.These do not show up on the form; instead, they
show up on the Component Tray in Visual Studio. Figure 9.5 shows an
example.

www.syngress.com

Figure 9.4 Server Explorer

Figure 9.5 Data Objects on the Component Tray

153_VBnet_09 8/15/01 2:31 PM Page 437

438 Chapter 9 • Using ADO.NET

4. Notice that in the menu bar at the top of the screen is an additional
menu called Data. Pull this down and select Generate DataSet.We
can also right-click on the form and select Generate DataSet from the
available options. Note that this functionality is not available until we
add a SqlConnection and SqlDataAdapter objects to the form.When we
select the Generate DataSet command, a dialog box is presented. Enter
tdsOrders in the New text box, and check the box to add this DataSet
to the designer. Make sure that the Orders table is checked in the list of
available DataAdapters.The IDE executes the XSD.EXE and creates a
schema file to add to our assembly. It also creates a file called
tdsOrders.vb with the code that implements the TypedDataSet.This
file actually contains many classes that inherit from various parts of the
System.Data classes.The result is a custom class that contains all the stan-
dard DataSet methods and properties, in addition to some added func-
tionality to enforce datatyping and schema enforcement for the Orders
table. Set the focus to the tdsOrders1 DataSet object on the Component
tray and examine the Properties dialog box in Figure 9.6.

Notice the hyperlinks at the bottom of Figure 9.6.The View Schema
link presents you with a graphical representation of your DataSet

www.syngress.com

Figure 9.6 Properties Dialog Box

153_VBnet_09 8/15/01 2:31 PM Page 438

Using ADO.NET • Chapter 9 439

schema; the other link presents a dialog box with more detailed proper-
ties of the DataSet object.All of this comes at a price.A Strongly
TypedDataSet is slower than its weaker typed sibling.The advantage is in
speed of development, and the compile time enforcement of DataTypes.
The wizard creates a DataSet, so if we only need read-only access to the
data, a SQLDataReader would provide much more speed; not just with
the same ease of development. In addition to the enforcement of
column names and DataTypes during development and compilation, the
TDS lets us access our DataTables and DataColumns using Intellisense.

Data access using a regular DataSet:

strOrderID = dsOrders.Tables("Orders")(0).Columns("Orderid")

Data access using a TDS:

strOrderID = dsOrders.Orders(0).Orderid

In my testing, data access took nearly twice as long using a TDS
when compared to a more traditional approach.We are only talking mil-
liseconds with DataSets this small, so most users will probably not notice
the difference.At this point, the argument gets academic, and you will
have to weigh the benefits.What is more important to your project: time
to market or trying to optimize CPU cycles?

Remember that to set this up, all we did was drag and drop.After
that, we could reference a column just like it was a native property—no
misspelling the column names, and DataTypes are enforced at compile
time.This speeds up development in several ways: no more having to
remember the column names, and the compiler will keep us from
making mistakes with DataTypes.

Remoting
The act of remoting is not new.A Web request is a form of remoting, and a useful
example of what we are trying to accomplish with .NET remoting. It is a message-
based communication methodology applied using standard technologies such as
TCP, XML, HTML, and SOAP.We can leverage this to create truly distributed
applications that take advantage of industry standards, and allow different plat-
forms to unite into very useful applications.

Remote objects are defined as objects that need to communicate across appli-
cation domains, and are derived from MarshalByRefObject. From then on, when a

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 439

440 Chapter 9 • Using ADO.NET

client activates a Remote object, it creates an instance of a Proxy object that redi-
rects calls to and from the Remote object.This redirection does have performance
penalties that you need to consider when developing a distributed architecture.

This communication takes place over three different channels. Basically, it comes
down to the environment in which we are going to be operating. If clients are
going to be accessing our service over the Web, then we will be using the HTTP
remoting channels; namely, SOAP. SOAP is the combination of HTTP and XML
combined per the SOAP specification to allow the production of Web services.

If the services are on a local network, with routers that we can control, then we
can use TCP for faster, leaner, and more robust operation.TCP processes data and
data requests through sockets that are specified in the configuration of the service.

Data Controls
Data controls allow us to control data and come in many forms.The data controls
in VB.NET are similar to the data controls in VB6.They provide for flexible
viewing and editing of data either in the form of bound data or unbound data.
Which method you will employ depends largely on your particular project con-
straints. Generally speaking, bound controls allow for speed of development, but
have traditionally limited the developer to basic functionality. For more control,
we had to revert to unbound methods that were more involved, but definitely
more flexible.

DataGrid
DataGrid is a spreadsheet-like representation of data.The catch here is that the
DataGrid is optimized for access to relational data.This means that we can start
with our parent records and drill down into the child records.The DataGrid
comes in two implementations.The first and most obvious is the Windows Form
version.The Windows Form implementation of the DataGrid differs quite a bit
from its Web Form counterpart, so we will look at them both.The WinForm
DataGrid can bind to many sources of data.The following list includes the out-
of-the-box objects that we can use for our data source:

■ DataTable

■ DataView

■ DataSet

■ DataSetView

■ Single dimension arrays

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 440

Using ADO.NET • Chapter 9 441

In addition to the preceding objects, any components that implement the
following interfaces can also be used to populate a DataGrid:

■ The IListSource interface

■ The IList interface

First, the Windows Form version is a scrollable grid that when bound to a
DataSet with relations defined will give us a view of our data that we can use to
drill down into the detail records. Follow Exercise 9.3 to create a simple example
of using a TDS with two tables and a DataRelation to create the drill-down
functionality described previously.The Beta2 documentation contains a list of
properties, methods, and events that would take an entire book to cover; suffice
to say that much effort has been put into this object from a functionality stand-
point. It is, however, very simple to implement, so let’s do an exercise that builds
on the TDS solution that we created earlier.

Exercise 9.3 Using TypedDataSet and DataRelation
1. Open Visual Studio and open the project we started during the Typed

Data discussion.

2. Drag the Order Details table onto our form as we did in Figure 9.4.

3. Select Generate DataSet from the Data menu, and select the existing
TypedDataSet, making sure that both tables are selected in the available
Adapters.

4. Drag a DataGrid and a Button object from the toolbox onto the form.

5. Enter these few lines of code into the Buttons Click Event Handler
(Button1_Click, for example).This uses the SqlDataAdapters that were
wizard generated to populate our TypedDataSet:

SqlDataAdapter1.Fill(TdsOrders1.Orders)

SqlDataAdapter2.Fill(TdsOrders1.Order_Details)

This line sets up a parent-child relationship between the Orders and
the Order_Details DataTables:

tdsOrders1.Relations.Add("relOrders",

tdsOrders1.Orders.OrderIDColumn, _

tdsOrders1.Order_Details.OrderIDColumn)

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 441

442 Chapter 9 • Using ADO.NET

This line binds the TypedDataSet to the DataGrid:

DataGrid1.DataSource = tdsOrders1

6. Set the Anchor property of the DataGrid to ALL and build the solu-
tion.The finished form should look like Figures 9.7 and 9.8.After you
press F5, click the button, and expand the default node.

www.syngress.com

Figure 9.7 Finished Form

Figure 9.8 Orders Table

153_VBnet_09 8/15/01 2:31 PM Page 442

Using ADO.NET • Chapter 9 443

Click the plus sign to get a list of tables in our DataSet. Select the
Orders table from the drop-down to get the view shown in Figure 9.8.

In our example, we start out with a list of orders, and we can expand them by
clicking the plus sign at the record selector in the far left of the grid.This pro-
vides us with a list of relations. In our example, we only have the one, so select it,
and the grid will change to show the detail records for that order.When you
consider that we started with a project that consisted of dragging and dropping
some objects from the Server Explorer and the toolbox, entering half a dozen
lines of code, this is pretty powerful stuff!

The WebForm DataGrid object in ASP.NET is quite a bit different as far get-
ting one to operate.A few lines of code are all it takes to put one of these to
work with some basic functionality.The following example creates a basic HTML
table of our data with just a few lines of code.This is the line of code that will
actually place the control on the form for us. Place it where you would like the
grid to show up on the page (see CD file Chapter 09/Chapter9 Beta2/Samples/
wwwroot/Chapter9/DataGridSample.aspx):

<asp:DataGrid id="DGOrders" runat="server"/>

All that is left to do is to populate the grid with a data source:

Private sConn As String = "<MyConnectionstring>"

Private dsShippers As DataSet

Private Sub BindData()

Dim strSQLQuery As String

Dim objConn As SqlClient.SqlConnection

Dim objAdapter As SqlClient.SqlDataAdapter

strSQLQuery = "SELECT * FROM Shippers"

Create a connection to the SQL Server:

objConn = New SqlClient.SqlConnection(sConn)

Create a SqlDataAdapter using the connection and the SQL statement as
parameters for the constructor:

objAdapter = New SqlClient.SqlDataAdapter(strSQLQuery, objConn)

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 443

444 Chapter 9 • Using ADO.NET

Create the DataSet and fill it with the SqlDataAdapter object we created
earlier:

dsShippers = New DataSet()

objAdapter.Fill(dsShippers, "Shippers")

Set the DataSource of our data grid to the newly created DataSet, and call
the DataBind method to finish the grid:

DGShippers.DataSource =

dsShippers.Tables("Shippers").DefaultView

DGShippers.DataBind()

End Sub

Call the BindData procedure from the Page_Load event.The finished product
is shown in Figure 9.9.

The WebForm DataGrid can be further enhanced with the Columns collec-
tion that may contain any or all of the objects in Table 9.5.These give us the
power to create some very appealing functionality with only a few lines of code.

www.syngress.com

Figure 9.9 DataGrid Sample

153_VBnet_09 8/15/01 2:31 PM Page 444

Using ADO.NET • Chapter 9 445

Table 9.5 Column Collection Objects

Column Name Description

BoundColumn Default column, it is bound to data and allows us
to control the ordering and rendering of the
column.

HyperLinkColumn Presents the bound data in HyperLink controls. The
text and URL of the hyperlink can be static or
bound to data.

ButtonColumn Represents a column with a set of push button
controls. Bubbles a user command from within a
row to an Event Handler on the grid. Not bound to
data. The developer must write a handler to
perform the action specified.

TemplateColumn Defines a template used to format controls within
a column.

EditCommandColumn Displays Edit, Update, and Cancel links to allow the
user to edit line items. The DataGrid will present
the user with appropriate links and text boxes for
the line being edited, while displaying the other
rows in read-only text.

The EditCommandColumn creates the DataGrid with some options for the
HTML output. It is also important to note that the OnEditCommand,
OnCancelCommand, and OnUpdateCommand are mapped to server-side sub-
procedures that we have to write.Also, turn off the AutoGenerateColumns,
which defaults to true:

<asp:DataGrid id="DGOrders" runat="server"

BorderColor="black"

BorderWidth="1"

CellPadding="3"

Font-Size="8pt"

HeaderStyle-BackColor="#aaaadd"

OnEditCommand="DGShippers_Edit"

OnCancelCommand="DGShippers_Cancel"

OnUpdateCommand="DGShippers_Update"

AutoGenerateColumns="false"

>

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 445

446 Chapter 9 • Using ADO.NET

Here we define our columns.The first column is the EditCommandColumn.
The options are self-explanatory.The EditText, CancelText, and UpdateText are the
text that will show up in our hyperlinks to perform the desired action.The other
columns are standard BoundColumns that display the data from the Shippers table:

<Columns>

<asp:EditCommandColumn

EditText="Edit"

CancelText="Cancel"

UpdateText="Update"

ItemStyle-Wrap="false"

HeaderText="Edit Command Column"

HeaderStyle-Wrap="false"

/>

<asp:BoundColumn HeaderText="Shipper ID"

ReadOnly="true" _

DataField="ShipperID"/>

<asp:BoundColumn HeaderText="Company Name" _

DataField="CompanyName"/>

<asp:BoundColumn HeaderText="Phone"

DataField="Phone"/>

</Columns>

</asp:DataGrid>

It is important to note that while both of these controls are called DataGrid,
they inherit from different base classes. Microsoft has named many of the
methods and properties for these controls the same, but do not take this for
granted.The name may be the same, but the implementation is quite different.

DataList
A DataList is very similar to the WebForm DataGrid, with a few exceptions. It uses
template tags, is a WebForm control, and inherits from the WebForm namespace.
After adding a new WebForm to a Web project, place the following code between
the opening and closing form tags.This block of code defines our DataList and
binds the DataList_Click procedure to the OnItemComand event for the list (see
CD file Chapter 09/Chapter9 Beta2/Samples/wwwroot/Chapter9/
DataListSmaple.aspx):

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 446

Using ADO.NET • Chapter 9 447

<asp:DataList id="DLShippers"

runat="server"

Width="100%"

OnItemCommand="DataList_Click"

RepeatColumns="1" >

This block of code defines the default formatting of each row in our list:

<ItemTemplate>

<asp:Table Runat="server" Width="100%" ID=Table1>

<asp:TableRow>

<asp:TableCell>

<asp:LinkButton id="Select" _

runat="server" Text="Select "

CommandName="Select"/>

<asp:Label id="lblShipper" _

runat="server">

<% #DataBinder.Eval(Container.DataItem,

"CompanyName") %>

</asp:Label>

</asp:TableCell>

</asp:TableRow>

</asp:Table>

</ItemTemplate>

This block of code defines the formatting of the row we selected in the
browser:

<SelectedItemTemplate>

<asp:Table Runat="server" Width="100%" ID=Table2>

<asp:TableRow BackColor="#EEEEEE">

<asp:TableCell>

<asp:Label id="lblPhone"_

runat="server">

<% #DataBinder.Eval(Container.DataItem, "Phone") %>

</asp:Label>

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 447

448 Chapter 9 • Using ADO.NET

</asp:TableCell>

</asp:TableRow>

</asp:Table>

</SelectedItemTemplate >

</asp:DataList>

The following code goes into the CodeBehind file created for your
WebForm:

Private sConn As String = "<MyConnectionString>"

Private dsShippers As DataSet

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles

MyBase.Load

'Put user code to initialize the page here

If Not Page.IsPostBack Then

BindData()

End If

End Sub

Private Sub BindData()

Dim strSQLQuery As String

Dim objConn As SqlClient.SqlConnection

Dim objAdapter As SqlClient.SqlDataAdapter

strSQLQuery = "SELECT * FROM Shippers"

objConn = New SqlClient.SqlConnection(sConn)

objAdapter = New SqlClient.SqlDataAdapter(strSQLQuery,

objConn)

dsShippers = New DataSet()

objAdapter.Fill(dsShippers, "Shippers")

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 448

Using ADO.NET • Chapter 9 449

DLShippers.DataSource =

sShippers.Tables("Shippers").DefaultView

DLShippers.DataBind()

End Sub

This procedure handles the event bubbled up from the browser:

Public Sub DataList_Click(ByVal Source As Object, _

ByVal E As DataListCommandEventArgs)

DLShippers.SelectedIndex = E.Item.ItemIndex

Call BindData()

End Sub

Figure 9.10 shows the result.

This page shows the usage of the template tags and some of the options avail-
able.Template tags give us some options for formatting the different rows.They
really make the data controls very flexible and remove many of the reasons we
have for not using them.The available templates vary depending on which
DataControl you are using,Table 9.6 lists the available templates for the DataList
control.

www.syngress.com

Figure 9.10 DataList Output

153_VBnet_09 8/15/01 2:31 PM Page 449

450 Chapter 9 • Using ADO.NET

Table 9.6 DataList Template Items

Template Name Description

ItemTemplate Required template that provides the style for
items in the DataList.

AlternatingItemTemplate Provides the style for alternating items in the
DataList.

SeparatorTemplate Provides the style for the separator between
items in the DataList.

SelectedItemTemplate Provides the style for the currently selected item
in the DataList.

EditItemTemplate Provides the style for the item currently being
edited in the DataList.

HeaderTemplate Provides the style for the header of the DataList.
FooterTemplate Provides the style for the footer of the DataList.

Repeater
The Repeater object is a Web form control that allows us to create templates out
of HTML, and then bind them to data—sort of like making our own grid con-
trol, except that we can use data binding.The tricky part of setting up the
repeater is the use of template tags.An example is worth a thousand words, so
here is a repeater bound to a DataSet that contains the Shippers table from the
Northwind database (see CD file Chapter 09/Chapter9 Beta2/Samples/
wwwroot/Chapter9/RepeaterSample.aspx):

<html>

<head>

<title>Using ADO.NET Repeater Sample</title>

</head>

<body>

<h3>Repeater Example</H3>

<form id=Form1 runat="server">

Shippers:

<p><asp:repeater id=RPTRShippers runat="server">

<HeaderTemplate>

<table border=1>

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 450

Using ADO.NET • Chapter 9 451

<tr>

<th>Company Name</th>

<th>Phone</th>

</tr>

</HeaderTemplate>

<ItemTemplate>

<tr>

<td> <%# DataBinder.Eval(Container.DataItem, "CompanyName") %> </td>

<td> <%# DataBinder.Eval(Container.DataItem, "Phone") %> </td>

</tr>

</template>

<AlternatingItemTemplate>

<tr bgcolor="#cccccc">

<td > <%# DataBinder.Eval(Container.DataItem,

"CompanyName") %> </td>

<td > <%# DataBinder.Eval(Container.DataItem, "Phone") %>

</td>

</tr>

</AlternatingItemTemplate>

<FooterTemplate>

</table>

</FooterTemplate>

</asp:Repeater>

</FORM>

</P>

</body>

</html>

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 451

452 Chapter 9 • Using ADO.NET

Notice the use of the <template> tag. In between the opening and closing
template tags, we have plain vanilla HTML except for the DataBinding code.The
DataBinding is handled during the Page_Load event, and is very similar to the
DataBinding code in the DataList example, the only difference being the name of
the Repeater object:

Private sConn As String = "<MyConnectionString>"

Private dsShippers As DataSet

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles

MyBase.Load

'Put user code to initialize the page here

If Not Page.IsPostBack Then

BindData()

End If

End Sub

Private Sub BindData()

Dim strSQLQuery As String

Dim objConn As SqlClient.SqlConnection

Dim objAdapter As SqlClient.SqlDataAdapter

strSQLQuery = "SELECT * FROM Shippers"

objConn = New SqlClient.SqlConnection(sConn)

objAdapter = New SqlClient.SqlDataAdapter(strSQLQuery,

objConn)

dsShippers = New DataSet()

objAdapter.Fill(dsShippers, "Shippers")

RPTRShippers.DataSource = _

dsShippers.Tables("Shippers").DefaultView

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 452

Using ADO.NET • Chapter 9 453

RPTRShippers.DataBind()

End Sub

Here we are creating a DataSet, populating it with some data, and then
binding it.To bind data to a container, it must implement the Ilist interface.This
can be done by using the DataTable object. Figure 9.11 shows the finished page.

www.syngress.com

Figure 9.11 Repeater DataControl Sample

153_VBnet_09 8/15/01 2:31 PM Page 453

454 Chapter 9 • Using ADO.NET

Summary
In this chapter, we discussed the base functionality in ADO.NET.We discussed
XML, and how it relates to ADO.NET. By embracing XML,ADO.NET is
breaking new ground and will allow us to develop ever more creative applica-
tions, while simplifying the complexities of distributed development.We looked
at XML schemas and how ADO.NET uses them to produce Strongly Typed
DataSets to speed up development while enforcing the schema definition at
compile time.

We emphasized the connectionless architecture on which ADO.NET is built,
and provided a solution if we need to maintain a connection to our data source
by wrapping the COM+ ADO libraries in .NET and using them as native .NET
libraries.

We reviewed the data providers and discussed the benefits of the SQL Server
data provider and its close integration with Microsoft SQL Server.We talked
about connecting to other data sources using the ADO data provider, and the
implications of using the provider to give our applications more options when it
comes to connecting to heterogeneous data.

We briefly discussed remoting.This topic is broad enough for a separate
book; however, we covered some of the highlights to get you started if that is a
direction in which your application needs to go. Remoting allows our application
to communicate across application boundaries. Cross-boundary communication
can take place between two separate applications on the same machine, or appli-
cations on separate servers thousands of miles apart.

Finally, we discussed the data controls and provided some examples to
demonstrate the ease of developing using these controls and some of the new
functionality that is possible with them.

Solutions Fast Track

Overview of XML

XML documents are the heart of the XML specification.

XSL is a language for applying styles and otherwise formatting XML data.

XDR is a specification for describing the data in XML documents.

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 454

Using ADO.NET • Chapter 9 455

XSD is similar to XDR, but provides far more flexibility and is itself an
XML document.

XPath is a language for querying XML documents, or describing paths
between them.

Understanding ADO.NET Architecture
ADO.NET Architecture is the latest extension of the Universal Data
Access technology from Microsoft that uses textual formatting instead of
binary formatting.

In ADO.NET Architecture data is accessed and manipulated in a con-
nectionless manner by using data providers.

The Command, Connection, DataReader, and DataAdapter are the core
objects in ADO.NET.They form the basis for all operations regarding
data in .NET.

Using the XML Schema Definition Tool
XML Schema Definition Tool is used to generate XSD, or schema
definition files.

XML Schema Definition Tool is used by Visual Studio when creating
TypedDataSets.

Connected Layer
The term connected layer implies that a connection to a data source is
open while data is being analyzed or manipulated.

ADO.NET does not support connected data operations.

Persistent connections must be made using the COM Interop modules
with the older ADO, and OLE DB Libraries.

Use tlbimp.exe to create .NET wrappers.

Disconnected Layer
By its very nature,ADO.NET is disconnected, which means a
connection to the data source is not maintained.

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 455

456 Chapter 9 • Using ADO.NET

A disconnected layer allows our data source to free up resources and
respond to the next user.

Using the SQL Server Data Provider

The SQL Server data provider is written explicitly to provide data access
to Microsoft SQL Server version 7 and later.This set of classes takes
advantage of the SQL Server API in a way that makes it more efficient
for data access than going through the OLE DB libraries.

The SQL Server data provider’s core objects are SqlConnection,
SqlDataAdapter, SqlCommand, and SqlDataReader.

Remoting

Remoting allows objects or components to communicate across networks
or the Internet and takes care of many of the complexities of communi-
cating across networks.

XML is key to remoting in ADO.NET.

Data Controls

The data controls in VB.NET are similar to the data controls in VB6.
They provide for flexible viewing and editing of data either in the form
of bound data or unbound data.

Data controls can be manipulated at runtime for flexibility and speed.

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 456

Using ADO.NET • Chapter 9 457

Q: Which object allows for faster reading of data, the DataReader or the DataSet?

A: As always, testing is the final determination, but generally, the DataReader is
faster than the DataSet.The DataReader is intended to provide a scrollable
source of data that provides access to data one row at a time. If you are
returning a great number of rows, then the DataReader may be a better idea
than the DataSet.Your testing will determine if the DataSet is better for
smaller amounts of data.

Q: Should I use the OLE DB data provider or the SQL data provider?

A: If your project is using SQL Server in production, then by all means use the
SQL data provider.The SQL data provider is more efficient and faster than
the OLE DB libraries, which is the only advantage that I see. Both objects
have the same options and methods; the differences lie in the implementa-
tion.The OLE DB data provider will allow you to change the DataSource
easily without having to change much code.

Q: Should I use SQL statements or stored procedures for data access?

A: Stored procedures are the preferred method of data access, as they allow for
another layer of granularity to your application. Most relational databases also
precompile, and take the opportunity to optimize the query plan of the
stored procedure based on index statistics.They do, however, require other
specialized skills that may not be available on your team. In general, I would
use SQL statements as a last resort, or in special instances.

Q: When should I use output parameters?

A: Output parameters have less overhead than returning data from a stored pro-
cedure. If you are returning a couple of pieces of data, or even an entire row
of data, it is more efficient to use the output parameters. It is, however, much

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_09 8/15/01 2:31 PM Page 457

458 Chapter 9 • Using ADO.NET

more work for both the DBA and the developers. It may come down to your
project deadlines, but in general, they are variables in memory that are more
efficient than an XML data stream.

Q: When should I use return values from stored procedures?

A: Return values are limited to integer data. For the most part, this is the lim-
iting factor for using return values.As far as ADO.NET is concerned, it is just
another output parameter. Return values are useful for returning an error
number, informational number, or the identities of new records.

www.syngress.com

153_VBnet_09 8/15/01 2:31 PM Page 458

Developing Web
Applications

Solutions in this chapter:

■ Web Forms

■ Adding Controls to Web Forms

■ Creating Custom Web Form Controls

■ Web Services

■ Using Windows Forms in
Distributed Applications

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 10

459

153_VBnet_10 8/15/01 11:24 AM Page 459

460 Chapter 10 • Developing Web Applications

Introduction
In Chapter 8 we learned how to use Windows forms and controls; now it is time
to learn about Web forms and controls.This chapter is not meant to teach you
how to develop complete Web applications. It is intended to show you how to
use Visual Basic .NET as a development tool for Web applications.

Web forms are a part of ASP.NET that allows you to create programmable Web
pages.They integrate HTML with server-side and client-side programming logic.
For those of you who have developed ASP Web pages, you know the headaches
that arise when you try to ensure that your page works correctly on both
Microsoft Internet Explorer and Netscape.Web forms automatically determine
the client’s browser type and create the correct client-side code for that browser.
Web forms also give you a richer set of controls for a better user interface.

Web form controls are server-side controls that provide the user interface as well
as programmatic functionality.Web form controls are different from Windows
controls in that they are designed to work with ASP.NET.A common and
tedious task in Web pages is data validation.Web form controls have built-in data
validation capabilities that streamline this task.You will find that Web application
development is greatly enhanced, with many more features and capabilities than
were previously available.

In order to move to the next phase of the Internet,Web applications need to
be distributed across the Internet with different functionalities. Web services allow
this to happen.Web services are object-based components that use XML and
HTTP. By allowing communication across the HTTP protocol, you don’t have to
change your existing network architectures or firewall configurations.Web ser-
vices are based on open Internet standards that can communicate with compo-
nents on different platforms and written in different programming languages.This
flexibility allows you to communicate with objects through a URL.

Another feature of .NET that further enhances Web applications is the ability
to use a Windows form as a client-side user interface in a distributed application.
This capability is useful when you require a richer user interface.An example is
creating Web forms for most of your users but a thick client for your administrators
who would require greater functionality.

We end the chapter with developing a Web application utilizing the features
covered in this chapter.This discussion shows how the pieces fit together.To
completely cover Web application development with ASP.NET would require a
book unto itself.

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 460

www.syngress.com

Web Forms
Web forms extend the Rapid Application Development (RAD) capabilities of
Visual Basic to Web applications, allowing developers to create rich, form-based
Web pages.Web forms allow users to design Web applications the same way they
use Windows forms for Windows applications.Web forms provide a rich user
interface, complex layout, and user interaction with no burden on the developer.
They also separate the code from the content on a page, eliminating spaghetti
code.This feature helps different groups concentrate more on their respective
pieces of code. For example, the design group can work on the site using their
design tools without having to worry about the code, while the programmers can
concentrate on functionality without worrying about the screen design.

Similar to the Windows controls,Web forms have their own controls, called
Web controls. However,Web controls have more limited capabilities than their
counterparts, due to the limitations of the Web model. For example, some of the
events found in Windows form controls, such as mouse events, are not practical in
the Web model because they require an expensive round trip to the server.
Furthermore, these controls aren’t ActiveX controls; they exist only on the server
and render themselves as standard HTML to the client.

The Integrated Development Environment (IDE) for Web forms is similar to
that for Windows forms.You will notice few differences in this environment
compared with Windows applications.The design area does not have a form
window. It contains a blank Web page, white in the background with two tabs
(Design and HTML) at the bottom.The HTML tab allows you to view and edit
the HTML code for the page. On the Design tab you have two options: absolute
positioning (grid layout) and flow layout, which is the default layout.You can
change to the grid layout by using the pageLayout property in the Properties
dialog box.The difference between flow layout and grid layout is that in flow
layout, the control is dropped where the cursor is currently positioned, whereas
in grid layout, the control is placed in the exact X-Y position, similar to
Windows forms. It is not a good idea to use grid layout, because your users can
use any platform and any screen resolution. In this chapter we use flow layout
only.

In this section, we design a simple Web form.We then see how Web forms are
different from Windows forms and why they are better than the existing Active
Server Pages (ASP).The next section covers Web form controls—the types of
controls available and their event model—and finally, we create our own control.

Developing Web Applications • Chapter 10 461

153_VBnet_10 8/15/01 11:24 AM Page 461

462 Chapter 10 • Developing Web Applications

A Simple Web Form
Let’s begin our work with a tiny program, the classic “Hello World.” In Exercise
10.1, we create a simple Web form.This Web form will have no Web controls.
(We discuss Web controls in the next section.) In order to create a Web form, we
must first create a Web application.

Exercise 10.1 Creating a Simple Web Form
In this exercise, we create the standard Hello World example.

1. Begin a new Visual Basic Web project by selecting File | New |
Project and then selecting ASP.NET Web Application under
Visual Basic Projects.The New Project dialog box appears, as shown in
Figure 10.1.

2. Change the name of the application to Chapter10. If you are using
your local machine as the Web server, leave the Location box set to
localhost; otherwise, enter the name of your Web server in the Location
field. Click OK and Visual Studio.NET will create the Web project for
you, as shown in Figure 10.2.

If you look at the Solution Explorer of the IDE, you will see that it
has more files than a Windows application.All of these files are created

www.syngress.com

Figure 10.1 The New Project Dialog Box

CD Exec.
10.1

153_VBnet_10 8/15/01 11:24 AM Page 462

Developing Web Applications • Chapter 10 463

under the root directory of your Web site, typically C:\Inetpub\
wwwroot\Chapter10 (Chapter10 is the name of our project).Among
these files,WebForm1.aspx (note the new file extension) contains your
Web form. Global.asax is similar to Global.asa in the classic ASP, which
contains the Application and Session events. Styles.css contains the styles
to render HTML.AssemblyInfo.vb contains the assembly information
for this project, such as versioning and assembly name.Web.config con-
tains configuration details, and Chapter10.vsdisco contains the discovery
information for the Web services.We discuss these two files later in this
chapter.

3. Using the Properties dialog box, set the pageLayout property to
FlowLayout.

4. Now click the design surface of the form and type Hello World.

5. We have created our first Web form. Before you run the program, you
must set the start page for this project. In order to do this, right-click the
Web form WebForm1.aspx in the Solution Explorer and then click
the Set As Start Page menu option in the popup menu. Now let’s run

www.syngress.com

Figure 10.2 Visual Studio.NET IDE for a Web Application

153_VBnet_10 8/15/01 11:24 AM Page 463

464 Chapter 10 • Developing Web Applications

the program by pressing F5 or clicking the Start icon in the toolbar.
VS.NET builds the application and invokes Internet Explorer.You will
see the “Hello World” text in the browser.

Wasn’t that easy! You can also run the program by compiling it using Build |
Build menu (Ctrl+Shift+B) once the form is compiled.You can manually
open the browser and type the URL. Here the URL of our Web form is
http://localhost/chapter10/webform1.aspx. In this exercise, we created a simple
Web form. Now let’s see the difference between Web forms and Windows forms.

How Web Forms Differ from Windows Forms
You might have observed that Web forms and Windows forms look similar; both
can provide a rich user interface and complex application support to fulfill busi-
ness requirements.The two types of forms might look similar from a design and
development point of view, but they differ a great deal in terms of implementa-
tion. For example, for an e-commerce application that will be accessed over the
Internet on different platforms and browsers,Web forms may be used.When cre-
ating a highly responsive system with high-volume transactions for an office
application,Windows forms are the best choice. In other words, a Web form is a
thin client and a Windows form is a thick client. In some cases, the choice
between Web forms and Windows forms might not be immediately clear. In this
section we see how Web forms and Windows forms differ in various situations:

■ User interface Windows forms can take advantage of .NET WinForms
and graphics classes to create rich user interfaces, whereas in Web forms,
user interaction requires an expensive round trip to the server, creating a
slower response.

■ Security Windows forms have complete access to local computer
resources, whereas browser security limits Web forms.

■ Client platform All clients in Windows forms require the .NET
framework, whereas Web forms require only a browser, so they can
target any client platform.The only requirement here is that the Web
server should be running .NET Framework.

■ Client application Windows forms are thick clients, so they rely on
the client processor.Web forms usually are thin clients and hence their
clients don’t have to use high-performance machines.

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 464

Developing Web Applications • Chapter 10 465

■ Throughput Windows forms run on the client side, so they can pro-
vide the quickest response and high throughput.Web forms rely on the
network traffic over HTTP and hence can’t give high throughput and
might not be suitable for applications requiring high throughput with
high-volume transactions.

■ Deployment Since Windows forms run on the client machine, they
need to be installed on all user desktops.As the users grow in number
and with each new release, the deployment becomes tedious.Web forms
have no client deployment at all.The client requires only a browser to
view them.

You can see that the difference between Web forms and Windows forms is
basically the difference between client/server applications and Web applications.
Because Web forms use a browser, a universal client, they are excellent for
targeting a wide range of clients and for intranet applications.

Why Web Forms Are Better Than Classic ASP
ASP.NET makes it much easier to build enterprise Web applications.ASP.NET is
largely syntax compatible with ASP, but under the hood it is completely changed
and rewritten to take the advantage of .NET Framework.ASP.NET pages are
compiled to CLR. For this reason, you can use any .NET-compatible language:
Visual Basic, C#, or Jscript.NET. VBScript is now knocked out, and the friendly
and sophisticated Visual Basic is used in its place, thereby using all the features of
this language.This change makes it possible for developers to access all the .NET
Framework classes in ASP.NET as they would in Visual Basic.

If you have developed any ASP pages, you are very familiar with the major
limitations of ASP.The new ASP.NET addresses all of these limitations and pro-
vides a much-simplified development environment. Let’s see the benefits of
ASP.NET over its predecessor:

■ Simplicity ASP.NET makes it easy to perform common tasks such as
form submission, client authentication, site configuration, and deployment.

■ Improved performance Because ASP.NET is compiled to CLR, it
can take advantage of early binding and JIT thus having significant
performance over its interpreted predecessor.

■ Strong typed language ASP.NET now uses Visual Basic as the
programming language rather than VBScript, which supports only the

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 465

466 Chapter 10 • Developing Web Applications

Variant data type.With VB in ASP.NET, we can take advantage of
various data types.

■ Event-driven model ASP.NET supports an event-driven model, just
like Visual Basic, thus eliminating the large case statements in the begin-
ning of the page to determine with which button the user has inter-
acted.ASP.NET supports Session and Application events in Global.asax
similar to that in ASP. In addition to these four events, Global.asax now
supports more than a dozen events.

■ Nonspaghetti code The programming model of ASP.NET separates
the code from the presentation, making constructing and maintenance of
code easier.

■ State management ASP.NET provides easy-to-use Application and
Session states that are familiar to ASP developers. In ASP, the Session
state resides in the memory of the server, so you can’t use it in a Web
farm.ASP.NET eliminates this limitation by moving the sessions not
only out of process but also out of machine.ASP.NET uses a dedicated
state server process that runs as a Windows NT service.This state server
listens on a port (default port 42424).This means that you can create a
dedicated state server for your Web farm.You can even tell ASP.NET to
use SQL Server to store State.

■ Security ASP.NET provides authorization and authentication services
in addition to IIS authentication services.ASP.NET takes the burden
from you to authenticate and authorize users stored in a database or in a
config file. Users can be authenticated and authorized using
CookieAuthenticationModule and URLAuthorizationModule, which
sets a cookie that contains the user credentials, and that cookie is
checked for subsequent requests.

■ Configuration ASP.NET uses an XML file to store configuration set-
tings rather than depending on the IIS metabase.This makes the deploy-
ment of the site easier, especially in a Web farm.

■ Web services ASP.NET allows you to expose your business functions
to your business partners over standard Web protocols.

■ Cache services ASP.NET allows you to cache the output of your
dynamic page, thus increasing throughput.

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 466

Developing Web Applications • Chapter 10 467

■ Debugging ASP.NET has a built-in tracing utility.You don’t have to use
Response.Write periodically to trace your program execution. Developers
can now use the debugging features they are accustomed to using.

■ Deployment Deployment is as simple as copying the files.This is
because all the configuration settings of the site are in an XML file.
Furthermore, it avoids DLL Hell (component registration, versioning,
locked DLLs, and so on).You can even recompile a component and
deploy it without having to restart the Web server.

At first glance, you might think that all of these benefits will probably make
your development harder.Actually, the features of ASP.NET are designed to be
easier to use. If you want to take full advantage of ASP.NET, you have to rewrite
your current applications.The good news is that ASP and ASP.NET can co-exist
on the same machine. In order to accomplish this compatibility, Microsoft intro-
duced new file extensions for ASP.NET (.ASPX, .ASAX, and so on) so you can
convert them at your own pace.

Adding Controls to Web Forms
Web form controls are server-side controls that are instantiated on the server and
render HTML to the browser.These controls detect the browser and then gen-
erate HTML accordingly to provide a customized appearance to the user.
Furthermore, these controls expose events similar to the Windows controls, thus
working within an event-driven programming model.

Placing the Web form controls on a Web form is similar to placing a
Windows control on a Windows form.The only difference is that the layout of
the Web form is linear and the controls are dropped where the cursor is currently
positioned. If you don’t feel comfortable with this setup, you can change the
layout to grid layout, which allows you to place the controls on the form simi-
larly to a Windows form.

NOTE

Web form controls not only detect browsers such as Internet Explorer
and Netscape, but they also detect devices such as Palm Pilots and cell
phones and generate appropriate HTML accordingly.

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 467

468 Chapter 10 • Developing Web Applications

Exercise 10.2 Adding Web Controls to a Web Form
In this exercise, we first create a Web form and place four controls in it.Then we
take a close look at the code, and finally we examine the different types of con-
trol available. Use the same Web form that we created in Exercise 10.1.

1. Open the Web application project.

2. In the Web form, delete the Hello World text.

3. Place some controls on the form: two label controls, one text box con-
trol, and a button control.

4. Place a label control that contains the heading of our application and set
the following properties using the Properties dialog box:

Text: Customer Order Details
Font-Size: X-Large
ID: lblCustomerOrder

5. Select the design surface and press Enter.Then place another label con-
trol on the form by setting the following properties:

Text: Customer ID
ID: lblCustomerID

6. Place a text box control next to the second label control and set its
properties to:

Text: “” (empty)
ID: txtCustomerID

7. Press Enter and then place a button control and change its
properties to:

Text: Get Order Details
ID: cmdGetDetails
After placing the controls, your Web form should resemble Figure

10.3.

8. Save the Form (Ctrl+S) and let’s test the form we created. Press F5 to
run the application.Visual Studio builds the Web form and invokes
Internet Explorer, as shown in Figure 10.4.

When you click the button, nothing happens.That’s because we haven’t added
any code.Actually, when you click the button, the browser sends a request to the
server with the entire user entered data; this process is called form submission.You
might not notice this process if your local machine is the Web server because the

www.syngress.com

CD Exec.
10.2

153_VBnet_10 8/15/01 11:24 AM Page 468

Developing Web Applications • Chapter 10 469

response is quick.Try entering something in the text box and click the button;
you can see that the text you entered persists in the form submission.Web forms
do this for us without writing any code. In classic ASP, user-entered data does not
persist in form submission and we have to write code to do this.

Now let’s see the code of the Web form. In the VS.NET IDE, click the
HTML button below the design surface to view the HTML code.The Web

www.syngress.com

Figure 10.3 A Web Form with Controls

Figure 10.4 Viewing Web Form Controls Using a Browser

153_VBnet_10 8/15/01 11:24 AM Page 469

470 Chapter 10 • Developing Web Applications

form code generated by IDE will look familiar to an ASP developer. Here is the
code generated by IDE:

<%@ Page Language="vb" AutoEventWireup="false"

Codebehind="WebForm1.aspx.vb"

Inherits="Chapter10.WebForm1"%>

<html>

<head>

<meta name="GENERATOR" content="Microsoft Visual Studio.NET

7.0">

<meta name="CODE_LANGUAGE" content="Visual Basic 7.0">

</head>

<body>

<form id="WebForm1" method="post" runat="server">

<p>

<asp:Label id=lblCustomerOrder runat="server" Font-Size="X-

Large">

Customer Order Details

</asp:Label>

</p>

<p>

<asp:Label id=lblCustomerID runat="server">

Customer ID

</asp:Label>

<asp:TextBox id=txtCustomerID runat="server"></asp:TextBox>

</p>

<p>

<asp:Button id=cmdGetDetails runat="server"

Text="Get Order Details"></asp:Button>

</p>

</form>

</body>

</html>

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 470

Developing Web Applications • Chapter 10 471

Let’s go through the code. Ignore the following first line for now; we will
discuss it later:

<%@ Page Language="vb" AutoEventWireup="false"

Codebehind="WebForm1.aspx.vb"

Inherits="Chapter10.WebForm1"%>

The next few lines contain the header information and metatags of the
HTML page.After that is the form tag. Observe the runat clause at the end:

<form id="WebForm1" method="post" runat="server">

The runat clause tells .NET that this is a Web control and will expose the
form events.You might have noticed that the action attribute is missing here. If
the action attribute is missing, the form posts to itself—that is, to the same page.
So, in ASP.NET, all the forms post to themselves. Now let’s see the code for the
controls you have placed in the form. First observe the heading label:

<asp:Label id=lblCustomerOrder runat="server" Font-Size="X-

Large">

Customer Order Details

</asp:Label>

asp:Label says that it is a label control in the ASP namespace.All the controls
available in ASP.NET are under the ASP namespace and have a runat clause.
Unlike HTML,ASP.NET is strict with closing tags.All the opened tags must be
closed; otherwise,ASP.NET generates a compile error.As mentioned earlier, all
the Web form controls render themselves as HTML to the client. So if you view
the HTML source in the browser, you will see pure HTML code. Let’s see the
HTML code returned by the Web server:

<html>

<head>

<meta name="GENERATOR" content="Microsoft Visual Studio.NET

7.0">

<meta name="CODE_LANGUAGE" content="Visual Basic 7.0">

</head>

<body>

<form name="WebForm1" method="post"

action="Webform1.aspx" id="WebForm1">

<input type="hidden" name="__VIEWSTATE"

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 471

472 Chapter 10 • Developing Web Applications

value="YTB6MTk1NDExNjQxNl9fX3g=e92c2469" />

<p>

Customer Order Details

</p>

<p>

Customer ID

<input name="txtCustomerID" type="text" id="txtCustomerID"/>

</p>

<p>

<input type="submit" name="cmdGetDetails"

value="Get Order Details" id="cmdGetDetails"/>

</p>

</form>

</body>

</html>

Notice the form tag generated by the Web form.This tag has an action
attribute and its value is the current name of the page, thus posting to itself.
Under the form tag, observe the hidden field:

<input type="hidden" name="__VIEWSTATE"

value="YTB6MTk1NDExNjQxNl9fX3g=e92c2469" />

ASP.NET uses this field to maintain the state across the page submission.As
you’ll recall, the text you entered in the TextBox persisted after the page submis-
sion.You can use this state management to store values similar to the Session
variables. Classic ASP uses Session variables to store State across pages. (A detailed
discussion of this topic is beyond the scope of this chapter.) All the label controls
placed in the form rendered themselves to a span tag.TextBox and button con-
trols rendered into the HTML input tag.Web forms generate HTML, so they can
be viewed in any browser.

Now let’s write some code. If the button is clicked, we set the text in the
TextBox to Button is clicked. In order to write code for the Click event, in the
VS.NET IDE design, double-click the button control to open the code window.
Observe that a new window is opened and your cursor is positioned inside the

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 472

Developing Web Applications • Chapter 10 473

cmdGetDetails_Click function. For now, ignore the rest of the code and write
the following code to set the text of the TextBox:

txtCustomerID.Text = "Button is clicked"

Compile the program, run it in the browser, and click the button.You see
that the text in the TextBox is changed to what we have entered in the code.

Code Behind
Before going into the VB code, let’s revisit the first line in the Web form:

<%@ Page Language="vb" AutoEventWireup="false"

Codebehind="WebForm1.aspx.vb"

Inherits="Chapter10.WebForm1"%>

This is called a page directive, and it tells the compiler that the language used in
this page is Visual Basic, its code is found in the file WebForm1.aspx.vb under the
same folder, and this page is inherited from Chapter10.WebForm1. If you see files
in the physical directory under the Web server, you will notice a Visual Basic file
called WebForm1.aspx.vb.This file is named the same as the filename of the Web
form with a VB extension.When you compile your Web form,Visual Studio actu-
ally compiles this file into an assembly (.DLL) under the bin directory of the Web
application on the Web server. If you check the bin directory of your application
on your Web server, you will see the DLL. In our case, you will find Chapter10.dll
under C:\Inetpub\wwwroot\Chapter10\bin.This DLL contains the namespace
Chapter10 (the name of our Web application) and all the Web forms in our appli-
cation as classes inside this namespace.This structure restricts the usage of the same
filename for the Web form, even though the files are in different folders.This
technique is called code behind because code is behind the form.

Now let’s see the Visual Basic code for this form.The first few lines import
different namespaces commonly used in the ASP.NET. Of these namespaces, we
require System.Web.UI and System.Web.UI.WebControls because they contain
the page and Web control APIs:

Imports System

Imports System.ComponentModel.Design

Imports System.Data

Imports System.Drawing

Imports System.Web

Imports System.Web.SessionState

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 473

474 Chapter 10 • Developing Web Applications

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Web.UI.HtmlControls

Imports Microsoft.VisualBasic

After the imported namespaces, there is a declaration of class for our Web
form; this class must inherit from the Page object, thereby exposing the Page
properties and events.Then we have declarations of all the controls placed on the
form with the WithEvents clause so that they can expose their events:

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents cmdGetDetails As

System.Web.UI.WebControls.Button

Protected WithEvents txtCustomerID As

System.Web.UI.WebControls.TextBox

Protected WithEvents lblCustomerID As

System.Web.UI.WebControls.Label

Protected WithEvents lblCustomerOrder As

System.Web.UI.WebControls.Label

Observe the hidden region. (This is similar to what you see in Windows form
code.) The hidden region is where Visual Studio places the generated code.You
shouldn’t modify this code:

#Region " Web forms Designer Generated Code "

'This call is required by the Web form Designer.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()

End Sub

Private Sub Page_Init(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Init

'CODEGEN: This method call is required by the Web

form Designer

'Do not modify it using the code editor.

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 474

Developing Web Applications • Chapter 10 475

InitializeComponent()

End Sub

#End Region

After this hidden region, we have all the events exposed by the Web form.
Here you see the code we wrote for the Button Click event.The WebForm1_Load
event is similar to the form Load event, and the WebForm1_Init event fires when
the page is initialized.This is the first event in the page’s life cycle; after that, the
load event triggers and is followed by events of the controls in the form. Other
events such as PreRender and UnLoad trigger in the form life cycle.Apart from
these events, more than a dozen events in Global.asax trigger for every request to
a Web form. Covering them is beyond the scope of this chapter:

Private Sub cmdGetDetails_Click(ByVal sender As

System.Object, _

ByVal e As System.EventArgs) Handles

cmdGetDetails.Click

txtCustomerID.Text = "Button is clicked"

End Sub

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

'Put user code to initialize the page here

End Sub

Similar to the events in the Windows forms, every event delegate in Web
forms has two arguments: the sender of the event (in the Button Click event, the
sender is the button) and an instance of the class that holds data for the event.
The Handles keyword attaches this procedure to the object declared using the
WithEvents keyword. Because the sender contains the object that triggered the
event, it is used to get or set the object properties.The second parameter is used
to retrieve other data associated with the event—for example, an ImageButton
Control Click event contains X and Y coordinates where a user clicked.

So far, we have seen a Web form with some Web controls. In the next sec-
tion, we look at various types of control available in Web forms. Before that, we
see how Web form controls differ from Windows form controls.

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 475

476 Chapter 10 • Developing Web Applications

How Web Form Controls Differ
from Windows Form Controls
Web form controls are similar to Windows form controls.They both have event-
driven programming models.The main difference between them is that Web form
controls generate HTML to the user, whereas Windows controls take advantage of
rich user features available in the Microsoft Windows operating system.

In Windows form controls, events are raised and handled on the client side
only, whereas in Web form controls, the events are raised on the client browser
but they are handled on the Web server. Because of this model,Web form con-
trols have fewer events than their counterparts.

ASP.NET Server Controls
Web form server controls are broadly classified into four categories: intrinsic con-
trols, bound controls, custom controls, and validation controls. Intrinsic controls are
those controls that can render themselves to equivalent HTML elements. Bound
controls help us lay out a page in a grid or list format with data returned from a
database. Custom controls are the rich controls that are not available in HTML,
such as the calendar control. Finally, Microsoft provided validation controls to
validate user inputs.The following sections examine each control type in detail.

Intrinsic Controls
In Exercise 10.2, we used three controls: label, text box, and button.All three
controls rendered HTML to the client, so these controls are intrinsic controls.
There are several other intrinsic controls besides these. For those of you who
have worked with ASP previously, you know that for a text box you would write
HTML as follows:

<input type="text" name="txtCustomerID" id="txtCustomerID">

www.syngress.com

Web Form Deployment
Deploying a Web form involves simply copying the .ASPX file and DLL in
the bin directory to their destinations. The DLL file should always be in
the bin directory.

Developing & Deploying…

153_VBnet_10 8/15/01 11:24 AM Page 476

Developing Web Applications • Chapter 10 477

In the previous exercise, you noticed that the equivalent of this code in
ASP.NET controls is:

<asp:TextBox id=txtCustomerID runat="Server">

There is another way of creating a server control, simply add a runat clause to
the HTML:

<input type="text" name="txtCustomerID"

id="txtCustomerID" runat="server">

Adding the runat clause to the HTML element makes this a server control.
ASP.NET exposes all of the events of this control.These controls are called HTML
server controls.All of the HTML server controls are derived from the namespace
System.Web.UI.HtmlControls.ASP server controls and HTML server controls
behave in exactly the same manner.The main difference between these controls is
that ASP Server controls detect the browser and generate the appropriate HTML
(HTML 3.2 or HTML 4.0), whereas with HTML controls, you have to write
code for browser detection if you want to take advantage of the upper-level
browser. For this reason,ASP.NET server controls have a richer object model than
HTML server controls. In this chapter, we use ASP server controls only.Table 10.1
shows the various ASP.NET intrinsic controls and their HTML equivalents.

Table 10.1 ASP.NET Controls and Their Corresponding HTML Elements

Intrinsic Controls HTML Element

Label …
TextBox <input type=”text”>
Button <input type=”Submit”>
LinkButton
ImageButton <input type=”image”>
HyperLink
DropDownList <select> .. </select>
ListBox <select size=””> .. </select>
CheckBox <input type=”checkbox”>
RadioButton <input type=”radio”>
Image
Panel <div> ..</div>
Table <table>… </table>

www.syngress.com

153_VBnet_10 8/15/01 11:24 AM Page 477

478 Chapter 10 • Developing Web Applications

All intrinsic controls run at the server level and render HTML elements.
Among these intrinsic controls, some of the controls such as DropDownList and
ListBox controls can be bound to a dataset from the database.We discuss how to
bind a dataset to the control in the next section.

Bound Controls
In a Web page, we usually retrieve data from the database and show it to the user
in a tabular form or in a list form. Microsoft introduced three bound controls
that do the work for us; they are DataGrid control, Repeater control, and
DataList control.The DataGrid is the richest bound control and the easiest way
to display the data in a grid control. In a Repeater control, you define the layout
of individual items.When the page is run, the control repeats the layout for each
item in the data source. DataList is similar to the Repeater control and provides
more formatting options.

DataGrid
As mentioned earlier, DataGrid allows us to display the data returned from a data
source in a tabular form.This is the most commonly used control.The control
has numerous customization options. First let’s see a simple DataGrid in action,
and then we can apply some customizations.

Exercise 10.3 Using the DataGrid Control
Use the same project that we used for Exercise 10.2. In that exercise, we placed
four controls on a Web form (refer back to Figures 10.3 and 10.4). Once the user
enters the Customer ID and clicks the button, it shows the orders placed by the
customer.Typically, orders are shown in a tabular form, which is where DataGrid
comes into the picture.

For this exercise, we use the NorthWind database, which comes with default
installation of the SQL Server 2000. In the NorthWind database, the Orders table
contains all the orders placed by the customers.We will use this table to get the
orders placed by the user-supplied Customer ID.

1. Open the Chapter10 Web application project.

2. Place a DataGrid control on the Web form by dragging and dropping it
from the toolbox and set the following properties:

ID: dgOrders
HeaderStyle-BackColor: Navy
HeaderStyle-Font-Bod: True

www.syngress.com

CD Exec.
10.3

153_VBnet_10 8/15/01 11:25 AM Page 478

Developing Web Applications • Chapter 10 479

HeaderStyle-ForeColor: White
AlternatingItemStyle-BackColor: Silver
After placing the DataGrid control in the Web form, your design

area should appear as shown in Figure 10.5.

For this design, the user enters a Customer ID and clicks the Get
Order Details button. So, for the Button Click event, we need to write
code to get the orders placed by the customer. In order to reuse the
code, we create a function that will return the dataset containing the
orders placed by the customer for a given Customer ID.

3. Add the following code to your page in WebForm1.vb:

Public Function GetOrders(ByVal CustomerID As String) As

DataSet

Dim sConnectionString As String

Dim sqlString As String

Dim MyConnection As SqlConnection

Dim MyDataAdapter As SqlDataAdapter

Dim DS As New DataSet()

'building the connection string

sConnectionString = "Server=localhost;

Database=Northwind; "

sConnectionString += "UID=sa; pwd=;"

www.syngress.com

Figure 10.5 DataGrid Control in Design Time

153_VBnet_10 8/15/01 11:25 AM Page 479

480 Chapter 10 • Developing Web Applications

'building the select statement

sqlString = "SELECT * FROM Orders "

sqlString += "WHERE CustomerID = '" + CustomerID + "'"

'opening the connection

MyConnection = New SqlConnection(sConnectionString)

MyDataAdapter = New SqlDataAdapter(sqlString,

MyConnection)

'getting Data Set

MyDataAdapter.Fill(DS, "Orders")

Return DS

End Function

Because you saw in the previous chapter how to access data from a
database, we don’t delve into this code here.You might have to change
the username and password, depending on your SQL Server setup. Here
we use SqlConnection and SqlDataAdapter instead of
OleDBConnection and OleDBDataAdapter for data retrieval.
SqlConnection and SqlDataSetCommand are part of the ADO.NET and
are optimized for SQL Server to provide more functionality and faster
access than a generic managed provider. In order to use SQL APIs in
our code, we have to import that namespace.

4. To import the SQL namespace, add the import statement to the code:

'other import statements

Imports System.Data.SqlClient

5. Place the following code in the Button Click event:

Dim DS As DataSet

'getting the DataSet with Order Details for the entered

CustomerID

DS = GetOrders(txtCustomerID.Text)

'Binding the DataGrid

dgOrders.DataSource = DS.Tables("Orders").DefaultView

dgOrders.DataBind()

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 480

Developing Web Applications • Chapter 10 481

This code first defines a variable of type DataSet and then calls the function,
GetOrders, that we wrote previously to get the dataset for the Customer ID
entered by the user.After DataSet is returned by the function into our dataset
variable (DS), the code binds this dataset to the DataGrid. Because the DataSet
can contain multiple tables, we had to set the DataView of the table we want,
which in our case is the Orders table, to the DataSource property of the DataGrid
and then call the DataBind method to finally bind the data to the DataGrid.

6. Save the form and run the application.

7. In the browser, enter the Customer ID HANAR or any other valid
Customer ID from the database and click the button. Once you click
the button, you see all the orders for the customer HANAR. Figure 10.6
shows the output of the DataGrid.

If you look at the HTML source of the page, you will notice that the
DataGrid control generates HTML. Now let’s take a look at the Web form syntax
of the DataGrid control:

<asp:DataGrid id=dgOrders runat="server" ForeColor="Black"

www.syngress.com

Figure 10.6 Viewing DataGrid Control in a Browser

153_VBnet_10 8/15/01 11:25 AM Page 481

482 Chapter 10 • Developing Web Applications

Width="188" Height="114" >

<HeaderStyle Font-Bold="True" ForeColor="White"

BackColor="Navy">

</HeaderStyle>

<AlternatingItemStyle BackColor="Silver">

</AlternatingItemStyle>

</asp:DataGrid>

asp:DataGrid is the DataGrid control in the ASP namespace. In the control
tag, you can see the Width and Height properties.These are used to set the width
and height of the grid. During runtime, the control dynamically expands to gen-
erate a HTML table. Inside the control tag you can see the HeaderStyle and
AlternatingItemStyle tags.These are the properties of the DataGrid we set using
the Properties dialog box.The HeaderStyle property tag is used to set the style of
the table Header, such as font and color. Similarly, the AlternatingItemStyle prop-
erty sets style on the alternate column of the data row.There are other properties,
such as FooterStyle, which is used to set the style in table footer, and ItemStyle,
which is used to set the style of the data rows.That is the reason our grid output
alternating colors for the data.

Exercise 10.4 Customizing DataGrid Control
DataGrid has numerous customization options. Some of these customizations are
not available through the Properties dialog box; instead, they can be handled by
modifying the Web form code. In the previous exercise, the DataGrid control
output all the columns from the database using the table column name as the
header. Instead, let’s show only four columns, OrderID, OrderDate, ShippedDate,
and ShipName, and change the column headings. One way to do this is to
change the Select statement to retrieve only the required fields from the database.
We won’t use this method, though; instead, we will customize the DataGrid con-
trol to show only the required columns.The DataGrid control has another prop-
erty tag called Columns.We will see how to use this property tag in this exercise.

1. Open the Chapter10 Web application project from Exercise 10.3 if it
is closed.

2. Place the following code between the DataGrid tags.This code allows us
to show only the columns we want:

www.syngress.com

CD Exec.
10.4

153_VBnet_10 8/15/01 11:25 AM Page 482

Developing Web Applications • Chapter 10 483

<Columns>

<asp:BoundColumn datafield="OrderID" headertext="Order ID"/>

<asp:BoundColumn datafield="OrderDate" headertext="Order

Date"/>

<asp:BoundColumn datafield="ShippedDate" headertext="Shipped

Date"/>

<asp:BoundColumn datafield="ShipName" headertext="Ship Name"/>

</Columns>

By explicitly creating the BoundColumn control inside the
DataGrid’s Column collection, we can control the order of each column
and can show only the columns we want.Among the attributes of the
BoundColumn control, datafield represents the data column in the
DataSet and headertext represents the column heading when showing on
a browser.After adding this code to the DataGrid control tag, we have to
tell the DataGrid control to use this property and generate only the
columns we want.

3. Set the autogeneratecolumns attribute of the DataGrid control tag to False,
which forces DataGrid to use only the columns defined in the Column
collection.After making these customizations, your DataGrid control
code should be as follows:

<asp:DataGrid id=dgOrders runat="server" ForeColor="Black"

Width="188" Height="114"

autogeneratecolumns="False">

<HeaderStyle Font-Bold="True" ForeColor="White"

BackColor="Navy">

</HeaderStyle>

<AlternatingItemStyle BackColor="Silver">

</AlternatingItemStyle>

<Columns>

<asp:BoundColumn datafield="OrderID" headertext="Order

ID"/>

<asp:BoundColumn datafield="OrderDate" headertext="Order

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 483

484 Chapter 10 • Developing Web Applications

Date"/>

<asp:BoundColumn datafield="ShippedDate"

headertext="Shipped Date"/>

<asp:BoundColumn datafield="ShipName" headertext="Ship

Name"/>

</Columns>

</asp:DataGrid>

4. Compile the application and run it in the browser. Enter the Customer
ID (HANAR) and click the Get Order Details button.The grid con-
trol will output only the columns we asked for.

Observe the output, see that the columns Order Date and Shipped
Date include the time. Here the time is always midnight. Let’s apply
one more customization to the DataGrid control to format the date
columns. Like the BoundColumn control, DataGrid supports the
TemplateColumn control via which you can specify the content of the
output.

5. To format the order date, we have to replace the OrderDate
BoundColumn control with this TemplateColumn code:

<asp:templatecolumn headertext="Order Date">

<ItemTemplate>

<%# String.Format("{0:d}",

Container.DataItem("OrderDate")) %>

</ItemTemplate>

</asp:templatecolumn>

In this code, the attribute headertext pertains to the column header.
Because we are using TemplateColumn instead of BoundColumn, we
have to specify the column content and bind this column with the
DataSet column manually. BoundColumn did this automatically for us,
so the syntax to bind a column in the DataSet to the DataGrid controls
is as follows:

<%# String.Format("{0:d}", Container.DataItem("OrderDate")) %>

This line might seem familiar to you if you worked with ASP previ-
ously.This line not only binds the OrderDate column, it also formats the
column to dd/mm/yyyy format.

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 484

Developing Web Applications • Chapter 10 485

6. Similarly, to format the ShippedDate column, replace the BoundColumn
control for ShippedDate with the following:

<asp:templatecolumn headertext="Shipped Date">

<ItemTemplate>

<%# String.Format("{0:d}",

Container.DataItem("ShippedDate")) %>

</ItemTemplate>

</asp:templatecolumn>

7. Compile the program and in the browser enter the Customer ID
HANAR.After pressing the button, you will see the output nicely
formatted with only the columns we want.The output is shown in
Figure 10.7.

So far, we have applied customizations to narrow the fields we want to show
and format the fields using TemplateColumn.The complete code of the
ASP.NET DataGrid control after the customizations is as follows:

www.syngress.com

Figure 10.7 Customized DataGrid Control

153_VBnet_10 8/15/01 11:25 AM Page 485

486 Chapter 10 • Developing Web Applications

<asp:DataGrid id=dgOrders runat="server" ForeColor="Black"

Width="188" Height="114"

autogeneratecolumns="False">

<HeaderStyle Font-Bold="True" ForeColor="White"

BackColor="Navy">

</HeaderStyle>

<AlternatingItemStyle BackColor="Silver">

</AlternatingItemStyle>

<Columns>

<asp:BoundColumn datafield="OrderID" headertext="Order ID"/>

<asp:templatecolumn headertext="Order Date">

<ItemTemplate>

<%# String.Format("{0:d}",

Container.DataItem("OrderDate")) %>

</ItemTemplate>

</asp:templatecolumn>

<asp:templatecolumn headertext="Shipped Date">

<ItemTemplate>

<%# String.Format("{0:d}",

Container.DataItem("ShippedDate")) %>

</ItemTemplate>

</asp:templatecolumn>

<asp:BoundColumn datafield="ShipName" headertext="Ship

Name"/>

</Columns>

</asp:DataGrid>

The DataGrid control also supports another useful tool: paging. Paging allows
you to set the number of rows per page and navigate from one page to another
with little code. It also allows editing data in a column, deleting the row, and
sorting.

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 486

Developing Web Applications • Chapter 10 487

Web.config
In the function that we wrote to access the database and retrieve a customer’s
orders in a dataset, we hardcoded the connection string:

sConnectionString = "Server=localhost; Database=Northwind;"

sConnectionString += "UID=sa; pwd=;"

ASP.NET gives us the ability to store all the configurations of the application
in an XML file. In the Solution Explorer of our project, open the file
Web.config. In this file we can store our application settings and then retrieve
them wherever we want. Let’s store the connection string to the database in this
file and then retrieve it in our function.As mentioned earlier,Web.config uses
XML format, so we add the following XML string to the end of this file:

<appsettings>

<add key="DSN"

value="Server=localhost; Database=Northwind; UID=sa;

pwd=;" />

</appsettings>

In order to retrieve the configuration settings, you must use the GetConfig
method of the System.Web.HttpContext.The GetConfig method returns a
hashtable similar to the Dictionary object.The following code illustrates how to
access the configuration data:

sConnectionString = Context.GetConfig("appSettings")("DSN")

So, we can use Web.config for storing application settings.Additionally,
Web.config is used to store all the configuration settings of the application, such
as session management, tracing options, security, references to assemblies, and Web
services.The settings that we specify in Web.config override the default configu-
ration settings.You can find the default Web.config settings under C:\WINNT\
Microsoft.NET\Framework\version\CONFIG\Machine.config (here version
stands for the current version of .NET Framework).

Custom Controls
ASP.NET ships with certain custom controls to add more functionality to the
Web forms.These custom controls facilitate the creation of rich user interfaces.
Beta 2 ASP.NET is shipped with the Calendar control and AdRotator control.
Microsoft is planning to provide more controls when it officially launches the

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 487

488 Chapter 10 • Developing Web Applications

application. Of these two controls, the Calendar control is used to display a one-
month calendar on the Web form; the user can use this control to navigate to any
date in any year and click to select a date.AdRotator is used to display ad banners
on Web pages, similar to the AdRotator server component in ASP. It changes the
displayed ad automatically each time the Web page loads.

Validation Controls
Validating user input is the boon of every program. In order to make our life easy,
Microsoft introduced six validation controls.These controls help developers vali-
date all common types of data. Furthermore, they provide a way to validate data
using custom-written validation routines. Using these controls is easy and, in most
cases, you don’t have to write any code.The six available validation controls are:

■ RequiredFieldValidator Ensures that user does not skip any
required entry.

■ RegularExpressionValidator Validates the user entry with a pattern
defined using regular expressions.

■ CustomValidator Checks the user’s entry using validation logic we have
written.This can be either a server-side script or a client-side script.

■ CompareValidator Compares the user’s entry with a constant value or
with that of another control.

■ RangeValidator Validates that user input should be in a specified range.

■ ValidationSummary This control displays all the validation errors in a
summary form or in a list form.

www.syngress.com

Configuration Hierarchy
The Web.config file can exist in any directory in the ASP.NET application.
If it exists, its settings are applied to the current directory and to all child
directories. It also overrides the parent directory configuration settings.

Developing & Deploying…

153_VBnet_10 8/15/01 11:25 AM Page 488

Developing Web Applications • Chapter 10 489

Each of these controls can be attached to ASP.NET server controls (input
controls).You can also attach multiple validation controls to an input control.
Once these controls are attached to the input control, .NET Framework validates
the user inputs and, if there is an error, displays the error message on the page.
Furthermore, it sets the IsValid property of the Page object, which can be used to
check the page’s validity.

Among these validation controls, the RegularExpressionValidator control is
used to validate the user inputs with a predefined regular expression pattern.
Regular expressions are a powerful tool for searching and processing text.A regular
expression is a series of characters that define a pattern, and a pattern defines the
criteria to search for within a string.The pattern for all capital letters is [A–Z]. If
you want the user to enter at least five capital letters, your pattern will be
[A–Z]{5}.The 5 inside the braces forces the user to enter at least five consecutive
capital letters. If you want the user to enter only five capital letters, you have to
add a caret (^) at the beginning and a dollar sign ($) at the end.These symbols
force the target string to match the pattern at both the beginning and the end.
Therefore, the pattern for only five capital letters will be ^[A–Z]{5}$.This is
only a small sample of the power that expressions can provide. Regular expres-
sions are a language all by themselves, and you can find entire books on this topic.

Exercise 10.5 Using the Validation Controls
Let’s use some of the validation controls to validate the user input in our
example. Customer ID is a mandatory field that the user must supply.To validate
this, we use RequiredFieldValidator.

1. Open the Chapter10 Web application project from Exercise 10.4.

2. Place the RequiredFieldValidator control next to the text box and set
the following properties using the Properties dialog box:

ID: RequiredFieldValidator
ErrorMessage: Enter a CustomerID
ControlToValidate: txtCustomerID (pick from the list)
Display: Dynamic (static means the control reserves the space in the

form even though there is no error; dynamic doesn’t reserve the space
beforehand)

After setting the properties to the control, your design area should
resemble Figure 10.8.

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 489

490 Chapter 10 • Developing Web Applications

3. On the button’s Click event, we should get data for the Customer ID
only when the page is valid. So on the Click event we check whether
the page is valid.Add the following code at the beginning of the Button
Click event:

If Not Page.IsValid Then Exit Sub

4. Compile the program and run it in the browser. If you don’t enter any-
thing and click the button, you will see an error message. If you are
using IE or another upper-level browser, the control detects the browser
and uses DHTML to show the error message.

The RequiredFieldValidator control helps us a great deal in doing
validations. RequiredFieldValidator control forces the user not to skip
the text box entry. However, we want more than that; we want to
validate what the user entered.To do this we need to use the
RegularExpressionValidator control.As you’ll observe, all the Customer
IDs in the database are alphabetic capital letters and are five characters
long.As explained earlier, the validation expression to match this pattern
is ^[A–Z]{5}$.

5. Place the RegularExpressionValidator immediately next to the
RequiredFieldValidator and set the following properties using the
Properties dialog box:

ID: RegularExpressionValidator
ErrorMessage: Enter a valid CustomerID
ControlToValidate: txtCustomerID (pick from the list)
Display: Dynamic
Validation Expression: ^[A-Z]{5}$

6. Save the program and run it. Enter some junk value and click the
button.You will get the error message,“Enter a valid CustomerID,”
which is the error message we set in the control.

www.syngress.com

Figure 10.8 RequiredField Validation Control in Design Time

153_VBnet_10 8/15/01 11:25 AM Page 490

Developing Web Applications • Chapter 10 491

We are able to force the user into entering something in the text
box while validating the text the user has entered to be of a particular
pattern. But the user can still enter a Customer ID that is of the pattern
we want but does not exist in the database, so we must validate that the
Customer ID exists in the database.To do so, we have to write our own
function to validate and then tie the function to the validation controls.
This function should return True if the Customer ID exists and False if it
doesn’t. For these custom validations, we use the CustomValidator control.

7. Place the CustomValidator control next to RegularExpressionValidator
and set the following properties:

ID: CustomValidator
ErrorMessage: CustomerID does not exist
ControlToValidate: txtCustomerID (pick from the list)
Display: Dynamic

8. In the design view, double-click CustomValidator to open the code
window to write the customer validator code to validate the Customer
ID entered by the user.

9. Place the following code in the code window (WebForm1.vb):

Private Sub CustomValidator_ServerValidate(_

ByVal source As System.Object, _

ByVal args As

System.Web.UI.WebControls.ServerValidateEventArgs) _

Handles CustomValidator.ServerValidate

Dim sConnectionString As String

Dim sqlString As String

Dim MyConnection As SqlConnection

Dim MyDataAdapter As SqlDataAdapter

Dim DS As New DataSet()

'getting the connection string

sConnectionString = Context.GetConfig("appSettings")("DSN")

'building the select statement

sqlString = "SELECT * FROM Customers "

sqlString += "WHERE CustomerID = '" + args.Value + "'"

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 491

492 Chapter 10 • Developing Web Applications

'opening the connection

MyConnection = New SqlConnection(sConnectionString)

MyDataAdapter = New SqlDataAdapter(sqlString, MyConnection)

'getting Data Set

MyDataAdapter.Fill(DS, "Customers")

If DS.Tables("Customers").DefaultView.Count = 0 Then

args.IsValid = False

Else

args.IsValid = True

End If

End Sub

In this function, we check whether the user exists in the database
and set the isValid property to True if the user exists and False if the
user does not exist.This function takes two input parameters.The first
parameter is the CustomValidator control; the second parameter contains
the value entered by the user in that input control. Here I used DataSet
to retrieve from the database, you can also use DataReader.The
CustomValidator control invokes this function to validate, and if the
isValid property of args is False, it shows the error message on the page.

10. Run the program to test our exercise.You will see the Customer Orders
column only when you enter a valid Customer ID. In all other cases,
you will get the error message.

Among the other controls,ValidationSummary control is the most
used because it can show all the errors raised by various validation con-
trols. Using it in our exercise does not make sense, because we have only
one input control.When you have a large number of input controls, you
can use ValidationSummary to show consolidated error messages.

Creating Custom Web Form Controls
In addition to the ASP.NET server controls, we can author our own controls to
encapsulate a custom user interface.We can create a custom control using existing
server controls, thus providing an easy way to reuse code.We can create two types
of custom controls.The first one is to convert an existing Web form to a control

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 492

Developing Web Applications • Chapter 10 493

with few modifications.This is often called user controls or pagelets.The second
type is creating the control programmatically.This is known as custom controls.

In Exercise 10.6 we concentrate on custom controls. First we create a simple
custom control that has properties.Then we take a close look at the code.After
that, we create a composite control that has other server controls in it.We also see
how to handle events raised by child controls in a composite control. Finally, we
raise events from this control.

Exercise 10.6 A Simple Custom Control
Creating a custom control is very easy.You will be surprised to know that you
can create one without writing any code. Let’s create the standard Hello World
example again. In order to create a custom control, we can use our existing pro-
ject, Chapter10, but instead let’s create a project that contains a library of our
custom controls.

1. Begin a new Visual Basic Web project by selecting File | New |
Project and then selecting Web Control Library under Visual Basic
Projects.The New Project dialog box should be similar to the one that
was shown in Figure 10.1.

2. Change the name of the project to MyControlLibrary. Enter the loca-
tion where you want to create the project. Click OK, and Visual
Studio.NET will create the Web project. Once Visual Studio creates the
project, the screen looks like the one that was shown in Figure 10.2.

3. Ignore the default file WebControl1.vb. Instead, we’ll create a new Web
custom control. Click Project | Add New Item and in the open
dialog box, select Web Custom Control and set its name to
SimpleCustomControl.vb.Your screen should be similar to the one
shown in Figure 10.9. Click Open for VS.NET to add a new custom
control to our project.

You can see that Visual Studio automatically generates code for you.
If you observe the code in the SimpleCustomControl.vb and
WebControl1.vb files, the code is exactly the same except for the class
name. Changing the class name in WebControl1.vb does not help
because VS.NET still remembers the original name.

www.syngress.com

CD Exec.
10.6

153_VBnet_10 8/15/01 11:25 AM Page 493

494 Chapter 10 • Developing Web Applications

4. Build the control by clicking the Build | Build menu item.
We have created our first control. Before seeing how to use it in a

Web form, let’s see the code.This is the code generated by Visual Studio:

Imports System.ComponentModel

Imports System.Web.UI

<DefaultProperty("Text"), ToolboxData("<{0}:SimpleCustomControl

runat=server>

</{0}:SimpleCustomControl>")>

Public Class SimpleCustomControl

Inherits System.Web.UI.WebControls.WebControl

Dim _text As String

<Bindable(True), Category("Appearance"), DefaultValue("")>

Property [Text]() As String

Get

Return _text

End Get

Set(ByVal Value As String)

www.syngress.com

Figure 10.9 Adding a Custom Control to a Project

153_VBnet_10 8/15/01 11:25 AM Page 494

Developing Web Applications • Chapter 10 495

_text = Value

End Set

End Property

Protected Overrides Sub Render(ByVal output As

System.Web.UI.HtmlTextWriter)

output.Write([Text])

End Sub

End Class

Any custom Web control must be inherited from WebControl. In
this code, we defined a SimpleCustomControl class that inherits from
WebControl with some attributes.The attributes are used to specify
additional information during runtime and are used primarily by the
IDE.The first attribute, DefaultProperty, tells the default property of this
class.The other attribute,ToolboxData, will be used by Visual
Stuido.NET when we drag and drop this control into the Web form
from the toolbox.We will see how to do that when we discuss a client
program for our control. Next we defined a private member of the class
and used the naming convention that every private variable starts with
an underscore.After that we defined a property, [Text], which is used to
set and get the value of our private member.As mentioned earlier, this
property is defined as the default property of the class using the
attributes in the class definition.This property is also defined with
attributes.These attributes are also used primarily by IDE.Among these
attributes, Bindable lets this property be bound to any other item on the
page. Category defines which category in the Properties dialog box this
property should be shown. DefaulValue, as its name implies, contains the
default value of the property.

The only method in this class, Render, overrides the parent class,
WebControl, so that our class can control the output.This method is
used to send HTML to the browser.This is done using the input param-
eter, output, to this method. In this method we are writing out the text
set by the user using the Property dialog box.

Let’s create a Web form that uses our control.We will create this Web
form in our Chapter10 project. In that project we will add our control
to the toolbox and then place it on the browser.

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 495

496 Chapter 10 • Developing Web Applications

1. Open the Web project Chapter10.

2. Add a new Web form by clicking Project | Add Web form. Set the
name of the Web form as SimpleControlWebForm.aspx and then
click Open.

3. In order to place the control on the toolbox, select Tools | Customize
Toolbox.This opens a Customize Toolbox dialog box, as shown in
Figure 10.10.

4. Click .NET Framework Components and then click the Browse
button to select our DLL.When you compile the control,VS.NET cre-
ates a DLL and places it in the bin folder in that project. Select that DLL
and click Open. Scroll to SimpleCustomControl (the name of our
control) and click the check box next to it, and then click OK in the
Customize Toolbox dialog box.This adds our control to the toolbox.

5. You can see our control under the General tab in the toolbox. If you
want to place this control under a different tab in the Toolbox, right-
click the tab wherever you want to place the control and then click
Customize Toolbox, which brings up the Customize Toolbox shown in
Figure 10.10, and repeat the process.

6. In the Design tab, drag and drop the SimpleCustom control from the
toolbox. Observe that a reference to MyControlLibrary is added to the
References folder of the project.

www.syngress.com

Figure 10.10 Adding Custom Controls to the Toolbox

153_VBnet_10 8/15/01 11:25 AM Page 496

Developing Web Applications • Chapter 10 497

7. Set the following properties using the Properties dialog box:
ID: MySimpleControl
Text: Hello World
Remember, Text is the default property that we defined in our con-

trol, and we are writing its value out as HTML in the Render method.
Let’s see the code VS generated.

VS.NET places the following line of code at the top of the page.With
this code,VS.NET sets the alias to our namespace: MyControlLibrary. Using
the TagPrefix attribute, we are setting the alias to our namespace
as cc1:

<%@ Register TagPrefix="cc1" NameSpace="MyControlLibrary"

Assembly="MyControlLibrary" %>

After that,VS.NET uses this cc1 as the tag prefix.We defined this tag
using the Register directive. Text is the property we set using the
Properties dialog box:

<cc1:SimpleCustomControl id=MySimpleControl runat="server"

Text="Hello

World"></custom:SimpleCustomControl>

8. Save the Web form and run it.You will see Hello World on the browser.

We have created our first control. If you want to add more properties, copy
the existing property with attributes and change the property name and the Get
and Set methods.You can use the Render method to send out whatever HTML
you want. Basically, the Render method is used to send HTML to the browser.
You can’t use this method if your control uses other ASP.NET server controls.

Now let’s create a control that uses other server controls.This control is
known as a composite custom control.

Exercise 10.7 Creating a Composite Custom Control
In this exercise, we create a control that uses other ASP.NET server controls.As
these controls raise events, we will see how to handle those events, and we will
raise events from our control. In order to create a composite custom control, we
convert some part of our previous work into a control. In Exercise 10.2, we
placed four controls on the Web form (refer back to Figure 10.3). In this exercise,

www.syngress.com

CD Exec.
10.7

153_VBnet_10 8/15/01 11:25 AM Page 497

498 Chapter 10 • Developing Web Applications

we create a composite control with those four controls. Unfortunately, the pro-
cess of creating composite controls does not support drag and drop; we have to
programmatically add those controls. In addition, our control should return the
Customer ID entered by the user so that the client program can consume it. In
order to do that, we must declare a read-only property that returns the Customer
ID entered by the user.We will create this control under MyControlLibrary pro-
ject and use our Chapter10 project as a client program.

1. Open the MyControlLibrary project.

2. Close the Chapter10 project. Remember, in this project we set a refer-
ence to the SimpleCustomControl, which is part of MyControlLibrary.
Visual Studio locks the MyControlLibrary.dll, so we can’t compile the
MyControlLibrary project unless we close the Chapter10 project.

3. To add a new Web custom control to our project, click Project | Add
New Item and, in the open dialog box, select Web Custom Control
and set its name to CompositeCustomControl.vb.Your screen should
be similar to the one shown in Figure 10.9. Click Open for VS.NET to
add a new custom control to our project.

4. Because we are using built-in server controls in this control, we don’t
require the Render method. So delete the Render method from the gen-
erated code. Removing this method is important because it has higher
precedence over other methods.

5. Place the following import statement at the top of the class.This state-
ment imports all the Web controls into our class:

Imports System.Web.UI.WebControls

6. Add a private variable, which is used to store the CustomerID inside
the class:

Dim _CustomerID As String

7. Place this code inside the class, which creates a read-only property that
returns the Customer ID:

Public ReadOnly Property CustomerID() As String

Get

Return _CustomerID

End Get

End Property

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 498

Developing Web Applications • Chapter 10 499

8. Place the following code inside the class:

Protected Overrides Sub CreateChildControls()

'adding Para

Me.Controls.Add(New LiteralControl("<p>"))

'adding title

Dim lblCustomerOrder As New Label()

lblCustomerOrder.Text = "Customer Order Details"

lblCustomerOrder.Font.Size = FontUnit.XLarge

Me.Controls.Add(lblCustomerOrder)

'closing para

Me.Controls.Add(New LiteralControl("</p>"))

'adding Para

Me.Controls.Add(New LiteralControl("<p>"))

'adding Label control

Dim lblCustomerID As New Label()

lblCustomerID.Text = "CustomerID"

lblCustomerID.Font.Bold = True

Me.Controls.Add(lblCustomerID)

'adding Text Box

Dim txtCustomerID As New TextBox()

Me.Controls.Add(txtCustomerID)

'adding closing para

Me.Controls.Add(New LiteralControl("</p>"))

Me.Controls.Add(New LiteralControl("<p>"))

'adding button

Dim cmdGetDetails As New Button()

cmdGetDetails.Text = "Get Order Details"

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 499

500 Chapter 10 • Developing Web Applications

'adding event handler

AddHandler cmdGetDetails.click, AddressOf

cmdGetDetails_Click

Me.Controls.Add(cmdGetDetails)

'putting the closing para

Me.Controls.Add(New LiteralControl("</p>"))

End Sub

Before going through this code, let’s first see the HTML code gener-
ated by IDE in Exercise 10.2, when these four controls are placed on the
Web form.The code generated by IDE is:

<p>

<asp:Label id= lblCustomerOrder runat="server" Font-Size="X-

Large">

Customer Order Details

</asp:Label>

</p>

<p>

<asp:Label id=lblCustomerID runat="server">Customer

ID</asp:Label>

<asp:TextBox id=txtCustomerID runat="server"></asp:TextBox>

</p>

<p>

<asp:Button id=cmdGetDetails runat="server"

Text="Get Order Details"></asp:Button>

</p>

In order for us to create a composite control, our class should have a
CreateChildControls method that overrides its parent class method. In this
method, we programmatically add all of these controls to our composite
control. In the preceding HTML code, the HTML element, <p> tag,
separates the controls. So we have to add the HTML elements to our
composite control.To add HTML elements, we have to convert them
into controls using the LiteralControl API and then add them to our

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 500

Developing Web Applications • Chapter 10 501

control.All the HTML elements and the server controls should be added
in the same order as in the preceding HTML code.

So, in the CreateChildControls method, we are converting the HTML
elements into controls and adding them to our controls collection.The
code to convert and add HTML elements is:

Me.Controls.Add(New LiteralControl("<p>"))

For adding the server controls, we first must declare the control
object and then set its properties, similar to what we did in Exercise 10.2
using the Properties dialog box. Finally, we have to add it to the controls
collection. For example, for the Customer Order Details label control,
our code will be:

Dim lblCustomerOrder As New Label()

lblCustomerOrder.Text = "Customer Order Details"

lblCustomerOrder.Font.Size = FontUnit.XLarge

Me.Controls.Add(lblCustomerOrder)

In this code, we are declaring a variable of type Label and setting its
Text and Font-Size properties, then adding it to the controls collection.
We have to do the same for the rest of the controls. In Exercise 10.2, our
program handled a Button Click event. In order for our control to handle
events raised from child controls, our control should implement
INamingContainer.When you implement this interface, the framework
automatically generates unique IDs for each control.

9. After the class definition, add the implements clause to implement this
interface:

Implements INamingContainer

10. To handle the Click event of its child control button, we must use the
AddHandler method.The following code shows how to use this method:

Dim cmdGetDetails As New Button()

cmdGetDetails.Text = "Get Order Details"

'adding event handler

AddHandler cmdGetDetails.click, AddressOf

cmdGetDetails_Click

Me.Controls.Add(cmdGetDetails)

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 501

502 Chapter 10 • Developing Web Applications

The AddHandler method takes two parameters, an event expression
and the delegate to handle the event.With the AddHandler method we
are associating the Click event of our button with the procedure
cmdGetDetails_Click in our class, so we have to add this method to our
class. Similar to other delegates, this method takes two input parameters:
the sender of the event and EventArgs.

In order for the client program to handle the Click event, our con-
trol should raise an event when the button is clicked. For that we have
to define an event in our control.

11. Add the following code in the declaration section of our class:

Public Event Click(ByVal sender As Object, ByVal e As

System.EventArgs)

Similar to any other event delegate, this Click event takes two input
parameters.We have to raise this event when the button is clicked.
Because we associated the Button Click event with the procedure
cmdGetDetails_Click, we will raise this event in that procedure.

12. When the button is clicked, we retrieve the Customer ID entered by the
user in the text box and then set our variable with this value so that it
can be passed to the client program.Then we raise a Click event. In
order to do this, add the following procedure to the class:

Private Sub cmdGetDetails_Click(ByVal sender As Object,

ByVal e As System.EventArgs)

Dim txtCustomerID As TextBox = CType(Controls(5), TextBox)

_CustomerID = txtCustomerID.Text

RaiseEvent Click(Me, EventArgs.Empty)

End Sub

In this procedure, we first retrieve the text entered in the text box.
Because TextBox is the sixth control we added to the controls collection,
we have to retrieve it by the sequential number and type-cast it to
TextBox.After setting the private variable with the value entered by the
user, we raise a Click event using the RaiseEvent method. RaiseEvent
raises the Click event to the client program; to this event we send our
control class as one of the inputs. Because there is no additional infor-
mation to send, we pass an empty state.

13. Build the control by clicking Build | Build.

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 502

Developing Web Applications • Chapter 10 503

Now we created a composite control. Let’s create a Web form that consumes
our control.We create this Web form in our Chapter10 project. In that form, we
place this control along with a label control. On this form, we handle the Click
event of our control; on the Click event, we set the text on the label to the user-
entered value.

1. Open the Chapter10 project.

2. Add a new Web form by clicking Project | Add Web form. Set the
name of the Web form as CompositeControlWebForm.aspx and
then click Open.

3. In order to place the control on the toolbox, select Tools | Customize
Toolbox.This opens a Customize Toolbox dialog box, as was shown in
Figure 10.10.

4. Switch to.NET Framework Components and click the Browse
button, then select MyControlLibrary.dll and click Open. Scroll to
CompositeCustomControl (name of our control) and click the check
box next to it, then click OK in the Customize Toolbox dialog box.
Sometimes Visual Studio remembers the previous reference, so you
might get an error. If you get error message, then click Cancel on the
dialog box to close it. Click to open the References folder in the
Solution Explorer, and then right-click the MyControlLibrary refer-
ence item and click Remove. Close the project and then reopen it.

5. Repeat the process of adding the control to the toolbox.This process
adds our control to the General tab of the toolbox.

6. Drag and drop the CompositeCustom control from the toolbox and
resize it to fit the page.

7. Set the following properties using the Properties dialog box:
ID: MyCompositeControl

8. Place another label control on the Web form and set the following
properties:

ID: lblTest
Text: “” (remove the existing text)

9. Now let’s write the code to handle the Click event for our control.
Double-click the control to bring up the code window.As our com-
posite control raises the Click event, add the following code to the Web
form.The Handles keyword attaches this method to the Click event of
our custom control:

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 503

504 Chapter 10 • Developing Web Applications

Protected Sub MyCompositeControl_Click(ByVal Sender As

System.Object,

ByVal e As System.EventArgs) Handles

MyCompositeControl.Click

lblTest.Text = MyCompositeControl.CustomerID

End Sub

When the button is clicked, the preceding code changes the text of
the label to the Customer ID entered by the user.

10. Press F5 to run the program. Now when you click the button, you will
see that the text on the label changes to whatever you have entered.

We can even add the validation controls to validate the user input, which we
used in Exercise 10.5.As an assignment, try adding validation controls to this
composite control.

In this section, we saw how to create a simple control that generates only
HTML.After that, we created a composite control that has other server controls.
We also saw how to handle the events raised by the child controls and how to
raise events from our control. In addition, a custom control can read the inner
content (i.e., text added between its tags), can handle postback data, and supports
Templated control similar to DataGrid control.

Web Services
With the advent of the next generation of the Internet, the Internet is no longer
used to render UI pages. Now it has become a bridge between many applica-
tions, such as the business-to-business (B2B) marketplace and e-procurement.
This new Internet will change the application architecture to provide informa-
tion when and where you want it.With this next generation of the Internet, pro-
grammable Web site companies can expose their software as a service over the
Internet to their business partners to fully leverage connected computing. Such
services are called Web services.

A Web service is a component that provides service to a consumer, who uses
standard Internet protocols (HTTP, XML) to access these services.These Web
services are the custom business components that have no user interface and are
meant to be consumed by programs only.Any client that understands HTTP and
XML can consume Web services. Because Web services use HTTP, they are fire-
wall friendly and have tremendous advantages over DCOM.A simple scenario in

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 504

Developing Web Applications • Chapter 10 505

which we can use Web services is in calculating sales tax for an e-commerce
application.This application requires maintaining tables for calculating tax and
frequently upgrading the data received from the vendor. Instead, if the vendor
makes this a Web service accessible over the Internet, we can use it whenever we
want, without the hassle of maintaining the data.

How Web Services Work
Web services are programmable components that can be accessed over Internet
protocols.They use XML and Simple Object Access Protocol (SOAP) to com-
municate with consumers. XML provides a standardized language to exchange
data in a widely accepted format. SOAP is a simple, lightweight XML-based pro-
tocol that runs over HTTP for exchanging information in a distributed, hetero-
geneous environment. In other words, SOAP = HTTP + XML.

Figure 10.11 shows the architecture of a Web service.The consumer sends
requests to the Web service over the Internet using the SOAP message format.
Once the SOAP request arrives, IIS, the listener listening on the TCP port 80,
routes the request to the ASP.NET handler, which locates the Web service, creates
the business component, calls the specified method in the object, and passes it the
data.This business component processes the request and, if necessary, gets data
from the database or from other Web services. It then returns results to ASP.NET,
which then packs it in a SOAP envelope and sends it back to the consumer. On
the consumer side, .NET provides a proxy class that converts this SOAP message
to a data type.This proxy class also packs the request into a SOAP envelope and
sends it to the Web service. SOAP is the default communication protocol for Web
services. In addition,Web services can also be accessed using HTTP-GET and
HTTP-POST protocols.

When using Visual Studio to create and consume Web services, you don’t
necessarily need to know all this architecture. .NET Framework converts every-
thing for you under the hood.You can create and consume Web services without
knowing anything about XML and SOAP.

Developing Web Services
Because Web services are accessible over the Internet, they are saved in a file with
extension .ASMX. Similarly to .ASPX files, these are compiled when they are
accessed for the first time.

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 505

506 Chapter 10 • Developing Web Applications

www.syngress.com

Figure 10.11 Web Service Architecture

Proxy Class

Listener

Business
Component

Data Access

Web Service

Consumer

Request

Response

153_VBnet_10 8/15/01 11:25 AM Page 506

Developing Web Applications • Chapter 10 507

Exercise 10.8 Developing Web Services
In this exercise, we create a Web service in our project, Chapter10.

1. Open the Chapter10 project.

2. Click Project | Add Web Service, and enter the name of our Web
service as MyWebService.asmx.Web services have an .ASMX file
extension.

3. Visual Studio creates the Web service component and shows the design
area where you can drag and drop controls. Because a Web service
doesn’t have a UI, double-click the form to get into the code.You can
see that Visual Studio already prepopulated the necessary code.

In order to make any class into a Web service component, that class
must inherit the WebService class. Once the class is inherited from the
WebService class, it exposes the public methods declared with the
attribute Web Method over the Internet.

4. In the code generated,Visual Studio created a sample Web method, the
classic Hello World, and commented it. Remove those comments.The
sample method generated by Visual Studio is:

<WebMethod()> Public Function HelloWorld() As String

HelloWorld = "Hello World"

End Function

Simply adding the attribute WebMethod to this method makes it a
Web method that can be accessible over the Internet.

5. Build the project by clicking Build | Build.

6. Test the Web service by typing its URL in the browser. In our case,
the URL is http://localhost/Chapter10/MyWebService.asmx.
Figure 10.12 shows our Web service in a browser.

When you type the URL in the browser,ASP.NET detects it as a
Web service and shows you a list of available methods. In our case, there
is only one method.

7. Click the HelloWorld link and then the Invoke button in the browser.
This opens another window, which returns the results in XML format.
The XML returned by the Web service is:

<?xml version="1.0" ?>

<string xmlns="http://tempuri.org/">Hello World</string>

www.syngress.com

CD Exec.
10.8

153_VBnet_10 8/15/01 11:25 AM Page 507

508 Chapter 10 • Developing Web Applications

The XML string returned specifies that the return data type is string
and its value is Hello World. If you observe the URL of the browser
returning XML, you can notice that we are trying to access the Web
service over the HTTP-GET protocol.

We created our Web service without writing any line code and
without knowing anything about XML and SOAP.Adding a Web
method to a Web service is just adding an attribute. For example, we can
convert the function we wrote in Exercise 10.3 to get orders from the
database for a given customer as a Web method accessible over the
Internet.

8. Copy the function GetOrders from Exercise 10.3 into this class and add
the WebMethod attribute.Your function declaration should be like this:

<WebMethod()> Public Function GetOrders(ByVal CustomerID As

String) As DataSet

With this declaration, the method becomes accessible over the
Internet.

www.syngress.com

Figure 10.12 MyWebService.asmx in a Browser

153_VBnet_10 8/15/01 11:25 AM Page 508

Developing Web Applications • Chapter 10 509

9. Because the GetOrders function uses ADO.NET to connect to the
database, we have to import those namespaces into our class.Add this
import statement to the class:

Imports System.Data.SqlClient

10. In order to test it, build the application and type the URL of this Web
service into the browser. Now you will see two methods instead of one
method shown in Figure 10.12. Enter the Customer ID HANAR or
any valid Customer ID.You will see that ASP.NET returns the orders in
XML format.

We have created a Web service with two Web methods in it. Later on in this
chapter we create a Web consumer and a Windows consumer to access our Web
services.You will be surprised to know that accessing a Web service is much
easier than creating one.You don’t have to worry about SOAP and XML;Visual
Studio makes everything transparent to you.

Web Service Utilities
Now we have created a Web service with two Web methods in it. But how do
our consumers know about this Web service? Our customers should know not
only that a Web service exists but also what methods are exposed, the parameters
required, and the protocols supported. In addition, our customers should be able
to use these components without knowing about the architecture. Luckily, we
don’t have to handcraft all these things; .NET Framework takes care of it for us.
ASP.NET describes all the methods and parameters in a Web service via the
Service Description Language (SDL). Even ASP.NET lets you find all the Web
services available on a Web server. Furthermore,ASP.NET creates a proxy class for
us to consume these Web services. Let’s see how ASP.NET does these things
behind the scenes.

Service Description Language
A Web service can be asked for a list of methods and should respond with a
description in an understandable format. SDL defines the message format the
Web service understands.The SDL contract uses XML format to describe the
protocols supported by the Web service (SOAP, HTTP-GET, HTTP-POST),
instantiable methods, and inputs (request) and outputs (response) of these
methods. SDL is like a type library in a COM object. In order to request the
Web service to return the SDL contract, append the query string ?SDL to the

www.syngress.com

153_VBnet_10 8/15/01 11:25 AM Page 509

510 Chapter 10 • Developing Web Applications

URL of the Web service. In our case, the URL is http://localhost/
Chapter10/MyWebService.asmx?WSDL. Figure 10.13 shows the SDL con-
tract of our Web service.Alternatively, you can view the SDL contract by clicking
the link when consuming the Web service on a browser (in Figure 10.12, for
example, click the SDL contract link to view the SDL).

Discovery
SDL is useful if you know which Web service you want.What good is a Web ser-
vice if consumers don’t know it exists? Web Service Discovery helps locate and
interrogate Web service descriptions. Each Web site publishes all of its Web ser-
vices in a .VSDISCO file.This file is an XML document that contains URLs of
all the SDL descriptions.With this discovery process, consumers learn that a Web
service exists, what its capabilities are, and how to interact with it.

Proxy Class
Web consumers must send messages to a Web service using SOAP.You can write
SOAP marshalling to send and receive data from the Web service over HTTP, or

www.syngress.com

Figure 10.13 SDL Contract of the Web Service

153_VBnet_10 8/15/01 11:25 AM Page 510

Developing Web Applications • Chapter 10 511

you can use .NET Framework to create a proxy class that contains the appro-
priate network invocation and marshalling code to invoke and receive responses
from the Web service.This proxy class can be referenced in the client program
and used to invoke a Web service as though invoking a local method.

If you use Visual Studio to create and consume Web services, you don’t have
to worry about all this—.NET Framework does everything for you behind the
scenes.With a couple of clicks, you can access any Web service as though it were
a class in your assembly.

Consuming Web Services from Web Forms
In the previous exercise, we created a Web service with two Web methods in it.
Now let’s create another exercise in which we consume the GetOrders method in
that Web service. In Exercises 10.3, 10.4, and 10.5, we bound the DataGrid with
the DataSet returned by the GetOrders function. Later we changed this function
into a Web service. So let’s change our code in Exercise 10.5 to use this Web
service.

Exercise 10.9 Consuming Web
Services from Web Forms
In this exercise, we set a reference to the Web service in order to consume it,
then we change the code on the Button Click event in Exercise 10.5 to get order
details from this Web service.

1. Open the Chapter10 project.

2. Open the Web form WebForm1.aspx.

3. Double-click the Get Order Details button to open the code window.

4. On the Click event of this button we previously wrote the following code:

Dim DS As DataSet

'only if the Page is Valid then only binding to the DataGrid

If Not Page.IsValid Then Exit Sub

'getting the DataSet with Order Details for the entered

CustomerID

DS = GetOrders(txtCustomerID.Text)

'Binding the DataGrid

dgOrders.DataSource = DS.Tables("Orders").DefaultView

dgOrders.DataBind()

www.syngress.com

CD Exec.
10.9

153_VBnet_10 8/15/01 11:26 AM Page 511

512 Chapter 10 • Developing Web Applications

In this code, we use a function inside our class to retrieve data from
the database. Instead, we now use the Web service we created, which
returns a DataSet. In order to use a Web service, we have to set reference
to that Web service.

5. Click Project | Add Web Reference, which opens a dialog box to
add a Web reference, as shown in the Figure 10.14.

If you know the address of the Web service, you can type it in the
address text box right away.Alternatively, you can search for all the Web
services that are registered using the discovery process on your local Web
server. Microsoft Universal Description Discovery Integration (UDDI)
links to all the available Web services registered on the Internet.

6. Enter the address of our Web service, http://localhost/Chapter10/
MyWebService.asmx, in the address box, and press Enter. Now in the
left pane you will see documentation about this Web service. Click the
Add Reference button to add a reference to our project. Once you
click the button, you can observe that a Web References folder is added
to your Solution Explorer.This folder contains the reference you added.

www.syngress.com

Figure 10.14 The Add Web Reference Dialog Box

153_VBnet_10 8/15/01 11:26 AM Page 512

Developing Web Applications • Chapter 10 513

7. Now let’s access the Web method. Replace the one-line code to call the
GetOrders function with this code:

Dim WS As New localhost.MyWebService()

DS = WS.GetOrders(txtCustomerID.Text)

Again, we see how easy it is to invoke a method in a Web service.
First, we declared a variable of data type MyWebService and then invoked
the method in that Web service.

8. The complete Button Click code should be as follows:

Dim DS As DataSet

'only if the Page is Valid then only binding to the DataGrid

If Not Page.IsValid Then Exit Sub

'getting the Order details DataSet for the CustomerID using Web

Service

Dim WS As New localhost.MyWebService()

DS = WS.GetOrders(txtCustomerID.Text)

'Binding the DataGrid

dgOrders.DataSource = DS.Tables("Orders").DefaultView

dgOrders.DataBind()

9. Press F5 to run the Web form. Enter the Customer ID and click the
button.You will see the DataGrid populated with orders.

From the user point of view, there is no difference between getting the orders
from the Web form itself or using a Web service.Visual Studio simplified the pro-
cess of creating a Web service and consuming it, without worrying about the
architecture.

Using Windows Forms in
Distributed Applications
In the previous exercise, we got order details for a given Customer ID.This task
would be the function of an administrator or a customer service representative.
Because the users of this application are internal users, we could use Windows
forms instead of Web forms and take advantage of the client processors.We can
convert the previous example into a Windows form to provide a rich user inter-
face.The only thing we require is that the orders placed by the customer are in

www.syngress.com

153_VBnet_10 8/15/01 11:26 AM Page 513

514 Chapter 10 • Developing Web Applications

the server. Because we are exposing a Web method on the server that returns the
orders for a Customer ID, we can create a distributed Windows application that
consumes this Web service.

Exercise 10.10 Consuming Web
Services from Windows Forms
In this exercise, we create a Windows form that consumes our Web service and
provides the same functionality as the Web form.

1. Create a new Windows application project by clicking File | New |
Project and selecting Windows Application under Visual Basic
Projects.

2. Change the application name to Chapter10WindowsApplication.
Click OK for Visual Studio to create the project.

3. Set the following form properties:
Text: Customer Order Details

4. Place the following controls and set their properties using the Properties
dialog box:

Label
Text: Customer Order Details

Font-Size: 16

Font-Bold: True

Name: lblCustomerOrder
Label

Text: Customer ID

Font-Bold: True

Name: lblCustomerID

TextBox

Text: “” (empty)

Name: txtCustomerID

Button

Text: Get Order Details

Name: cmdGetDetails

www.syngress.com

CD Exec.
10.10

153_VBnet_10 8/15/01 11:26 AM Page 514

Developing Web Applications • Chapter 10 515

DataGrid

Name: dgOrders

After placing these controls, your form should resemble Figure 10.15.

5. Set a reference to the Web service, by clicking Project | Add Web
Reference (see Figure 10.14) and then type the URL address of the
Web service, http://localhost/Chapter10/MyWebService.asmx, in
the address text box. Press Enter. Click the Add Reference button to
add a reference to this Web service.

6. Double-click the button to open the code window and place the
following code on the Click event:

Dim DS As DataSet

'getting the Orders DataSet with for the CustomerID from the web

service

Dim WS As New localhost.MyWebService()

DS = WS.GetOrders(txtCustomerID.Text)

'Binding the DataGrid

dgOrders.DataSource = DS.Tables("Orders").DefaultView

This code is similar to the code we wrote for the Click event on the
Web form; the only difference is, we don’t have to invoke the Bind
method on the DataGrid.

www.syngress.com

Figure 10.15 Windows Form View with Controls

153_VBnet_10 8/15/01 11:26 AM Page 515

516 Chapter 10 • Developing Web Applications

7. Press F5 to run the application. Enter the Customer ID, HANAR, and
click the button to view all the orders placed by the customer.

In this section, we have created a distributed Windows application that con-
sumes a Web service. Because Windows applications run on the client machine
and use server resources remotely, they reduce the server load. Furthermore,
because they use .NET sophisticated graphics, they can provide a rich user inter-
face with the quickest response and the highest degree of interactivity.

Exercise 10.11 Developing a Sample Application
We conclude this chapter by creating a sample application that uses all of the
exercises that we created in this chapter.We will create this application from
scratch. Like other examples, this application shows all of the orders placed for a
given Customer ID, but it uses the composite custom control we created and
then consumes our Web service to retrieve orders placed by the customer.

1. Create a new Web application project by selecting File | New |
Project and Web Application under Visual Basic Projects. Set the
name of this application to SampleApplication. If you are not using
your local Web server, change the Location box to the Web server you
want to use. Click OK to create the project.

2. Since we already added our controls to the toolbox, they should show
up in the General tab of the toolbox. If you don’t find them, add the
CompositeCustomControl to the toolbox. In order to do that, select the
menu item Tools | Customize Toolbox. In the opened dialog box,
switch to the .NET Framework Components tab, and click the
Browse button to choose the control we created. Navigate to the
MyControlLibrary folder, where we created our control library, and
select MyControlLibrary.dll under the bin directory. Click Open,
and then scroll through the list and click the check box next to
CompositeCustomControl.

3. Set a reference to the Web service we created. Select the menu item
Project | Add Web Reference, which opens the Add Web Reference
dialog box. In the Address box, enter the URL of our Web reference,
http://localhost/Chapter10/MyWebService.asmx, and press Enter.
Click Add Reference for Visual Studio to create a reference to this
Web service in our project.

www.syngress.com

CD Exec.
10.11

153_VBnet_10 8/15/01 11:26 AM Page 516

Developing Web Applications • Chapter 10 517

4. Switch to design view and drag and drop CompositeCustomControl
and a DataGrid control from the toolbox. Press Enter, and then place a
DataGrid control on the Web form and set these properties:

CompositeCustomControl
ID: MyCompositeControl
DataGrid
ID: dgOrders
HeaderStyle-BackColor: Navy
HeaderStyle-Font-Bod: True
HeaderStyle-ForeColor: White
AlternatingItemStyle-BackColor: Silver

5. In order to customize the DataGrid control, switch to HTML view and
add the following code inside the DataGrid tag:

<Columns>

<asp:BoundColumn datafield="OrderID" headertext="Order ID"/>

<asp:templatecolumn headertext="Order Date">

<ItemTemplate>

<%# String.Format("{0:d}",

Container.DataItem("OrderDate")

) %>

</ItemTemplate>

</asp:templatecolumn>

<asp:templatecolumn headertext="Shipped Date">

<ItemTemplate>

<%# String.Format("{0:d}",

Container.DataItem("ShippedDate")) %>

</ItemTemplate>

</asp:templatecolumn>

<asp:BoundColumn datafield="ShipName" headertext="Ship

Name"/>

</Columns>

As we saw earlier, this code formats the column headings and the
date fields to show only the date.

www.syngress.com

153_VBnet_10 8/15/01 11:26 AM Page 517

518 Chapter 10 • Developing Web Applications

6. Add the autogenerate columns attribute with a value of False to the
datagrid tag:

autogeneratecolumns="False"

7. Switch to the design area and double-click our custom control to open
the code window.

8. Place the following code inside the class for the Click event of the
button in our custom control. In this code, first we instantiate a Web ser-
vice and invoke it with the Customer ID returned by the custom con-
trol.Then we bind DataGrid with the orders returned by the Web
service:

Protected Sub MyCompositeControl_Click(ByVal sender As Object, _

ByVal e As EventArgs)

Dim DS As DataSet

Dim WS As New localhost.MyWebService()

DS = WS.GetOrders(MyCompositeControl.CustomerID)

dgOrders.DataSource = DS.Tables("Orders").DefaultView

dgOrders.DataBind()

End Sub

9. Press F5 to run the application. Enter the Customer ID HANAR and
press the button.You will see the DataGrid populates all of the orders
placed by the customer.

We have created a sample application based on the controls and Web service
we created previously in this chapter.

www.syngress.com

153_VBnet_10 8/15/01 11:26 AM Page 518

Developing Web Applications • Chapter 10 519

Summary
In this chapter, you learned how to use Visual Basic and .NET Framework to
create Web applications.You saw the rich controls provided by ASP.NET that you
can use to bring life to a Web page.We also covered the following topics: what a
Web form is and how it differs from a Windows form and how to use Web forms
to create programmable Web pages.We also looked at the categories of Web form
control available to provide rich user interfaces.We discussed the DataGrid bound
control, and we covered when and how to use various customization options.We
looked at the built-in capabilities of data validation in Web forms to validate user
inputs using validation controls.We discussed the ability to author custom con-
trols to enhance the functionality of Web form controls and create reusable com-
ponents as well as how Web services change the application architecture to
provide data when and where we want it.We looked at ways to consume a Web
service from a Web form as well as from a Windows form, without changing the
way we program.We still have more to learn about ASP.NET, but with these
skills, it’s easy for you to master ASP.NET with a little bit of experimenting.

Solutions Fast Track

Web Forms

Web forms extend the Rapid Application Development (RAD) capabili-
ties of Visual Basic to Web applications, allowing developers to create
rich, form-based Web pages.

Web forms separate the code from the content on a page, eliminating
spaghetti code.

Similarly to Windows forms,Web forms support an event-driven model.

Adding Controls to Web Forms

Web form controls are server-side controls that are instantiated on the
server and render HTML to the browser.

Placing the controls on a Web form is similar to placing controls on a
Windows form.The only differences are that the layout of the Web form

www.syngress.com

153_VBnet_10 8/15/01 11:26 AM Page 519

520 Chapter 10 • Developing Web Applications

is linear and the controls are dropped where the cursor is currently
positioned.

Web form server controls are broadly classified into four categories:
intrinsic, bound, custom, and validation controls.

Creating Custom Web Form Controls

ASP.NET allows us to author our own controls to encapsulate a custom
user interface.

We can create a custom control using existing server controls, thus
providing an easy way to reuse code.

Web Services

Web services change the application architecture to provide information
when and where you want it.

Web services are components that provide service to a consumer, who
uses standard Internet protocols (HTML, XML) to access these services.

Web services are the custom business components that don’t have user
interfaces and are meant to be consumed by programs only.

Using Windows Forms in Distributed Applications

.NET gives the ability to use Windows forms as a client-side user inter-
face in a distributed application.

Windows applications run on the client machine and use server
resources remotely.They reduce the server load.

Windows applications use .NET sophisticated graphics, so they can
provide rich user interfaces with the quickest response and the highest
degree of interactivity.

www.syngress.com

153_VBnet_10 8/15/01 11:26 AM Page 520

Developing Web Applications • Chapter 10 521

Q: Do we have to copy the code-behind a VB file to production when we are
deploying an application?

A: No.The code is compiled into the DLL, which is in the bin directory, so
copying the DLL is enough.

Q: Is Web.config required in the application root directory?

A: Web.config is optional and, if present, overrides the default configuration
settings.

Q: What is the compilation tag in Web.config?

A: Inside Web.config,Visual Studio creates a compilation tag with an attribute
debug whose value is True.This tag is used to configure the compilation set-
tings.When the debug property is set to True,ASP.NET saves the temporary
files that are helpful when debugging. For the applications in production, this
property should be set to False.

Q: Why shouldn’t we use the same name for Web forms that are in different
folders?

A:VS.NET uses the code-behind technique; for this reason, each Web form
inherits a class in the namespace named after the Web form. In a namespace,
there can be no duplicate class names.Thus no two Web forms can have the
same name, even though they are in different folders.

Q: Can any client consume Web services?

A:Yes, any client that understands HTTP and XML can consume Web services.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_10 8/15/01 11:26 AM Page 521

522 Chapter 10 • Developing Web Applications

Q: Does my current ASP code work under ASP.NET?

A:Yes, it will work. In order to support backward compatibility, Microsoft
introduced a new filename (.ASPX) for ASP.NET. In order to take advantage
of .NET Framework, it would be better if you could rewrite your code to
ASP.NET.

www.syngress.com

153_VBnet_10 8/15/01 11:26 AM Page 522

Optimizing,
Debugging,
and Testing

Solutions in this chapter:

■ Debugging Concepts

■ Code Optimization

■ Testing Phases and Strategies

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 11

523

153_VBnet_11 8/14/01 5:10 PM Page 523

524 Chapter 11 • Optimizing, Debugging, and Testing

Introduction
When developing an application, program debugging consumes a significant por-
tion of development, and the better you understand how to use the debugging
tools, the faster you can track bugs down and fix them. In this chapter, we discuss
the tools available in Visual Basic .NET to assist you in debugging.You should
already be familiar with some of these tools from previous versions of Visual
Basic. It is important to understand the tools that are available and how to use
them. Debugging will be a little different now that Visual Basic uses exceptions
for runtime errors in your program.

When you release your applications, you want them to run as robustly as pos-
sible. Different aspects of program development can affect the performance of an
application. Many of these concepts will be the same as in previous versions of
Visual Basic, but you need to understand some new ones in order to optimize
your applications.We talk about some issues in your code that can improve per-
formance, and we also discuss some runtime performance issues and the best
options to choose from when compiling your application.

Prior to releasing your applications, you should completely test them.You
should not be using your customers to perform testing for you. Generally, testing
is initially allocated its fair share of time.As development deadlines slip, however,
the testing phase shrinks to make up for it. Most software engineers do not enjoy
testing, but it is a very important part of application development.Testing involves
different phases, and different personnel are needed for these phases. Independent
personnel should perform the final testing because the developers understand
how the program works from the inside, and it is harder for them to step back
and look at it from a user perspective.

Debugging Concepts
As a developer working in any size project, there is one guarantee—there will
be bugs. Bugs can come in a variety of forms, but you need to consider three
main types:

■ Syntax-related These are usually the easiest to catch, especially with
advanced development environments like the one provided by Visual
Basic.These occur in situations where you might misspell a reserved
word or variable name.

■ Runtime errors These occur when your code is syntactically correct
(the compiler does not notice anything in error as it prepares to execute

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 524

www.syngress.com

the application), but an error occurs as the code actually executes. For
example, if you were to attempt to execute a method on an object
without first instantiating the object, you would get a runtime error.
Unless you include some error-handling code, the application may come
to a halt.These are still relatively easy to locate in an environment such
as the one provided in Visual Basic .NET.

■ Logic errors These are among the most difficult to track down.They
occur when you experience unexpected behavior from your application
(your program zigs when it should have zagged).These are usually a
result of some logical error in the algorithms of your application.
Luckily,Visual Basic provides many useful tools that aid in tracking
down logic errors.

Among the tools available for debugging are watches, breakpoints, the
Exceptions window, conditional compilation, and the addition of traces and asser-
tions.We have seen most of these in previous versions of Visual Basic. But, because
they do offer some new functionality, we cover each of them in their own section.
In addition, the Visual Basic IDE provides a comprehensive debugging menu. First,
let’s set up our test project that we will use in order to practice the debugging
techniques mentioned thus far. (This project and changes made throughout the
chapter are included on the CD. See file Chapter 11/Simple Calculator.vbproj.)

1. Start up a session of Visual Basic .NET.

2. Select a Windows application. Make sure the application has one
Windows form.

3. Place controls on the form so that the form looks like Figure 11.1. From
right to left, place a textbox1, combobox1, textbox2, label1, textbox3,
and button1. Set the name of the controls as listed in the Table 11.1.

Table 11.1 Simple Calculator Controls

Control Name

textbox1 txtLeft
combobox1 cboOperation
textbox2 txtRight
label1 label1
textbox3 TxtResult
button1 button1

Optimizing, Debugging, and Testing • Chapter 11 525

153_VBnet_11 8/14/01 5:10 PM Page 525

526 Chapter 11 • Optimizing, Debugging, and Testing

4. Right-click on the Forms Designer and select view code. Right
below the line that reads Inherits System.WinForms.Form, enter the
following two variable declarations:

Private intLeftNumber As Integer

Private intRightNumber As Integer

5. Enter the following code into the New() method of the form below the
Form1 = Me:

'add available operations to combo box

cboOperation.Items.add("+")

cboOperation.Items.Add("-")

cboOperation.Items.Add(chr(247))

cboOperation.Items.Add("*")

6. Select Button1 from the Class Name combo box at the top left of the
code view pane.Then in the method name combobox, select the
Click() method. In the Button1_Click() method, enter the following
code:

intLeftNumber = CType(txtleft.Text, Integer)

intRightNumber = CType(txtRight.Text, Integer)

Call Calculate()

7. Add the code for the final routine:

Protected Sub Calculate()

Dim tempResult As Integer

'try to do the requested operation

Try

Select Case cboOperation.SelectedItem

www.syngress.com

Figure 11.1 User Interface for Debugging Practice Project

153_VBnet_11 8/14/01 5:10 PM Page 526

Optimizing, Debugging, and Testing • Chapter 11 527

Case "+"

tempResult = intLeftNumber + intRightNumber

Case "-"

tempResult = intLeftNumber - intRightNumber

Case "*"

tempResult = intLeftNumber * intRightNumber

Case chr(247)

tempResult = CType(intLeftNumber / _

intRightNumber, Integer)

End Select

Catch e As Exception

'catch any exceptions e.g. Division by zero

tempresult = 0

End Try

'display the result of the operation

txtResult.Text = CType(tempResult, String)

End Sub

This completes the setup of our practice project.You should compile it to
make sure that everything is in check.You will notice that VB.NET still provides
color-coding of keywords and intrinsic functions.This helps to easily identify and
read your code. In addition, the VB.NET IDE provides a new feature that enables
you to recognize when you may have misspelled a variable name or keyed in
something that it does not recognize. For example, find one of the references to
the variable intLeftNumber in the code. Change the spelling from
intLeftNumber to intLeftumber.You will notice a wavy underline appear
under the word.This functionality is similar to what we are accustomed to seeing
in Microsoft Word documents. It tells us immediately that there is something that
it does not recognize. If you place the mouse pointer over the word, you will see
Tool Tip text that gives more detail about the problem.

The example application simply performs the designated operation on two
integer values. But, in keeping the example simple, we will be able to demonstrate
all the beneficial features available to you when debugging your code in Visual
Basic .NET.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 527

528 Chapter 11 • Optimizing, Debugging, and Testing

Debug Menu
The Visual Basic .NET IDE Debug menu provides us with some very useful
tools, which are very helpful for debugging in the runtime environment. Each
provides a unique way to control execution of your code line-by-line.The tools
include Step Into, Step Out, Step Over, and Run To Cursor.We now
examine their functionality. Follow these steps:

1. Open the code view for the designer of the simple calculator. In the
code, place the cursor on the line where the Button1_Click() method
begins.

2. Place a breakpoint there by pressing F9.A breakpoint will halt execution
when the compiler reaches this line of code; we cover it in greater detail
in the “Breakpoints” section.

3. Run the application by selecting Start from the Debug menu.

4. When the simple calculator loads up, put any numeric value in each of
the left and right text boxes. Select the plus sign to indicate addition in
the combo box.

5. Select Calculate.You will notice that the execution of the program
stops and that the current line where execution stands is indicated with
a yellow arrow in the left margin of the code view.This yellow arrow
always indicates the next line that will be executed. By using the com-
mands in the Debug menu, we can control where the execution will go.

6. Go to the Debug menu now and select Step Into.You will see the
yellow arrow move down one line, which means that the previous line
executed successfully.This technique can be very useful. It helps you to
follow your code one line at a time in order to determine where an
error occurs or to see where a value changes.

7. Continue to select the Step Into command until the arrow is on the
same line that calls the Calculate() method.At this point, the execution
will move into another procedure.

We have options here. If we know that the method in question
works and is not the source of any error being investigated, then we may
choose to Step Over the call. By selecting to Step Over the call, the
method will be executed at real time without us seeing the execution
line by line. In order to see the code in the method execute line-by-line,
we must Step Into the method.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 528

Optimizing, Debugging, and Testing • Chapter 11 529

8. Select the Step Into command from the Debug menu.After you are in
a routine, you again have two choices.You can step through the code
line by line, or you can Step Out of the method back to the calling
method.You can do this by using the Step Out command.

9. Select the Step Out command from the Debug menu.You will see the
execution return to the calling method (Button1_Click) one line after
the method you are returning from (the Calculate method).All the
code in Calculate() is executed before returning to the calling method.

In addition to all these tools, you can also use the Run To Cursor option,
which is handy in lengthy methods. It gives you the ability to place the cursor on
a line within the current method and have the code execute up to the line where
the cursor is.

NOTE

Each of the Debug menu tools has keyboard shortcuts. You can use these
debugging techniques very efficiently by becoming familiar with these
shortcuts:

Step Into F8
Step Over Shift+F8
Step Out Ctrl+Shift+F8
Run To Cursor Ctrl+F8

These features are very useful but are usually used along with the other useful
VB.NET IDE debugging tools, which we discuss in the following sections.

Watches
Watches provide us with a mechanism where we can interact with the actual data
that is stored in our programs at runtime.They allow us to see the values of vari-
ables and the values of properties on objects. In addition to being able to view
these values, you can also assign new values.This can be very handy while step-
ping through your code because you can see what would happen if a variable had
a different value at a specific point in time. Let’s use our practice project to
examine the value of watches:

1. In order to use the Watch window, the application must be in break
mode. So again, let’s set a breakpoint in the Button1_Click event.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 529

530 Chapter 11 • Optimizing, Debugging, and Testing

2. Run the application and enter some numbers then press the Calculate
button so that we get to our breakpoint.

3. Place the cursor over the intLeftNumber variable names and select
Add Watch.You now see a new window appear at the bottom of the
IDE called the Watch window (see Figure 11.2). Now, you can see the
value of the variable as it changes for as long as it is in scope.The values of
variables are only visible while they are in scope, which means that private
declarations are only visible in the classes or methods in which they are
declared. Publicly declared variables will be visible throughout the applica-
tion. In addition to being able to watch these values, we can also change
them.Although we have the Watch window available, place the cursor into
the Value field for our watch variable. Change the value to 15 and press
Enter. Now continue execution of the program.You will see that the final
result reflects the change that you made in the Watch window.

www.syngress.com

Figure 11.2 The Watch Window

153_VBnet_11 8/14/01 5:10 PM Page 530

Optimizing, Debugging, and Testing • Chapter 11 531

NOTE

You can also add variables to the Watch window by typing their names
into the Name field. Or, you can also add a variable by highlighting it in
the code view and then dragging it into the Watch window. You can
then change and watch their values. You cannot, however, change the
values of constants in the Watch window.

Breakpoints
We have already seen breakpoints in the earlier examples, but we visit them in
more detail here.As we saw, breakpoints allow you to halt execution of your pro-
gram at a specific line of code.This helps when you have narrowed down the
general area of a problem you might be investigating. Breakpoints gives you the
ability to halt execution just before entering into that section and then walk
through the code as you desire.You can set breakpoints in a variety of ways.You
can click in the left margin of the code view at the line where you want to set
the breakpoint, or you can place the cursor on that line and press F9. In fact, you
can press F9 to toggle the breakpoint on and off.You may also set breakpoints by
selecting New Breakpoint from the Debug menu.

A new feature in VB.NET is the Breakpoints window, which you can bring
up by selecting Windows and then Breakpoints from the Debug menu. From
this window, you can see a list of all the breakpoints currently set in your applica-
tion (see Figure 11.3); you also have the flexibility to jump to any breakpoint in
the application simply by double-clicking on it in the Breakpoints window.You
will also notice that each breakpoint listed in the window has a checkbox beside
it.These give the option of activating or deactivating any breakpoint without
actually having to physically remove the breakpoint from the code view pane.
This can be useful if you want to skip over a breakpoint one time but activate it
again at a later time.

Some more advanced features are also available. Select any one of the break-
points in the Breakpoints window and click Properties. Here you can set a condi-
tion for the breakpoint. Click the Condition button and you will see the dialog
box shown in Figure 11.4. In this dialog box, we can specify any Boolean condition
to determine whether the breakpoint should be enabled or disabled. If you click
the Hit Count button from the Breakpoint properties dialog box, you can specify
how many times the breakpoint must be hit before it is automatically enabled.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 531

532 Chapter 11 • Optimizing, Debugging, and Testing

Exceptions Window
The Exceptions window is new in Visual Basic .NET. In previous versions of Visual
Basic, we were able to tell the compiler what to do when it encountered errors.
You might remember the options were Break In Class Module, Break On All
Errors, or Break On Unhandled Errors. In the new Exceptions window, you
can tell the compiler what to do on any specific exception or class of related
exceptions. Let’s take a walk through using our simple calculator application:

1. Remove all breakpoints (remember that you can do this with the key
combination Ctrl+Shift+F9).

www.syngress.com

Figure 11.3 The Breakpoints Window

Figure 11.4 Setting a Breakpoint Condition

153_VBnet_11 8/14/01 5:10 PM Page 532

Optimizing, Debugging, and Testing • Chapter 11 533

2. Run the application by selecting Start from the Debug menu.

3. Place an alpha character in the first textbox and select to multiply it by
any number in the right text box.

4. Select Calculate.

You will see that an exception is thrown in the Button1_Click() method.This
exception (System.FormatException) occurred because, as we know, we cannot
convert a string with alpha characters into an integer.We have two ways we can
handle this.We can use a Try…Catch…Finally block and handle the exception, or
we can configure how the compiler should handle this exception.This type of
configuration is done in the Exceptions window as shown in Figure 11.5. For the
type of exception we are encountering here, we recommend that you use a
Try…Catch…Finally block and handle the exception appropriately. However, we
examine the functionality of the Exceptions window here. Let’s begin by finding
the exception in the exceptions TreeView:

1. Expand the Common Language Runtime Exceptions node.

2. Expand the SystemException node.

3. Scroll down the list until you see the FormatException and select it.

www.syngress.com

Figure 11.5 The Exceptions Dialog Box

153_VBnet_11 8/14/01 5:10 PM Page 533

534 Chapter 11 • Optimizing, Debugging, and Testing

The bottom of the Exceptions window has two frames. Each one gives you
an option as to how to handle the exception at different points in time.The top
frame labeled When The Exception Is Thrown tells the compiler what to do
immediately after the exception is thrown but before the code to handle the
exception is executed.The second frame labeled If The Exception Is Not
Handled tells the compiler what to do if the exception is not handled or if the
code to handle the exception fails.

Each of the two frames has three options: Break Into The Debugger,
Continue, and Use Parent Setting. By selecting Break Into The Debugger,
you are telling the compiler to go into break mode as soon as the exception is
thrown.You can set this up so that it will break only on unhandled exceptions by
selecting Continue in the top frame and Break Into The Debugger in the
second frame.The second option is Continue. By selecting this, you are telling
the compiler just to continue execution when an exception is thrown. If you
were to select this in both frames, you would be telling the compiler to ignore
the exception all the time.The final setting is Use Parent Setting, which is the
default setting. It allows for a form of inheritance through the hierarchy of
exceptions. For example, if you change the settings for Common Language
Runtime Exceptions, all exceptions below that node that are set to Use Parent
Setting will inherit those changes.

NOTE

You can also add your own custom exception classes to the Exceptions
window. The Use Parent setting can be very useful when you develop
your own exception classes. If your exception classes have child classes,
they can inherit the behavior from their parent class with the use of this
setting.

Command Window
When debugging in Visual Basic 6.0, we made extensive use of the Immediate
window.We were able to use the Immediate window in order to determine the
values of variables and to execute commands in the IDE while the program is in
debug mode. Much of this functionality has been retained in Visual Basic .NET
with a tool called the Command window.This window is available in two
modes.The first mode is the immediate mode; you can open the command
window in immediate mode by selecting Immediate from the Windows

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 534

Optimizing, Debugging, and Testing • Chapter 11 535

submenu on the Debug menu.The second mode is the Command mode; you
can open the Command mode by selecting the Command Window option
from the Other Windows menu found under the View menu.You can switch
between the two modes by using the immed command in Command mode and
using the >cmd command while in Immediate mode.You can use both of these
modes to execute commands while running in debug mode.

When working in command mode, the window’s title bar will read Command
Window.While in command mode, you can execute commands using the com-
mand line instead of locating them in the menus or executing commands that are
not available in the menus. For example, by typing addproj you can add a new
project to the Solutions Explorer. Most of the options that are available for use in
the Command window also have aliases.The aliases allow you to use a short
form, preventing the tedious act of having to type out the long name every time.
An example of this is bl, which is an alias name for Debug.ToggleBreakPoint.
A full list of aliases is available from MSDN, but the most commonly used ones
are listed in Table 11.2.

Table 11.2 Common Command Window Commands

Alias Long Name Description

? Debug.Print Writes the value of an expression or
variable to the output window.

?? Debug.QuickWatch Adds an expression or variable to the
Quick Watch.

Alias Tools.Alias Creates a custom Alias name for a
command.

Bl Debug.Breakpoints Displays the Breakpoints window.
Bp Debug.ToggleBreakPoint Toggles a breakpoint on the current

line.
Callstack Edit.Callstack Writes out the callstack.
Clearbook Edit.ClearBookmarks Clears all the bookmarks.
Code View.ViewCode Displays the code pane for the current

designer view.
Designer View.ViewDesigner Displays the designer pane for the

current code view.
Cmd View.CommandWindow Display the command mode.
Immed Tools.ImmediateMode Display the Command window in

immediate mode.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 535

536 Chapter 11 • Optimizing, Debugging, and Testing

As we can see from just these examples, a very comprehensive list of com-
mands is available for use in the Command window. Mastering the use of these
shortcuts will cut down the cost and time involved in debugging your projects.
Although you can use the Command mode of the Command window for
debugging tasks such as evaluating expressions and validating the values of vari-
ables, we recommend that this be done in the Immediate mode of the Command
window.The Immediate mode functions exactly the way that the Immediate
mode from previous versions of Visual Basic did except for one point.The
Up/Down arrow keys do not move up and down through the lines of the
Command window, but they actually scroll through the list of previously issued
commands on the one line. Just as in previous versions, you determine values
with the ? and evaluate expressions simply by typing them in and pressing Enter.
While in Immediate mode, you can execute all the commands available in the
Command mode by prefixing the command mode commands with a > character.

Conditional Compilation
Oftentimes during development, multiple versions of an application are required.
A common driving factor is regionalization of the application.Also, a large
amount of debugging code often exists throughout the source code for an appli-
cation.This code can add up to quite a few lines and it would be very time con-
suming and tedious if we had to remove this code before compiling the
application and then put it back in so that we could continue development on
other features for the application. Conditional compilation provides a way for us to
leave all this extra code in our source and to easily regionalize our applications.
Any source code that is enclosed with conditional compilation may or may not
be compiled into the executable file.

You can declare variables to be used for conditional compilation in a variety
of ways. Most of the directives for declaring conditional compilation variables are
much the same as they were in previous versions of Visual Basic.The first method
is to set up all conditional compilation variables in the project properties dialog
box (see Figure 11.6):

1. Open the Solution Explorer.

2. Right-click the project for which you would like to set up conditional
compilation constants and select Properties.

3. Select Configuration Properties.

4. Select Build and then add or modify conditional compilation constants.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 536

Optimizing, Debugging, and Testing • Chapter 11 537

You can also declare variables in code.You declare the variable as a constant
by using the #Const keyword.This syntax tells the compiler that this variable is
to be used to evaluate conditional compilation expressions.You can also pass in
variable definitions as arguments when compiling from the command line by
using the /define tag.To evaluate the value of conditional compilation variables,
we use the #if…#else…#End if construct. Here are some code examples for
using conditional compilation using these two techniques:

#Const Language = "FRENCH"

#If language = "FRENCH" then

'Do french code

#Else

'Do other language code

#end if

We can also have the exact same #if statement in the code but pass in the
definition of the Language variable using the tag on the command line. For
example, Vbc /define:Language=FRENCH [project]. In addition to the
standard conditional compilation options that we have seen here,Visual Studio
.NET provides some built-in conditional compilation options that enable you to
actually trace the execution of a deployed application.

www.syngress.com

Figure 11.6 Project Properties Dialog Box: Conditional Compilation

153_VBnet_11 8/14/01 5:10 PM Page 537

538 Chapter 11 • Optimizing, Debugging, and Testing

Trace
For applications where performance is vital, it would be convenient to be able to
trace their performance as the end users were using them.Visual Studio.NET
provides a mechanism that allows us to do just that.We can place code
throughout our application that can log events and steps of execution to a con-
sole window, log file, or any other available output. For example, we may want to
examine database connectivity in a multiuser environment in order to determine
why some users are experience longer lags then others.

In Figure 11.6, we saw how to define conditional compilation constants.The
dialog box also has two other checkboxes.The first checkbox is where you set
the Debug constant, and the second is where you set the Trace constant.As in
Visual Basic 6.0, we have access to a debug class. In previous versions of Visual
Basic, we had the ability to write to the Immediate window by using lines in our
code, such as debug.print.This class is still available in Visual Basic .NET
(though the method names have changed, the overall functionality is similar).
One difference is that unless the Debug constant is set, all the debugging code
that is written in your application using the Debug class will not be compiled into
the final executable. On the other hand, if you set the Trace option, all the debug-
ging code that is written in your application using the Trace class will be com-
piled into the executable. It is through this mechanism that we can add Trace
functionality to our deployed applications.

The information that you wish to have logged can be written to a few dif-
ferent places.These places are called Trace Listeners. The Listeners collection of the
Trace object keep track of the Trace Listeners.Two other potential Listeners are
the TextWriterTraceListener and the EventLogTraceListener.The EventLogTraceListener,
as you might guess, will write the Trace information to an event log.The
TextWriterTraceListener writes the information to any instance of the TextWriter
class or Stream class. In the upcoming example, we use an instance of the Stream
class to create a text file to track the operations and numbers that our users use.
This information might be useful if they report bugs with the application.

Let’s take a look at using traces in our simple calculator program.Add the
following Code to the simple calculator window’s form:

1. At the top of the Form class, enter the following declaration:

Private myfile As System.IO.Stream

Private BoolSwitch As BooleanSwitch

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 538

Optimizing, Debugging, and Testing • Chapter 11 539

2. Add this initialization code to the bottom of the New() method:

'set up the trace listener

Boolswitch = New BooleanSwitch("General", _

"Simple Calculator")

myfile = system.IO.File.Create("C:\TraceFile.txt")

Trace.Listeners.Add(_

New TextWriterTraceListener(myfile))

boolswitch.Enabled = True

3. Add the following code to the top of the Calculate() method:

'trace operation if trace is enabled.

trace.WriteLineIf(boolswitch.Enabled, _

CType(intleftnumber, String) & _

CType(cbooperation.selecteditem, String) & _

CType(intRightNumber, String))

4. Lastly, select the Finalize method from the method name drop-down
for the form and add this code:

Protected Overrides Sub Finalize()

'close the Trace listener

myfile.close()

End Sub

Now, run the application and do some operations.When you have completed
a few calculations, navigate to where you created the text file and open it.You
will see all the operations that you did logged in the text file. In this case, we are
writing every operation to the text file regardless of any factors.This may not be
optimal for all applications because using the Trace mechanism does come with
some overhead (as minimal as it may be).The Trace class offers other function-
ality that allows you to categorize your messages into different levels and Trace
them only if that level of tracing is on.You may have noticed in the previous
example that we used the Trace.WritelineIf method.This method will only write
the Trace if the first parameter of the method evaluates to True. It is useful in this
parameter to pass the Switch object to the Trace method in order to allow the
trace method to determine if Trace is on or not.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 539

540 Chapter 11 • Optimizing, Debugging, and Testing

Two Switch classes are available.The first one is called the BooleanSwitch (as we
saw earlier).This switch is used merely to toggle Trace on or off by using the
Enabled property.The other switch class is called the TraceSwitch.This class allows
us to set our Traces to different levels. By setting the level of Trace that applies to
a specific Trace statement, you can limit what items are written to your Trace
Listener.This allows you to decide in your analysis what type of information a
particular Trace is providing.This type of Trace has five settings: Off (no Trace),
Error,Warning, Info, and Verbose.These options allow you more control over
what information is logged and when that information gets logged.

Assertions
When debugging a project, it can sometimes help to narrow down situations
where you know certain criteria must be met or certain expressions must be True
in order for an algorithm to execute correctly. Assertions allow us to test for these
conditions in our applications. In previous versions of Visual Basic, we had access
to the Assert method of the Debug object.This is still the case in Visual Studio
.NET (the Assert method is also available on the Trace object).

Just as before, the Assert method will evaluate an expression that must evaluate
to a Boolean value. If the expression evaluates to False (the assertion fails), execu-
tion of a program will halt.The functionality of the Assert method has been
extended in Visual Studio .NET.The method has three different overrides (all
three result in a message box to the user).The message box gives the user the
option to Abort, Retry, or Ignore.The first parameter in all three overrides is the
expression to evaluate.The first override accepts only one parameter, and if the
expression evaluates to False, it writes the call stack out to a message box.The
next override takes two parameters.The second parameter is a short message.
Here you can provide a short message to be displayed in the message box instead
of the Call Stack.The last override allows up to three parameters. It also allows a
short message as the second parameter, but it also accepts a more detailed message
as the third parameter.This is useful if you would like to provide more detail to
the user.The Method Signatures for Debug.Assert is:

1. debug.Assert(Condition as Boolean)

2. debug.Assert(Condition as Boolean, Message as String)

3. debug.Assert(Condition as Boolean, Message as

String,detailmessage as String)

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 540

Optimizing, Debugging, and Testing • Chapter 11 541

The user of assertions is more beneficial during the debugging process. Using
assertions in conjunction with conditional compilation is a good idea.This would
allow you to leave the code in the project while in Debug mode but also ensure
that it is not compiled into the final executable.

Code Optimization
Given the gigahertz processors and low-priced memory on the market, opti-
mizing code is often overlooked in the applications we develop today. Granted,
optimization may not offer the same noticeable improvements it might have in
days past, but it is still a worthwhile practice. Optimizing our applications can

www.syngress.com

Attach the Debugger to an External Process
A wonderful new feature in Visual Studio .NET is the ability to attach the
debugger engine to an external process. This can be any application
either on the local machine or a remote machine that has been compiled
with debug information or that you have access to the source code for.
You can use the debugger to debug applications that may or may not
have been created in Visual Studio. You can also enable a just-in-time
debugger. The JIT debugger invokes as a program crashes in order to
assist us in finding the faulty code. To attach the debugger to an external
program, follow these simple steps:

1. Choose Processes from the Debug menu.

2. In the Available Processes list box, select the application you
would like to attach the debugger to.

3. Make sure to select the appropriate type of process.

4. Click OK.

Now, if you want to put the application into break mode, all you
have to do is click Break in the dialog box. This is a really nifty feature
in Visual Studio .NET. It will enable us to make our executable files, run
them, and then attach the debugger to them so that we can find any
offending code the first time an error occurs as opposed to having to re-
create the error in the IDE.

Debugging…

153_VBnet_11 8/14/01 5:10 PM Page 541

542 Chapter 11 • Optimizing, Debugging, and Testing

provide for a faster, scalable, more maintainable, and robust application.
Nevertheless, issues such as the object model we choose, late binding versus early
binding, and cleaning up at the end of our routines still fall in the hands of the
developer and all influence how optimal our applications are.

Finalization
The Finalize method is comparable to the Class_Terminate method of objects in
Visual Basic 6.0. It gives you a chance to do any additional cleanup tasks that are
required before the object is destroyed (such as release database connections).The
Finalize method is resource intensive and can slow down the performance of the
application.When you implement the Finalize method, the object will take
longer to remove from memory. In addition, objects are not deallocated in any
particular order and there is no guarantee that your object will be Finalized. In
order to optimize performance, override the Close() method and call the Close
method when you are done with the object.To ensure that the Finalize method
does not get invoked (because we are using the Close method, the object does
not need to be finalized), it can be suppressed in the Close method with a call to
GC.SupressFinalize.

Transitions
When we invoke methods on unmanaged code (such as .DLLs or other COM
components) we cause transitions to occur.The transition is what .NET invokes in
order to communicate with the unmanaged code. It is comparable to marshalling
data across process boundaries.When this is done, we take a performance hit.
Every time a transition is invoked it brings with it some overhead (about 10 to
40 extra instructions). In order to optimize code that requires the use of transi-
tions, organize your code such that you can accomplish as much as possible with
as few calls as possible.

Parameter Passing Methods
In Visual Basic 6.0, values were passed by reference by default.What this meant is
that a pointer to the address location in memory of the parameter was passed to
function calls. Unless we explicitly declared the parameter to be passed by value,
it would be passed by reference.When a parameter is passed by value, a copy of
the data is passed into the receiving routine.We still have the two parameter
passing types in Visual Basic .NET (the default when passing arguments is now
by value). Passing the intrinsic datatypes (Integers, Singles, Char) by value does

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 542

Optimizing, Debugging, and Testing • Chapter 11 543

have some performance advantages.This is because the Value types such as these
are allocated on the stack where they are accessed and removed quickly with very
little overhead. Objects passed by reference are allocated on the heap, which
requires interaction with the Garbage Collector and in turn generates greater
overhead.

Strings
Strings in Visual Basic .NET are objects. But the difference is that you cannot
modify a String object.That is to say they are immutable.Traditionally, if you
modified a string, you actually modified the specific string. Now, when you
modify a string (perhaps replace the middle character with something else), what
is actually happening behind the scenes is a new String object is being created,
and the old one is discarded.This can mean a lot of overhead for intense string
operations. Instead of working with Strings directly, we can use the StringBuilder
object (System.Text.StringBuilder).This object eliminates the overhead of creating
new strings when modifying the value of a String object. For example, let’s take a
look at some code:

Dim strTemp1 as String

Dim strTemp2 as String

strTemp1 = "Hello"

strTemp2 = " Out There"

strTemp1 = strTemp1 & strTemp2

In this code example, even though we declared only two String objects, three
will be created.The first one is created for strTemp1.The second is created for
strTemp2.The third String object is created when we perform the concatenation
of the strTemp1 and strTemp2. Internally, a new String object is created and
assigned the result of the concatenation.The pointer to the third String object is
then assigned to strTemp1. If we had a large amount of String operations, we can
see how the overhead would add up quickly. Now take a look at this segment:

Dim strTemp1 As String

Dim y As New StringBuilder("Hello")

strTemp2 = " Out There"

y.Append(strTemp2)

In this code, we can see that we are still creating two objects. One is our
String; the other is the StringBuilder.What is different here is that the StringBuilder

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 543

544 Chapter 11 • Optimizing, Debugging, and Testing

will concatenate the strings using its Append method without creating the third
object. If we had a lot of string manipulations, we can see how we would save a
lot of overhead by using the StringBuilder object.

Garbage Collection
When you are developing in a distributed architecture, the Garbage Collector
works differently than how it was described in the earlier chapters.When objects
are created from a remote class, they will acquire a lease time.The Garbage
Collector will decide whether or not it is time to clean up the object based on
this lease time.The benefit of this is that distributed objects also used to be
destroyed with reference counting in the same way that reference counting was
used in the desktop application..This can carry high overhead with respect to
network traffic pinging back and forth in order to keep count of the references.
However, in .NET, the Garbage Collector will respond when the lease time
expires. So, when the lease time expires, the Garbage Collector now knows that it
is safe to clean up the object and does so. It is still good practice to explicitly
destroy your objects when you are done with them when you are using a
distributed architecture by making them equal to nothing.

Compiler Options
Compiler options have long been a way of optimizing code.The compiler
options we choose can help reduce the size or our applications and increase per-
formance if done in the right circumstances.Visual Basic .NET has a plethora of
compiler options. Most of these options are available only from the command
line.The following sections explore some of the more significant options.

Optimization Options
The /optimize compiler option deals with optimization of your compiled applica-
tion. It makes your application file smaller, faster, and more efficient.This option
is on by default. In order to toggle this feature on and off, you use /optimize+ and
/optimize- where the + turns it on and the - turns it off.

Output File Options
The /out option allows you to specify the name of the output file that is gener-
ated by the compiler.The /target option lets you specify the type of application to
create. By setting /target:exe, you generate an .exe console application, which is

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 544

Optimizing, Debugging, and Testing • Chapter 11 545

the default setting. In addition, you can set this to /target:module, /target:library,
and /target:winexe.These create a code module, a code library, and a Windows
application respectively.

.NET Assembly Options
All of the options in this category allow you to modify assemblies.The
/keycontainer option allows you to specify the originator of an assembly.The
/keyfile option enables you to specify a file with a key pair to make a shareable
component.Another option, /nostdlib, tells the compiler not to include the two
standard libraries: Microsft.VisualBasic.dll and Mscorlib.dll.These two files define
the entire system namespace. If you were to create your own namespaces, you
would want to use this option so as to not include the System namespace with
your package.The /reference option allows you to import metadata from a file that
contains an assembly. Finally, the /version option lets you create an assembly and
modify the version.

www.syngress.com

Error-Checking Options
The debugging and error-checking options that we have seen in pre-
vious versions of Visual Basic included Favor Pentium Pro and disable
array bounds checks. In Visual Studio .NET, the options have changed,
with four options available. First is the /bugreport option, which will
generate a bug report consisting of items such as the files that were
included in the compile, all the compiler options that were being used,
and (but not limited to) the version information of the compiler. Next,
we have the /cls option. This is used to turn off (/cls-) or turn on (/cls+)
whether the compiler checks for the Common Language Runtime spec-
ification. Also, we have the /debug option. Use this option to generate
builds that can be debugged. This will include the extra information
required by the debugger in order to debug an executable program.
Finally, we can use the /removeintchecks option. This option can be
turned on, again, by using the + or – after the option. By turning this
option on, you tell the compiler to ignore overflow checks and division-
by-zero type errors. Turn this on only if your application has been tested
thoroughly, and you know you will not encounter any of these bugs.

Debugging…

153_VBnet_11 8/14/01 5:10 PM Page 545

546 Chapter 11 • Optimizing, Debugging, and Testing

Preprocessor Options
We have already seen the use of the preprocessor option.This is the /define
option. It simply allows us to declare and initialize conditional compilation
variables on the command line.

Miscellaneous Options
A wide variety of miscellaneous options allow you to do different things from the
command line.We cover a few of the more significant ones here:

■ /? and /help These options display help associated with the command
that precedes it.

■ /baseaddress Lets you assign the baseaddress of a DLL file. Doing this
can improve the performance speed when the file is loaded into
memory.When a DLL file is first loaded into memory, it will try to load
into the first available block. If enough consecutive space isn’t available
for the DLL to fit, it will keep searching until it finds a big enough
space. By changing the base address of the DLL, you can specify an area
of memory to begin loading in order to save the time of the DLL trying
to find enough space for itself.

■ /optionexplicit, /optioncompare, and /optionstrict All of these do the
same thing that they would do if they were declared explicitly in the
code of the application.The /optionexplicit option ensures that all vari-
ables are declared before they are used.The /optioncompare option sets the
method of comparing strings in the application (either binary or text).
Finally, the /optionstrict option forces strict data type usage.

Testing Phases and Strategies
Debugging is a very useful skill to have. More important, though, is having the
skills to find the bugs. No matter how good your development team or program
designer is, your programs will always have bugs when the system goes out the
door.This is why one of the most important phases of development is the testing
phase. More often than not, the testing phase gets the least attention.As func-
tional requirements increase and as obstacles surface during development, the
development phase gets dragged out into the testing phase without restructuring
deliverable dates.As a result, testing usually gets the short end of the stick.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 546

Optimizing, Debugging, and Testing • Chapter 11 547

Nevertheless, by having a thorough and stringent testing strategy, you can still
uncover and correct many of the bugs in a software project.The following
sections outline the different phases of testing.

Unit Testing
Unit testing is the most basic of all the testing phases.When a developer receives a
specification to complete an aspect of the system, the developer also has an idea
as to how this aspect should function. Before the task is determined by the pro-
grammer to be completed, they will usually perform some tests on it to ensure
that the application does indeed generate the desired results. Unit testing is
considered the lowest level of testing.

Integration Testing
Integration testing becomes important on large teams or teams of subteams
where different individuals or different groups of people are each responsible for
different functional aspects of a system. For example, in an accounting system,
one group may be responsible for user interface design, another for the ledger
system, and yet another for the report generation. In this case, each group would
be responsible for certifying that their components work properly when they are
standing alone. But, will they work when they are integrated into the package?
This is the purpose of integration testing.You determine how the independently
developed components behave when they are all integrated together.

Beta Testing
After a package is put together, and the application is certified by the internal
departments to be fully functional and behave correctly, beta testing takes place.
Beta testing is where the product is put out in a prerelease format for users to use
in actual live production.This environment is where the unthinkable usually hap-
pens.This is where a user will inevitably attempt to accomplish a task by doing
the entire process backward and upside down.The fresh eyes of people outside
the development and testing teams often are able to catch even the most minor
things that have been overlooked.The purpose of beta testing is not to give your
customers a product and for them to let you know whether or not it actually
works. Beta software is usually distributed free in some form of a demo mode or
time-limited evaluation copy so that your product has the opportunity to be fully
tested in a live environment before customers spend their hard earned dollars.

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 547

548 Chapter 11 • Optimizing, Debugging, and Testing

Regression Testing
Another fact of software development is that what the client wants now is not
going to be the same thing that the client wants six weeks from now. Needless to
say, change requests will occur after the product goes live.When these changes are
implemented (at a premium, of course!), some other aspects of the system will
probably be affected.This is the purpose of regression testing. As changes are imple-
mented, we must retest all areas of the system that may have been affected by the
changes.

Stress Testing
It is good practice, before applications are released, to determine how much they
can take.This is called stress testing. An example of this is an application where
you allow people to update their address information online.At any one time, the
average number of users might be 5,000. But, what if 25,000 people try to use
your application at one time? How would your application react? And, what if
there were now 75,000 concurrent users? This is the concept behind stress
testing.You push your application beyond logical limits to see what it can handle
before grinding to a halt.This gives you a very good picture as to how scalable
your application is. If you do anticipate that as time goes on there will be more
clients and the potential for more concurrent users, this testing will tell you how
far you can go before you either have to throw more hardware at it or rearchitect
your application.

Monitoring Performance
The ability to monitor performance has come a long way.With Windows 2000
(and Windows NT 4.0), we can use the Performance Monitor (see Figure 11.7)
to help us track the performance of our applications.To launch the performance
monitor, simply type perfmon on the command line.

From this dialog box, if you select System Monitor you will see a chart that
will display the current performance of the machine. Each item that the monitor
is tracking is called a counter. To add counters to the chart, you can right-click in
the empty grid at the bottom and select Add Counters.You will see a dialog
box such as the one shown in Figure 11.8, where you can select the performance
object that you would like to monitor.Take a look at the list. Of particular
interest is Memory and Processor. By watching counters for these two items, you
can see exactly what type of stress your application is putting on the system. In

www.syngress.com

153_VBnet_11 8/14/01 5:10 PM Page 548

Optimizing, Debugging, and Testing • Chapter 11 549

order to get clarification on what exactly any one counter is, you can select it
from the list of counters and then select Explain.A box will appear at the
bottom of the dialog box with an explanation of what the counter is doing.

www.syngress.com

Figure 11.7 Windows Performance Monitor

Figure 11.8 Add Counters Dialog

153_VBnet_11 8/14/01 5:11 PM Page 549

550 Chapter 11 • Optimizing, Debugging, and Testing

Summary
A lot of competition exists in the world of software development. Not only for
products on the market but for the bragging rights of who can put out the most
robust application available. By mastering the concepts outlined in this chapter,
your development team can be well on its way to achieving those rights. By
reducing the amount of time it takes to locate bugs and fix them, you can signifi-
cantly reduce the amount of time it takes to get your application out.Visual Basic
.NET provides us with some strong tools to help make that possible.We covered
these tools, and they are worth mentioning again here. By becoming proficient
with the tools on the Debug menu and their associated shortcuts, combined with
the effective use of watches, breakpoints, traces, conditional compilation, and
assertions, we can become very proficient developers.

In addition to enhancing debugging techniques in order to decrease overall
development time, it is equally important to ensure that ample time is allotted for
a concise and complete testing strategy. By doing this, we make sure that we
catch all of our bugs (or at least as many as is humanly possible) before the
product goes out to paying customers.After paying customers receive a product
with mistakes in it, reputations begin to dwindle. Developers need to do thor-
ough unit testing during development and integration testing as the different
components are brought together.Then, you need to beta test your application
with people who are independent of the entire development process. From the
beta testing, changes will likely have to be made. In order to be thorough in
applying these changes, you should be sure to conduct regression testing in order
to ensure that all affected components still function the way they are supposed to.
Finally, before shipping your application to paying customers, put it through an
exhaustive stress test.This will help you target weaknesses in the code and appli-
cation that may become obstacles when you require your application to scale.

After stress testing your application, you may notice areas of weakness.This is
a good time to go through the code and identify any areas where you can further
optimize it.As we mentioned, you might be able to do this by passing arguments
by value wherever possible, reducing the amount of transitions required, using the
StringBuilder object whenever possible for string manipulation, and finalizing
your objects properly without counting on the Garbage Collector to sweep by at
any specific point in time.After all this is verified, you can monitor your applica-
tion’s performance by using tools such as the Windows Performance Monitor.
When you are satisfied with these results, look into what kind of compiler
options are available in order to make your executable smaller and faster.

www.syngress.com

153_VBnet_11 8/14/01 5:11 PM Page 550

Optimizing, Debugging, and Testing • Chapter 11 551

Solutions Fast Track

Debugging Concepts

Debugging is one of the most important aspects of development that we
should attempt to master.

The Visual Basic .NET IDE provides a very rich set of features that
enable us to become effective debuggers.

The most useful debugging techniques involve using watches, break-
points, conditional compilation, and traces.

Code Optimization

Passing arguments by value will have less overhead.

Reducing the number of transitions in our code will increase
performance.

Properly cleaning up our objects when they are destroyed will prevent
abandoning resources such as database connections that are not managed
by the Garbage Collector.

Testing Phases and Strategies

Testing consumes the largest portion of the time allocated for software
development projects.

Ensure that testing is done by others outside the development team in
order to ensure that the maximum number of bugs are caught before
delivery of the product.

A solid testing strategy comprised of all of the different phases of testing
will help you deliver quality, robust software.

www.syngress.com

153_VBnet_11 8/14/01 5:11 PM Page 551

552 Chapter 11 • Optimizing, Debugging, and Testing

Q: Can I use Run To Cursor to set the next executable line of code to be in a
different method than the one that the yellow arrow indicator is currently in?

A: No, you can use the Set Next Statement and Run To Cursor commands
only within the current method. If you wish, you may use the Step Into
command in order to place execution into the method and then use Run To
Cursor.

Q: Can I change the settings for the TraceSwitch at runtime?

A: Yes, you can provide the user with menu options to change the level of Trace
at runtime.You can do this in reflection of the type of problem you may be
troubleshooting.

Q: Are all the compiler options available from the Visual Studio IDE?

A: Unfortunately, no.A large number of the compiler options are available only
on the command line.

Q: Can the debugger be attached only to processes developed in .NET?

A: No, you can attach the debugger to any process (even MS Office applica-
tions). But, the value of the debugging that you are able to do will depend on
how the application was compiled. It would be necessary for the application
to be compiled with debug information, or you would need to have access to
the source code.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_11 8/14/01 5:11 PM Page 552

Security

Solutions in this chapter:

■ Security Concepts

■ Code Access Security

■ Role-Based Security

■ Security Policies

■ Cryptography

■ Security Tools

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 12

553

153_VBnet_12 8/16/01 10:26 AM Page 553

554 Chapter 12 • Security

Introduction
Security is already an increasing concern for businesses.The .NET Framework is
designed to allow for distributed applications across the Internet.This concept
introduces a slew of security risks. Microsoft realizes these risks and has intro-
duced new security functionality that is incorporated in the .NET Framework.
This chapter is not meant to completely cover implementing security but rather
to show you the functionality that is available and how to use it.

Some of the security concepts are the same as before.You will still authen-
ticate users prior to allowing them on the system.You will continue to use
permissions and rights for user access to specific objects on the system and
authentication of users are always required.This type of security is fine for sys-
tems that are physically disconnected from the Internet.With connections to the
Internet, one of the concerns is for mobile code. Mobile code is code that can be
executed and can come from sources outside your network.This could come
from e-mail attachments, from code embedded in documents, or from code that
you download from Web sites.As many of you have seen, sometimes this code
can be malicious. One important mechanism that is introduced with .NET can
help with this type of problem is code access security (CAS), which prevents mobile
code from accessing sensitive resources by allowing permissions to be granted to
code, or code demanding certain permissions from the caller of the code.This
means that a group of code cannot access the resource unless it has the proper
permissions.Another security feature is role-based security. Roles are generally
established for types of functionality.This does not always map to typical network
user accounts. Roles can be created for specific applications and their require-
ments.This allows threads to execute with the permissions of a designated role.
This was available in the past, but .NET has extended this to both the client and
the server.

The Common Language Runtime (CLR) also has security features.You can
create security policies that determine what code is allowed to do.This allows
administrators to restrict access to resources and the rules are enforced at runtime.
Some security features are included in the Security namespace of the System
object.The Cryptography namespace allows you to encode and decode data as well
as other functions to support data encryption.This allows for the development of
data encryption with an easy to use, object-based methodology. Security will
increasingly become an important part of application development, and this chapter
will help you understand the features that are available and when to use them.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 554

www.syngress.com

Security Concepts
As we discuss in the following sections, code access security and role-based secu-
rity are the most important vehicles to carry the security through your applica-
tions and systems. However, let it be clear that we are not discussing VB.NET
security, but .NET security.That is, the security defined by the .NET Framework
and enforced by the CLR. Since the .NET Framework namespaces make full use
of the security, every call to a protected resource or operation when using one of
these namespaces, automatically activates the CAS. Only if you start up the CLR
with the security switched off, Code Access Security will not be activated.The
CLR is able to “sandbox” code that is executed, preventing code that is not
trusted from accessing protected resources or even from executing at all.This is
discussed more thoroughly in the “Code Access Security” section later in this
chapter.What is important to understand is that you can no longer ignore secu-
rity as a part of your design and implementation phase. Not only is it a priority
to safeguard your systems from malicious code, but you also want to protect your
code/application from being “misused” by less-trusted code. For example, let’s say
that you implement an assembly that holds procedures/functions that modifies
Registry settings. Because these procedures/functions can be called by other
unknown code, these can become tools for malicious code if you do not incor-
porate the .NET Framework security as part of your code.To be able to use the
.NET Security to your advantage, you need to understand the concepts behind
the security.

Permissions
In the real world, permission refers to an authority giving you, or anybody else
for that matter, the formal “OK” to perform a specified task that is normally
restricted to a limited group of persons.The same goes for the meaning of per-
mission in the .NET Security Framework: getting permission to access a pro-
tected resource or operation that is not available for unauthorized users and code.
An example of a protected resource is the Registry, and a protected operation is a
call to a COM+ component, which is regarded as unmanaged code and therefore
less secure.The types of permissions that can be identified are the following:

■ Code access permissions Protects the system from code that can be
malicious or just unstable; see the “Code Access Security” section for
more information.

Security • Chapter 12 555

153_VBnet_12 8/16/01 10:26 AM Page 555

556 Chapter 12 • Security

■ Role-based security permissions Limits the tasks a user can per-
form, based on the role(s) he plays or the identity he has; see the “Role-
Based Security” section for more information.

■ Identity permissions Limits the access based on the rights the user is
given in the Windows 2000 environment. For example, an administrator
identity will have more permissions than a default user. See the “Role-
Based Security” section for more information.

■ Custom permissions You can create your own permission in any of
the other three types, or any combination of them.This demands a
thorough understanding of the .NET Framework security and the
working of permissions.An ill-constructed permission can create
security vulnerabilities.

You can use permissions through different methods:

■ Requests Code can request specific permissions from the CLR, which
will only authorize this request if the assembly in which the code resides
has the proper trust level.This level is related to the security policy that
is assigned to the assembly, which is determined on the base of evidence
the assembly carries. Code can never request more permission than the
security policy defines; such a request will always be denied by the CLR.
However, the code can request less permission.What exactly security
policy and evidence consist of is discussed over the course of this chapter.

■ Grants The CLR can grant permissions based on the security policy
and the trustworthiness of the code, and it requests code issues.

■ Demands The code demands that the caller has already been granted
certain permissions in order to execute the code.This is the security part
you are actively responsible for.

Principal
The term principal refers directly to the role-based security, being the security
context of the executed code. Based on the identity and role(s) of the caller,
whether it is a user or other code, a principal is created. In fact, every thread that
is activated is assigned a principal that is by default equal to the principal of the
caller.Although we just stated that the principal holds the identity of the caller,
this is not entirely correct, because the principal has only a reference to the

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 556

Security • Chapter 12 557

callers identity, which already exists prior to the creation of the principal.Three
types of principals can be identified:

■ Windows principal Identifies a user and the groups it is a member of
that exists within a Windows NT/2000 environment.A Windows prin-
cipal has the ability to impersonate another Windows user, which resem-
bles the impersonate you may know from the COM+ applications.

■ Generic principal Identifies a user and its roles, not related to a
Windows user.The application is responsible for creating this type of
principal. Impersonation is not a characteristic of a general principal, but
because the code can modify the principal, it can take on the identity of
a different user or role.

■ Custom principal You can construct these yourself to create a prin-
cipal with additional characteristics that better suits your application.
Custom principals should never be exposed because doing so may create
serious security vulnerabilities.

Authentication
In general, authentication is the verification of a user’s identity, hence the creden-
tials he hands over. Because the identity of the caller in the .NET Framework is
presented through the principal, the identity of the principal has to be estab-
lished. Because your code can access the information that is available in the prin-
cipal, it can perform additional authentication tests. In fact, because you can
define your own principal, you can also be in control over the authentication
process.The .NET Framework supports not only the two most-used authentica-
tion methods within the Windows 2000 domain—NTLM and Kerberos V5.0—
but also supports other forms of authentication, such as Microsoft Passport.
Authentication is used in role-based security to determine if the user has a role
that can access the code.

Authorization
Once a user has been authenticated, the system is able to determine the autho-
rization the user has to perform specific tasks. In the case of the .NET
Framework, this is done base on the identity of the principal.Authorization in
relation to roles has to be part of the code and can take place at every point in
the code.You can use the user and role information in the principal to determine

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 557

558 Chapter 12 • Security

if a part of the code can be executed.The permissions the principal is given,
based on its identity, determine if the code can access specific protected resources.

Security Policy
To be able to manage the security that is enforced by the CLR, an administrator
can create new or modify existing security policies. Before an assembly is loaded,
its credentials are checked.This evidence is part of the assembly.The assembly is
assigned a security policy depending on the level of trust, which determines the
permissions the assembly is granted.The setting of security policies is controlled
by the system administrator and is crucial in fending off malicious code.The best
approach in setting the security policies is to grant no permissions to an assembly
of which the identity cannot be established.The stricter you define the security
policies, the more securely your CLR will operate.The CD contains the User
Security PPolicy file, both in its original form and with the changes disscussed in
this chapter. See the Chapter 12 folder on the CD.

Type Safety
A piece of code is labeled type safe if it only accesses memory resources that do
belong to the memory assigned to it.Type safety verification takes place during
the JIT compilation phase and prevents unsafe code from becoming active.
Although you can disable type safety verification, it can lead to unpredictable
results.The best example is that code can make unrestricted calls to unmanaged
code, and if that code has malicious intent, the results can be severe.Therefore,
only fully trusted assemblies are allowed to bypass verification.Type safety can be
regarded as a form of “sandboxing.”

Code Access Security
The .NET Framework is based on the concept of distributed applications, in
which an application does not necessarily have a single owner.To circumvent the
problem of which parts of the application (being assemblies) to trust, code access
security is introduced.This is a very powerful way of protecting the system from
code that can be malicious or just unstable. Remember that it is always active
even if you do not use it in your own code. CAS helps you in:

■ Limiting access permissions of assemblies by applying security policies

■ Protecting the code from obtaining more permissions than the security
policy initially permits

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 558

Security • Chapter 12 559

■ Managing and Configuring permission sets within security policies to
reflect the specific security needs

■ Granting assemblies specific permissions that they request

■ Enabling assemblies in demanding specific permissions from the caller

■ Using the callers identity and credentials to access protected resources
and code

.NET Code Access Security Model
The .NET code access security model is built around a number of characteristics:

■ Stack walking

■ Code identity

■ Code groups

■ Declarative and imperative security

■ Requesting permissions

■ Demanding permissions

■ Overriding security checks

■ Custom permissions

By discussing these characteristics, you will get a better understanding how
CAS not only works, but also can work for you during the design and imple-
mentation of applications.

Stack Walking
Perhaps stack walking is the most important mechanism within CAS to ensure that
assemblies cannot gain access to protected resources and code during the course
of the execution.As mentioned before, one of the initial steps in the assembly
load process is that the level of trust of the assembly is determined, and corre-
sponding permission sets are associated with the assembly.The total package of
sets is the maximum number of permissions an assembly can obtain.

Because the code in an assembly can call a method in another assembly and
so forth, a calling chain develops (see Figure 12.1) with every assembly having its
own permissions set. Suppose that an assembly demands that its caller have a spe-
cific permission (in the figure that is UIPermission) to be able to execute the

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 559

560 Chapter 12 • Security

method. Now the stack walking of the CLR kicks in.The CLR starts checking
the stack where every assembly in the calling chain has its own data segment.
Going back in the stack, every assembly is checked for the presence of this
demanded permission, in our case UIPermission. If all assemblies have this permis-
sion, the code can be executed. If, however, somewhere in the stack an assembly
does not have this permission (in our case this is in the top assembly Assembly1),
the CLR throws an exception, and access to the method is refused.

Stack walking prevents calling code from getting access to protected resources
and code for which it initially does not have the authorization.You can conclude
that at any point of the calling chain the effective permission set is equal to the
intersection of the permission sets of the assemblies involved.

Even if you do not incorporate the permission demand in your code, stack
walking will take place because all class libraries that come with the CLR make
use of demand to ensure the secure working of the CLR.The only drawback of
stack walking is that it can have a serious performance impact, especially if the
calling chain is long. Suppose the stack contains 8 assemblies and the top
assembly makes a call to a method that demands a specific permission and does
so in a 200-fold loop.After executing the loop, 200 Security Stack Walks have

www.syngress.com

Figure 12.1 Performing Stack Walking to Prevent Unauthorized Access
Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Succeeded

Succeeded

Succeeded

Succeeded

Failed

Sta
ck

 W
alk

 R
es

ult
: F

AI
L

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

153_VBnet_12 8/16/01 10:26 AM Page 560

Security • Chapter 12 561

been triggered. Since each stack walk performs 8 security checks, the total
number of security checks is 1,600.

Code Identity
The whole principle of the .NET Framework security rides on code identity, or to
what level a piece of code can be trusted.The code identity is established based
on the evidence that is presented to the CLR. Evidence can come from two
sources:

■ Evidence that is incorporated in the assembly, and put in there during
the coding and subsequent compiling of the code, or which can later be
added to the assembly.

■ Evidence that is provided by the host where the assembly resides.The
CLR controls the accepting of host evidence, through the security per-
mission ControlEvidence, that should be granted only to trusted hosts.

Table 12.1 shows the default evidence that can be used to determine to what
code group code belongs. Because you cannot control the identity of the assembly,
you are never sure how reliable this evidence is, except for the signatures provided.

Table 12.1 The Available Default Types of Evidence

Evidence Description

Directory The directory where the application, hence assembly, is
installed.

Hash The cryptographic hash that is used in the code of the code:
MD5 or SHA1 (see the “Cryptography” section).

Publisher The signature of the assembly’s owner, in the form of a X.509
Certificate, set through Authenticode.

Site The name of the site the assembly originates from, for
example: www.company.com (prefixes and suffixes are
disregarded).

Strong name The strong name consists of the assembly name (given name),
public key (of the publisher), version numbers, and culture.

URL The full URL, also called code base, including prefix and suffix:
https://www.company.com:4330/*.

Zone The zone where the assembly originates. Default zones are
Internet, Local Intranet, My Computer, No Zone Evidence,
Trusted Sites, and Untrusted (Restricted) Sites.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 561

562 Chapter 12 • Security

The more evidence you can gather about the assembly, the better you can
determine to what extent you can grant it permissions.The strong name is of
great importance. If you and all other serious application developers are very per-
sistent in providing assemblies with strong names, you can prevent your code
from becoming the vehicle of somebody’s dubious intents. Sadly enough, mali-
cious code can still have a convincing Strong name.That is why the best evidence
is the certificate and signature that should be present with the assembly. Once
you have established the trustworthiness of an assembly, based on all the evidence
before you, you can determine the appropriate permission sets. Here is where
your realm of control starts, by constructing appropriate code groups.

Code Groups
A code group can be defined as a group of assemblies that share the same value for
one, and only one, piece of evidence, called membership condition. Based on this
evidence, a permission set is attached to the assembly. Because a code group is
part of a code group hierarchy (see Figure 12.2), an assembly can be part of more
code groups.The effective permission set of the assembly is the union of the per-
missions sets of the code groups it belongs to.

When an assembly is about to be loaded, the evidence is collected and the
code group hierarchy is checked.When the assembly is matched with a code
group, the CLR will check its child code groups.This implies that the construc-
tion of the hierarchy is very important and must be built starting with the general

www.syngress.com

Figure 12.2 Graphical Representation of a Code Group Hierarchy

All_Code
Permission set:

Nothing

Publisher:
msdn.one.microsoft.com

Permission set:
LocalIntranet

Zone:
Internet

Permission set:
Internet

Site:
msdn.one.microsoft.com

Permission set:
Nothing

Strong
Name:
MyOwnCompany

Permission set:
FullTrust

153_VBnet_12 8/16/01 10:26 AM Page 562

Security • Chapter 12 563

evidence items—for example, starting with zone and moving on to more specific
ones such as publisher.A complicating factor is that there are three security levels
(Enterprise, Machine, and User), with their own code group hierarchy.All three
are evaluated, resulting in three permission sets, which at the end are intersected,
thereby determining the effective permission set.

It is the administrator’s responsibility to construct code group hierarchies that
can quickly be scanned and enforce a high level of security.To do so, you must
take several factors into account:

■ Limit the number of levels.

■ Use membership conditions at the first level that are highly discrimina-
tory, preventing large parts of the hierarchy from being checked.

■ The hierarchy’s root,All Code, should have no permissions assigned, so
code that does not contain at least some evidence is not allowed to run.

■ The more convincing the evidence, for example the publishers certifi-
cate, the more permissions that can be granted.

■ Make no exceptions or shortcuts by giving out more permissions than
the evidence justifies.Assume that you have a specific application, run-
ning in the intranet zone, that needs to have full trust to operate.
Because it is your own application, you implicitly trust it, without the
factual evidence. If you do this, however, it can come back to haunt you.

Table 12.2 shows the available default membership conditions.You can con-
struct your own, but that is beyond the scope of this chapter. Membership condi-
tions are discussed in more detail in the “Security Policy” section.

Table 12.2 Default Membership Conditions for Code Groups

Membership Condition Description

All Code Applies to every assembly that is loaded
Application directory Applies to all assemblies that reside in the same

directory tree as the running application, hence
the Application domain

Hash Applies to all the assemblies that use the same
hash algorithm as specified or have the specified
hash value

Publisher Applies to all assemblies that carry the specified
publishers certificate

www.syngress.com

Continued

153_VBnet_12 8/16/01 10:26 AM Page 563

564 Chapter 12 • Security

Site Applies to all assemblies that originate from the
same site

Skip verification Applies to all assemblies that request the Skip
Verification permission. WARNING: This permission
allows for the bypassing of type safety. Use it only
at the lowest level after you have established that
the code is fully trusted

Strong name Applies to all assemblies that have the specified
strong name

URL Applies to all assemblies that originate from the
specified URL, including prefix, suffix, path, and
eventual wildcard

Zone Applies to all assemblies that reside in the
specified zone

(custom) Applies to custom-made conditions that are
normally directly related to specific applications

Declarative and Imperative Security
You are provided with two ways of adding security to your code.This can be a
demand that callers have a specific permission or a request for a specific permis-
sion from the CLR.

The first method is declarative security, which can be set at assembly, class,
and/or member level, so you can demand different permissions at different places
in the assembly.At the member level (a Class or Method), the demand for a per-
mission will only take place if this part of the code is actually called.The
VB.NET syntax of declarative code is <[assembly:]Permission(SecurityAction
.Member, State)>, for example:

<assembly: FileIOPermission(SecurityAction.Demand, Unrestricted :=

True)>

<FileIOPermission(SecurityAction.Request, Unrestricted := True)>

The first security example is valid for the whole assembly; hence every call in
this assembly needs to have the FileIOPermission.The Second example can be
used for a Class or a single Method. Only a reference to a class or a call of the
method will request the CLR for FileIOPermission.

www.syngress.com

Table 12.2 Continued

Membership Condition Description

153_VBnet_12 8/16/01 10:26 AM Page 564

Security • Chapter 12 565

As the syntax already suggests, by using <> this code is not treated as ordi-
nary code. In fact, as you compile the code to an assembly, these lines are
extracted and placed in the metadata part of the assembly.This metadata is
checked at different points, such as during the load of the assembly or when a
method in the assembly is called. Using declarative security, you can demand,
request, or even override permissions before the code is even executed.This gives
you a powerful security tool during the development of the code and assemblies.
However, this means that you must be aware of the kind of permissions you need
to request and/or demand for your code.

The second method is imperative security, which becomes a part of your code
and can make permission demands and overrides. It is not possible to request
permissions using imperative security because that makes it unclear at what point
a specific permission is needed and at what point it is no longer needed.That is
why permission requests are related to identifiable units of code.You may want to
use imperative security to check if the caller has a permission that is specific for a
part of the code. For example, just before a conditional part of the code (this may
even be triggered by the role-based security) wants to access a file or a Registry
key, you want to check if the caller has this FileIOPermission or RegisteryPermission.
The VB.NET syntax of the imperative security is code looks like this:

Dim PermissionObject as New Permission()

PermissionObject.Demand()

Here is an example:

Dim CheckPermission as New FileIOPermission()

CheckPermission.Demand()

The permission object is valid only for the scope on which it is declared, and
it will be automatically discarded at the time the code returns to a higher scope.
During this scope, imperative security demands and overrides overrule the per-
missions demanded with a declarative security statement.

Having discussed declarative and imperative security, it is time to take a look
at how you can use this to request, demand, and override permissions.

Requesting Permissions
Requesting permissions is the best way to create a secure application and prevent
possible misuse of your code by malicious code.As mentioned before, based on
the evidence an assembly hands over to the CLR, and then a permission set is

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 565

566 Chapter 12 • Security

determined, using security policies.These security policies are constructed inde-
pendently from the permissions an assembly needs. Of course, if you fully trust an
assembly, you can grant it all the permissions it needs.An assembly can be granted
more permissions than it actually needs. Requesting permissions is not asking for
more permissions than you are granted, based on the security profile, but
refraining from granting permissions the code does not need. By now you have
probably started to wonder what the use of requesting permissions is if the secu-
rity policy decides what permissions are available to the assembly.The term avail-
able implies two issues:

■ If an assembly requests more permissions than it is granted, based on the
security policy, it will not be loaded and/or the code will not be exe-
cuted. Instead, the CLR will throw an exception

■ If an assembly requests less permissions, it protects itself from misuse of
these additional permissions somewhere up or down the calling chain.

Requesting permissions is a characteristic of proper .NET applications and
demands from the developer a good understanding of the use of permissions
related to the code he writes. Because you can only request permissions by using
declarative security, you can first write and test the code and then add the permis-
sion requests later.This can make the development process easier, saving you the
hassle of constantly having to consider permission requests for unfinished code.

There are three types of permission requests:

■ RequestMinimum Defines the permissions the code absolutely needs
to be able to run. If the RequestMinimum permission is not part of the
granted permission set, the code is not allowed to run.

■ RequestOptional Defines the permissions the code may not neces-
sarily need to be able to run but may need in certain circumstances. If
the RequestOptional permission is not part of the granted permission set,
the code is still allowed to run, however, you need the code to be able to
handle the situation in which the permission is needed but not granted,
thus handling exceptions.

■ RequestRefuse Defines the permissions the code will never need and
which should not be granted to the assembly. By refraining from certain
permissions you prevent malicious code or unstable code from misusing
these permissions.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 566

Security • Chapter 12 567

After the code is completed and you compile assemblies, you should get in
the practice of making a minimum, optional, or refuse request for every permis-
sion (as listed in Table 12.3), based on the permissions needed by the code.
Eventually you can make it more specific to relate it to classes or members.
Besides the fact that you can create secure assemblies, it is also a good way of
documenting the permissions related to your code.

Table 12.3 The Default Permission Classes Derived from the
CodeAccessPermission Class

Permission
Permission Class Type Description

DirectoryServicesPermission Resource Controls access to the
System.DirectoryServices classes

DnsPermission Resource Controls access to the DNS
servers on the network

EnvironmentPermission Resource Controls access to the user
environment variables

EventLogPermission Resource Controls access to the event
log services

FileDialogPermission Resource Controls access to files that are
selected through an Open
File… dialog

FileIOPermission Resource Controls access to files and
directories

IsolatedStorageFilePermission Resource Controls access to a private
virtual file system related to the
identity of the application or
component

MessageQueuePermission Resource Controls access to the MSMQ
services

OleDbPermission Resource Controls access to the OLE DB
data provider and the data
sources associated with it

PerformanceCounterPermission Resource Controls access to the perfor-
mance counters of Windows
2000 (or NT)

PrintingPermission Resource Controls access to printers
ReflectionPermission Resource Controls access to metadata

types

www.syngress.com
Continued

153_VBnet_12 8/16/01 10:26 AM Page 567

568 Chapter 12 • Security

RegistryPermission Resource Controls access to the registry
SecurityPermission Resource Controls access to

SecurityPermission such as
Assert, Skip Verification, and
Call Unmanaged Code

ServiceControllerPermission Resource Controls access to services on
the system

SocketPermission Resource Controls access to socket that
are needed to set up or accept
a network connection

SqlClientPermission Resource Controls access to SQL server
databases

UIPermission Resource Controls access to UI function-
ality, such as Clipboard

WebPermission Resource Controls access to an Internet-
related resource

PublisherIdentityPermission Identity Permission is granted if the
evidence publisher is provided
by the caller

SiteIdentityPermission Identity Permission is granted if the
evidence site is provided by
the caller

StrongNameIdentityPermission Identity Permission is granted if the
evidence strong name is
provided by the caller

UrlIdentityPermission Identity Permission is granted if the
evidence URL is provided by
the caller

ZoneIdentityPermission Identity Permission is granted if the
evidence zone is provided by
the caller

Now let’s look at some examples of the different types of requests:

<assembly: SecurityPermissionAttribute(SecurityAction.RequestMinimum, _

Flags := SecurityPermissionFlag.ControlPrincipal)>

www.syngress.com

Table 12.3 Continued

Permission
Permission Class Type Description

153_VBnet_12 8/16/01 10:26 AM Page 568

Security • Chapter 12 569

In order for this assembly to run, it needs at least the permission to be able to
manipulate the principal object.This is a permission you would give only to an
assembly that you trust.

<assembly: SecurityPermissionAttribute(SecurityAction.RequestMinimum, _

ControleEvidence : = True)>

In order for this assembly to run, it needs at least the permission to be able to
provide additional evidence and modify the evidence as provided by the CLR.
This is a powerful permission you would give only to fully trusted assemblies.

<FileIOPermissionAttribute(SecurityAction.RequestOptional, _

Write := "C:\Test*.cfg")> Public Class ClassAct

The ClassAct class requests the optional permission to be able to write to files
in the C:\Test directory with the extension .cfg. If the security policy permits
FileIOPermission, this restricted request is given. If the FileIOPermission is not
granted, then any subsequent write to a CFG file in C:\Test will fail.

<assembly: FileIOPermission(SecurityAction.RequestRefuse, Unrestricted

:= True)>

The assembly refuses the FileIOPermission, even if the security policy grants
this permission. If you used this request in combination with the previous
example, and the security policy grants FileIOPermission, only ClassAct will get
this restricted FileIOPermission, and the rest of the code in the assembly will not
have any FileIOPermission.

<assembly: FileIOPermission(SecurityAction.RequestRefuse, _

All := "C:\Winnt\System32*.*")>

The assembly refuses only FileIOPermission to the access of files in the
C:\Winnt\System32 directory. If the security policy grants this permission, the
assembly can access all files, except for the one in the stated directory.

Instead of making requests for every code access permission, you can also
request one of the following named permission sets: Nothing, Execution, Internet,
LocalIntranet, SkipVerification, and FullTrust.You can do this by issuing the
following request:

<assembly: PermissionSetAttribute(SecurityAction.RequestMinimum, _

Name := NamedPermissionSet)>

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 569

570 Chapter 12 • Security

Another way of requesting more code access permissions in one statement is
by using XML-coded permission sets:

<assembly: PermissionSetAttribute(SecurityAction.RequestMinimum, File

:= "Filename.xml")>

Demanding Permissions
By demanding permissions, you force the caller to have a specific permission it
needs to execute the code. If the caller has this request, it is very likely that he
obtained it by requesting it at the CLR.As we discussed before, a permission
demand triggers a security stack walk. Even if you do not perform these demands
yourself, the .NET Framework classes will.This means that you should never per-
form permission demands related to these classes, because they will take care of
those themselves. If you do perform a demand, it will be a redundant one and
only add to the execution overhead.This does not mean that you should ignore
it; instead, when writing code, you must be aware of which call will trigger a
stack walk and make sure that the code does not encourage a surplus of stack
walks. However, when you build your own classes that access protected resources,
you need to place the proper permission demands, using the declarative or
imperative security syntax.

Using the declarative syntax when making a permission demand is preferable
to using the imperative syntax, because the latter may result in more stack walks.
There are, of course, cases that are better suited for imperative permission
demands. For example, if a Registry key has to be set under specific conditions,
you will perform an imperative RegistryPermission demand just before the code
actually is called.This also implies that the caller can lack this permission, which
will result in an exception that the code needs to handle accordingly.Another
reason why you want to use imperative demands is when information is not
known at compile time.A simple example is FileIOPermission on a set of files
whose names are only known during runtime because they are user-related.

Two types of demands are handled differently than previously described. First,
the link demand can be used only in a declarative way at the class or method level.
The link demand is performed only during the JIT compilation phase, in which
it is checked if the calling code has sufficient permission to link to your code.A
security stack walk is not performed because linking exists only in a direct rela-
tion between the caller and code being called.The use of link demands can be
helpful to methods that are accessible through reflection.The link demand will
not only perform a security check on code that obtains the MethodInfo object,

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 570

Security • Chapter 12 571

hence performing the reflection, but the same security check is performed on the
code that will make the actual call to the method.The following two examples
show a link demand at class and at method level:

<SecurityPermissionAttribute(SecurityAction.LinkDemand, _

Unrestricted := True)> Public Class ClassAct

Public Shared Function _

<SecurityPermissiobAttribute(SecurityAction.LinkDemand)> Act1()

As Integer

' body of the function

End Function

The second type of demand is inheritance demand, which can be used at both
the class and method level, through the declarative security. Placing an inheri-
tance demand on a class can protect that class from being inherited by a class that
does not have the specified permission.Although you can use a default permis-
sion, it makes sense to create a custom permission that must be assigned to the
inheriting class to be able to inherit from the class with the inheritance demand.
The same goes for the class that inherits from the inheriting class. For example,
let’s say that you have created the ClassAct class that is inheritable, but also has an
inheritance demand set.You have defined your own inherit permission InheritAct.
Another class called ClassActing wants to inherit from your class, but because it is
protected with an inheritance demand, it must have the InheritAct permission in
order to be able to inherit. Let’s assume that this is the case. Now there is another
class called ClassReacting that wants to inherits from the class ClassActing. In order
for ClassReacting to inherit from ClassActing, it also needs to have the InheritAct
permission assigned.The inheritance demand would look like this:

<InheritActAttribute(SecurityAction.InheritanceDemand)> Public Class

ClassAct

The inheritance demand at method level can be the following:

Public Overridable Function

<SecurityPermissionAttribute(SecurityAction.InheritanceDemand)>

Act1() as Integer

' Body of the function

End Function

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 571

572 Chapter 12 • Security

Overriding Security Checks
Because stack walking can introduce serious overhead and thus performance
degradation, you need to keep stack walks under control.This is especially true if
they do not necessarily contribute to security, such as when a part of the execu-
tion can only take place in fully trusted code. On the other hand, your code has
permission to access specific protected resources, but you do not want code that
you call to gain access to these resources—so you want to have a way of pre-
venting this. In both cases, you want to take control of the permission security
checks, hence overriding security checks.You can do this by using the following
security actions: Assert, Deny, and PermitOnly (meaning “deny everything but”).

After the code sets an override, it can undo this override by calling the corre-
sponding Revert method, respectively RevertAssert, RevertDeny and RevertPermitOnly.
Get in the practice of first calling the Revert method before setting the override
because performing a revert on a nonexisting override has no effect.

WARNING

You can place more than one override of the same type, for example
Deny, within the same piece of code. However, this is not acceptable to
the CLR. If during a stack walk the CLR encounters more than one of the
same asserts it throws an exception, because it does not know which of
the overrides to trust. If you have more than one place in a piece of code
where you set an override, be sure to revert the first one before setting
the new one.

Assert Override
When you set an assert override on a specific permission, you force a stack walk
on this permission to stop at your code and not continue to check the callers of
your method.

WARNING

If you use an assert, you inadvertently create a security vulnerability,
because you prevent the CLR from completing security checks. You must
convince yourself that this vulnerability cannot be exploited.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 572

Security • Chapter 12 573

The use of Assert makes sense in the following situations:

■ You have coded a part of an application that will never be exposed to
the outside world.The user of the application has no way of knowing
what happens within that part of the application.Your code does need
access to protected resources, such as system files and/or Registry keys,
but because the callers will never find out that you use these protected
resources, it is reasonably safe to set an Assert to prevent a full security
check from being performed.You do not care if the caller has that
permission or not.

■ Your code needs to make one or more calls to unmanaged code, but
because the caller of the code obtains access through your Web site, you
are safe in assuming that they will not have permissions to make calls to
unmanaged code. On the other hand, the callers cannot influence the
calls you make to unmanaged code.Therefore, it is reasonably safe to
assert the permission to access unmanaged code.

■ You know that somewhere in your code you have to perform a search,
using a Do..Loop structure that at one point has to access a protected
resource.You also know that the code that calls the protected resource
cannot be called from outside the loop.Therefore, you decide to set an
assertion just before the call to the protected resource, to prevent a sur-
plus of stack walks. In case the particular piece of code that does the call
to the protected resource can be called by other code, you have to move
up the assertion to the code that can only be called from the loop.

Let’s take a look at the stack walk that was initially used in Figure 12.1, but
now we throw in an assertion and see what happens (see Figure 12.3).The assert
is set in Assembly4 on the UIPermission. In the situation with no assert, the stack
walk did not succeed because Assembly1 did not have this permission. Now the
stack walk starts at Assembly6 performing a permission demand on UIPermission,
and goes on its way as it usually goes. Now the stack walk reaches Assembly4 and
recognizes an assert on the permission it is checking.The stack walk stops there
and returns with a positive result. Because the stack walk was short-circuited, the
CLR has no way of knowing that Assembly1 did not have this permission.

An Assert can be set using both the declarative and the imperative syntax. In
the first example, the declarative syntax is used.An Assert is set on the
FileIOPermission.Write permission for the CFG files in the C:\Test directory:

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 573

574 Chapter 12 • Security

Public Function _

<FileIOPermission(SecurityAction.Assert, Write := "C:\Test*.cfg")> _

Act1() As Integer

' body of the function

End Function

The second example uses the imperative syntax setting the same type of Assert:

Public Function Act1() As Integer

Dim ActFilePerm As New

FileIOPermission(FileIOPermissionAccess.Write, "C:\Test*.cfg")

ActFilePerm.Assert

' rest of body

End Function

Deny Override
The Deny does the opposite of Assert in that it lets a stack walk fail for the per-
mission the Deny is set on.There are not many situations where a Deny override

www.syngress.com

Figure 12.3 A Stack Walk Is Short-Circuited by an Assert

Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Succeeded

Succeeded

Sta
ck

 W
alk

 R
es

ult
: S

UC
CE

SS

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

UIPermission(SA.Assert)

153_VBnet_12 8/16/01 10:26 AM Page 574

Security • Chapter 12 575

makes sense, but here is one:Among the permissions your code has is
RegistryPermission. Now it has to make a call to a method for which you have no
information regarding trust.To prevent that code from taking advantage of the
RegistryPermission, your code can set a Deny. Now you are sure that your code
does not hand over a high-trust permission.

Because unnecessary Deny overrides can disrupt the normal working of secu-
rity checks (because they will always fail on a Deny), you should revert the Deny
after the call ends for which you set the Deny.

For the sake of the example, we use the same situation as in Figure 12.3, but
instead of an Assert, there is a Deny (see Figure 12.4).Again, the security stack
walk is triggered for the UIPermission permission in Assembly6.When the stack
walk reaches Assembly4, it recognizes the Deny on UIPermission and it ends with a
fail. In our example, the security check would ultimately have failed in Assembly1,
but if Assembly1 had been granted the UIPermission, the stack walk would have
succeeded, if not for the Deny. Effectively this means that Assembly4 revoked the
UIPermission for Assembly5 and Assembly6.

You can set a Deny by using both the declarative and the imperative syntax.
In the first example, the declarative syntax is used.A Deny is set on the
FileIOPermission permission for all the files in the C:\Winnt\System32 directory:

www.syngress.com

Figure 12.4 A Stack Walk Is Short-Circuited by a Deny

Calling Chain on the Stack

Assembly1

Method1a Granted:
FileIOPermission

Assembly2

Method2a Granted:
FileIOPermission

UIPermission

Assembly3

Method3a Granted:
FileIOPermission

UIPermission

Assembly4

Method4a Granted:
FileIOPermission

UIPermission

Assembly5

Method5a Granted:
FileIOPermission

UIPermission

Assembly6

Method6a Granted:
FileIOPermission

UIPermission
UIPermission
(SecurityAction.Demand)

Failed

Succeeded

Sta
ck

 W
alk

 R
es

ult
: F

AI
L

Se
cu

rit
y S

ta
ck

 W
alk

 de
ma

nd
ing

 th
e U

IP
er

mi
ssi

on

UIPermission(SA.Deny)

153_VBnet_12 8/16/01 10:26 AM Page 575

576 Chapter 12 • Security

Public Function _

<FileIOPermission(SecurityAction.Deny, All :=

"C:\Winnt\System32*.*")> _

Act1() As Integer

' body of the function

End Function

The second example uses the imperative syntax setting the same type of Assert:

Public Function Act1() As Integer

Dim ActFilePerm As New

FileIOPermission(FileIOPermissionAccess.AllAccess, _

"C:\Winnt\System32*.*")

ActFilePerm.Deny

' rest of the body

End Function

PermitOnly Override
The PermitOnly override is more like the negation of the Deny, by Denying every
permission but the one specified.You use the PermitOnly for the same reason you
use Deny, only this one is more rigorous. For example, if you permit only the
UIPermission permission, every security stack walk will fail but the one that
checks on the UIPermission.Take Figure 12.4 and substitute Deny with
PermitOnly. If in Assembly6 the security check for UIPermission is triggered, the
stack walk will pass Assembly4 with success, but will ultimately fail in Assembly1. If
any other security check is initiated, they will fail in Assembly.The end result is
that Assembly5 and Assembly6 are denied any access to a protected resource that
incorporate a Demand request, because every security check will fail.As you can
see, PermitOnly is a very effective way of killing any aspirations of called code in
accessing protected resources.The PermitOnly is used in the same way as Deny
and Assert.

Custom Permissions
The .NET Framework enables you to write your own code access permissions,
even though the framework comes with a large number of code access permis-
sion classes. Because these classes are meant to protect the protected resources and
code that are exposed by the framework, it may well be the case that the applica-
tion you are developing has defined resources that are not protected by the

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 576

Security • Chapter 12 577

framework permissions, or you want to use permissions that are more tuned
toward the needs of your application.

You are completely free to replace existing framework permission classes,
although this requires a large amount of expertise and experience. In case you are
just adding new permission classes to the existing ones, you should be particularly
careful not to overlap permissions. If more than one permission protects the same
resource or operation, an administrator has to take this into account if he has to
modify the rights to these resources.

NOTE

The subject of overlapping permissions brings up a topic not discussed
earlier. Although the whole discussion of code access permission has
been from the standpoint of the CLR, or .NET Framework, eventually the
CLR has to access resources on behalf of the users/application. Even if
the code has been granted a specific permission to access a protected
resource, that does not automatically mean that it is allowed to access
that system resource. Take the example of a method having the
FileIOPermission permission to the directory C:\Winnt\System32. If the
identity of the Windows principal has not been given access to this part
of the file system, accessing a file in that directory will fail anyway. This
implies that the administrator not only has to set up the permissions
within the security policy, but he also has to configure the Windows
2000 platform to reflect these access permissions.

Building your own permissions does not only imply that certain development
issues are raised, but even more so the integrity of the whole security system
must be discussed.You have to take into account that you are adding to a rigid
security system that relies heavily on trust and permissions. If mistakes occur in
the design and/or implementation of a permission, you run the risk of creating
security holes that can become the target of attacks or grant an application access
to protected resources even if it is not authorized to access these. Discussing the
process of designing your own permissions goes beyond the scope of this chapter.
However, the following steps give you an understanding of what is involved in
creating a custom permission:

1. Design a permission class.

2. Implement the interfaces IPermission and IUnrestrictedPermission.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 577

578 Chapter 12 • Security

3. In case special data types have to be supported, you must implement the
interface ISerializable.

4. You must implement XML encoding and decoding.

5. You must implement the support for declarative security.

6. Add Demand calls for the custom permission in your code.

7. Update the security policy so that the custom permission can be added
to permission sets.

Role-Based Security
Role-based security is not new to the .NET Framework. If you already have
experience with developing COM+ components, you surely have come across
role-based security.The concept of role-based security for COM+ applications is
the same as for the .NET Framework.The difference lies in the way it is imple-
mented. If we talk about role-based security, the same example comes up, over
and over again.This is not because we can’t create our own example, but because
it explains role-based security in a way everybody understands. So here it is.You
build a financial application that can handle deposit transactions.The rule in most
banks is that the teller is authorized to make transactions up to a certain amount,
let say $5,000. If the transaction goes beyond that amount, the teller’s manager
has to step in to perform the transaction. However, because the manager is only
authorized to do transaction up to $10,000, the branch manager has to be called
to process a deposit transaction that is over this amount.

So, as you can see, role-based security has to do with limiting the tasks a user
can perform, based on the role(s) he plays or the identity he has.Within the .NET
Framework, this all comes down to the principal that holds the identity and role(s)
of the caller.As discussed earlier in this chapter, every thread is provided with a
principal object. In order to have the .NET Framework handle the role-based
security in the same manner as it does code access security, the permission class
PrincipalPermission is defined.To avoid any kind of confusion, PrincipalPermission is
not a derived class of CodeAccessPermission. In fact, PrincipalPermission holds only
three attributes: User, Role, and the Boolean IsAuthenticated.

Principals
Let’s get back to where it all starts: the principal. From the moment an applica-
tion domain is initialized, a default call context is created to which the principal

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 578

Security • Chapter 12 579

will be bound. If a new thread it activated, the call context and the principal are
copied from the parent thread to the new thread.Together with the principal
object, the identity object is also copied. If the CLR cannot determine what the
principal of a thread is, a default principal and identity object is created so that
the thread can run at least with a security context with minimum rights.There
are three type of principals: WindowsPrincipal, GenericPrincipal, and CustomPrincipal.
The latter goes beyond the scope of this chapter and is not discussed any further.

WindowsPrincipal
Because the WindowsPrincipal that references the WindowsIdentity is directly
related to a Windows user, this type of identity can be regarded as very strong
because an independent source authenticated this user.

To be able to perform role-based validations, you have to create a
WindowsPrincipal object. In the case of the WindowsPrincipal, this is reasonably
straightforward, and there are actually two ways of implementing it.This depends
on whether you have to perform just a single validation of the user and role(s), or
you have to do this repeatedly. Let’s start with the single validation solution:

1. Initialize an instance of the WindowsIdentity object using this code:

Dim WinIdent as WindowsIdentity = WindowsIdentity.GetCurrent()

2. Create an instance of the WindowsPrincipal object and bind the
WindowsIdentity to it:

Dim WinPrinc as New WindowsPrincipal(WindIdent)

3. Now you can access the attributes of the WindowsIdentity and
WindowsPrincipal object:

Dim PrincName As String = WinPrinc.Identity.Name

Dim IdentName As String = WinIdent.Name 'this is the same as

the previous line

Dim IdentType As String = WinIdent.AuthenticationType

If you have to perform role-based validation repeatedly, binding the
WindowsPrincipal to the thread is more efficient, so that the information is readily
available. In the previous example, you did not bind the WindowsPrincipal to the
thread because it was intended to be used only once. However, it is good practice
to always bind the WindowsPrincipal to the thread because in case a new thread is
created, the principal is also copied to the new thread:

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 579

580 Chapter 12 • Security

1. Create a principal policy based on the WindowsPrincipal and bind it to
the current thread.This initializes an instance of the WindowsIdentity
object, creates an instance of the WindowsPrincipal object, binds the
WindowsIdentity to it, and then binds the WindowsPrincipal to the current
thread.This is all done in a single statement:

AppDomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.

WindowsPrincipal)

2. Get a copy of the WindowsPrincipal object that is bound to the thread:

Dim WinPrinc As WindowsPrincipal =

Ctype(Thread.CurrentPrincipal, WindowsPrincipal)

It is possible to bind the WindowsPrincipal in the first method of creation to
the thread. However, your code must be granted the SecurityPermission permission
to do so. If that is the case, you bind the principal to the thread by the following:

Thread.CurrentPrincipal = WinPrinc

GenericPrincipal
In a situation where you do not want to rely on the Windows authentication but
want the application to take care of it, you can use the GenericPrincipal.

NOTE

Always use an authentication method before letting a user access your
application. Authentication, in any shape or form, is the only way to
establish an identity. Without it you are not able to implement role-base
security.

Let’s assume that your application requested a username and password from
the user, checked it against the application’s own authentication database, and
established the user’s identity.You then have to create the GenericPrincipal to be
able to perform role-based verifications in your application:

1. Create a GenericIdentity object for the User1 you just authenticated:

Dim GenIdent As New GenericIdentity("User1")

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 580

Security • Chapter 12 581

2. Create the GenericPrincipal object, bind the GenericIdentity object to it,
and add roles to the GenericPrincipal:

Dim UserRoles as String() = {"Role1", "Role2", "Role5"}

Dim GenPrinc As New GenericPrincipal(GenIdent, UserRoles)

3. Bind the GenericPrincipal to the thread.Again, you need
SecurityPermission:

Thread.CurrentPrincipal = GenPrinc

Manipulating Identity
You can manipulate the identity that is held by a principal object in two ways.
The first is replacing the principal; the second is by impersonating.

Replacing the principal object on the thread is a typical action you perform
in applications that have their own authentication methods.To be able to replace
a principal, your code must have been granted the SecurityPermission, or more
specifically, the SecurityPermission attribute ControlPrincipal.This will allow your
own code to be able to pass on the PrincipalObject to other code.This attribute
grants you the permission to manipulate the principal, so you are allowed by the
CLR to pass on the principal. Replacing the principal object can be done by
performing these steps:

1. Create a new identity and principal object and initialize it with the
proper values.

2. Bind the new principal to the thread:

Thread.CurrentPrincipal = NewPrincipalObject

Impersonating is also a way of manipulating the principal, with the intent to
take on the identity of another user to perform some actions on their behalf.You
can identify two variations:

■ The code has to impersonate the WindowsPrincipal that is attached to the
thread.This may seem a little odd, but you have to remember that your
code is part of an application domain that runs in a process.A user—
whether a system account, a service account, or even an interactive user—
starts this process on the Windows platform.Although the principal can be
used to perform role-based verification within the code, accessing pro-
tected resources is still done with the identity of the process user, unless
you actively use the user account of principal through impersonation.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 581

582 Chapter 12 • Security

■ The code has to impersonate a user that is not attached to the current
thread.The first thing you have to do is obtain the Windows token of
the user you want to impersonate.This has to be done with the unman-
aged code LogonUser.The obtained token has to be passed to a new
WindowIdentity object. Now you have to call the Impersonate method of
WindowsIdentity.The old identity, hence token, has to be saved in a new
instance of WindowsImpersonationContext.

At the end of the impersonation, you have to change back to the original
user account by calling the Undo method of the WindowsImpersonationContext.

Remember the principal object is not changed, rather the WindowsIdentity
token, representing the Windows account, is switched with the current token.At
the end of the impersonation, the tokens are switched back again, as shown in
the following steps:

1. Call the LogonUser method, located in the unmanaged code library
advapi32.dll.You pass the username, domain, password, logon type, and
logon provider to this method that will return you a handle to a token.
For the sake of the example, we will call it hImpToken.

2. Create a new WindowsIdentity object and pass it the token handle:

Dim ImpersIdent As New WindowsIdentity(hImpToken)

3. Create a WindowsImpersonationContext object and call the Impersonate
method of ImpersIndent:

Dim WinImpersCtxt As WindowsImpersonationContext =

ImpersIdent.Impersonate()

4. At the end of the call, the original Windows token has to be put back in
the Identity object:

WinImpersCtxt.Undo()

You could have done Steps 2 and 3 in one statement that looks like this:

Dim WinImpersCtct As WindowsImpersonationContext = _

WindowsIdentity.Impersonate(hImptoken)

Remember that you cannot impersonate when you use a GenericPrincipal
because it does not reference a Windows identity. For generic principals, you will
need to replace the principal with one that has a new identity.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 582

Security • Chapter 12 583

Role-Based Security Checks
Having discussed the creation and manipulation of PrincipalObject, it is time to take
a look at how they can assist you in performing role-based security checks. Here is
where PrincipalPermission, already mentioned in the beginning of the section “Role-
Base Security,” comes into play. Using PrincipalPermission, you can make checks on
the active principal object, be it the WindowsPrincipal or the GenericPrincipal.The
active principal object can be one you created to perform a one-time check, or it
can be the principal you bound to the thread. Like the code access permissions, the
PrincipalPermission can be used in both the declarative and the imperative way.

To use PrincipalPermission in a declarative manner, you need to use the
PrincipalPermissionAttribute object in the following way:

Public Shared Function

<PrincipalPermissiobAttribute(SecurityAction.Demand, _

Name := "User1", Role := "Role1")> Act2()

As Integer

' body of the function

End Function

<assembly: PrincipalPermissionAttribute(SecurityAction.Demand, Role :=

'Administrator')>

To use the imperative manner, you can perform the PrincipalPermission check
as shown:

Dim PrincPerm As New PrincipalPermission("User1", "Role1")

PrincPerm.Demand()

It is also possible to use the imperative to set the PrincipalPermission object in
two other ways:

Dim PrincState As PermissionState = Unrestricted

Dim PrincPerm As New PrincipalPermission(PrincState)

The permission state (PrincState) can be None or Unrestricted, where None
means the principal is not authenticated. So, the user name is Nothing, the role is
Nothing, and Authenticated is false. Unrestricted matches all other principals.

Dim PrincAuthenticated As Boolean = True

Dim PrincPerm As New PrincipalPermission("User1", "Role1",

PrincAuthenticated)

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 583

584 Chapter 12 • Security

The IsAuthenticated field (Princauthenticated) can be true or false. In a situation
where you want PrincipalPermission.Demand() to allow more than one user/role
combination, you can perform a union of two PrincipalPermission objects.
However, this is only possible if the objects are of the same type.Thus, if one
PrincipalPermission object has set a user/role, and the other object uses
PermissionState, the CLR throws an exception.The union looks like this:

Dim PrincPerm1 As New PrincipalPermission("User1", "Role1")

Dim PrincPerm2 As New PrincipalPermission("User2", "Role2")

PrincPerm1.Union(PrincPerm2).Demand()

The Demand will succeed only if the principal object has the user User1 in
the role Role1 or User2 in the role Role2.Any other combination fails.

As mentioned before, you can also directly access the principal and identity
object, thereby enabling you to perform your own security checks without the
use of PrincipalPermission. Besides the fact that you can examine a little more
information, it also prevents you from handling exceptions that can occur using
PrincipalPermission. .You can query the WindowsPrincipal in the same way the
PrincipalPermission does this:

■ The name of the user by checking the value of
WindowsPrincipal.Identity.Name:

If (WinPrinc.Identity.Name = "User1") or _

WinPrinc.Identity.Name.Equals("DOMAIN1\User1") Then

End If

■ An available role by calling the IsInRole method:

If (WinPrinc.IsInRole("Role1")) Then

End If

■ Determining if the principal is authenticated, by checking the value of
WindowsPrincipal.Identity.IsAuthenticated:

If (WinPrinc.Identity.IsAuthenticated) Then

End If

Additionally for PrincipalPermission, you can check the following
WindowsIdentity properties:

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 584

Security • Chapter 12 585

■ AuthenticationType Determines the type of authentication that is
used. Most common values are NTLM and Kerberos.

■ IsAnonymous Determines if the user is identified as an anonymous
account by the system.

■ IsGuest Determines if the user is identified as a guest account by
the system.

■ IsSystem Determines if the user is identified as the system account
of the system.

■ Token Returns the Windows account token of the user.

Security Policies
This section takes a closer look at the way security policies are constructed and
the way you can manage them.To create and modify a security policy, the .NET
Framework provides you two tools: a command-line interface (CLI) tool, called
caspol.exe (see the section “Security Tools”) and a Microsoft Management
Console snap-in,“mcscorcfg.msc” (see Figure 12.5).The latter will be used for
demonstration purposes because it is more visual and intuitive.

www.syngress.com

Figure 12.5 The .NET Configuration Snap-In

153_VBnet_12 8/16/01 10:26 AM Page 585

586 Chapter 12 • Security

As you can see in Figure 12.5, the security policy model is made up of the
following:

■ Runtime Security Policy levels:

■ Enterprise Valid for all managed code that is used within the
whole organization (enterprise); therefore this will have “by nature” a
restrictive policy because it references a large group of code.

■ MachineValid for all managed code on that specific computer.
Because this already limits the amount of code, you can be more
specific with handing out permissions.

■ User Valid for all the managed code that runs under that Windows
user.This will normally be the account that starts the process in
which the CLR and managed code runs. Because the identity of
the user is very specific, the granted permissions can also be more
specific, thus less restrictive.

■ A code groups hierarchy that exists for each of the three policy levels.
We will look at how you can add code groups to the default structure,
which already exists for user and machine.

■ (Named) Permission Sets. By default the .NET Framework comes with
seven named permission sets:

■ FullTrust Unlimited access to all protected resources and operations.

■ EveryThing Granted all .NET Framework permissions, except the
security permission SkipVerification.

■ LocalIntranet The default rights given to an application on the
local intranet.

■ Internet The default rights given to an application on the Internet.

■ Execution Has only the security permission
EnableAssemblyExecution.

■ SkipVerification Has only the security permission SkipVerification.

■ Nothing Denied all access to all protected resources and operations.

■ Evidence, which is the attribute that the code hands over to the CLR
and on which it determines the effective permission set. Evidence is
used in the construction of code groups.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 586

Security • Chapter 12 587

■ Policy assemblies that list the trusted assemblies that hold security objects
used during policy evaluation.You should add your assemblies to the list
that implements the custom permissions. If you omit this, the assemblies
will not be fully trusted and cannot be used during the evaluation of the
security policy.

Understand that the evaluation process of the security policy will result in the
effective permission set for a specific assembly. For all of the three policy levels, the
code groups are evaluated against the evidence presented by the assembly.All the
code groups that meet the evidence deliver a permission set.The union of these
sets determines the effective permission set for that particular security policy level.
After this evaluation is done at all three security levels, the three individual permis-
sion sets are intersected, resulting in the effective permission set for an assembly.
This means that the code groups within the three security levels cannot be con-
structed independently, because this may result in a situation where an assembly is
given a limited permission set that is too limited to run.When you take a look at
the permission set for the All_Code of the enterprise security policy, you will see
that it is Full Trust. Doing the same for the All_Code of the user security policy, you
will see Nothing. Because the code group tree of the enterprise is empty, it cannot
make evidence decisions; therefore it cannot contribute to the determination of the
effective permission set of the assembly. By setting it to Full Trust, it is up to the
machine and user security policy to determine the effective permission set.

Because the user code group already has a limited code group tree, the root
does not need to participate in the determination of the permission set. By
setting it to Nothing, it is up to the rest of the code groups to decide what the
effective permission group for the user security policy is.You can determine the
permission set of a code group by performing these steps:

1. Run Microsoft Management Console (MMC) by choosing Start |
Run and typing mmc.

2. Open the .NET Management snap-in, via Console | Add/Remove
Snap-in.

3. Expand the Console Root | .NET Configuration |
My Computer.

4. Expand Runtime Security Policy | Enterprise |Code Groups.

5. Select the code group All_Code.

6. Right-click All_Code and select Properties.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 587

588 Chapter 12 • Security

7. Select the Permission Set tab.

8. The Permission Set field lists the current value.

Creating a New Permission Set
Suppose you decide that none of the seven built-in permissions sets satisfy your
need for granting permissions.Therefore, you want to make a named permission
set that does suit you.You have a few options:

■ Create a permission from scratch.

■ Create a new permission set based on a existing one.

■ Create a new permission from an XML-coded permission set.

To get a better understanding of the working of the security policy and to
get some hands-on experience with the tool, we discuss the different security
policy issues in the following exercises.

We use the second option and base our new permission set on the permis-
sion set LocalIntranet for the user security policy level:

1. Expand the User runtime security policy and expand Permission Sets
(see Figure 12.6).

www.syngress.com

Figure 12.6 The Users Permission Sets and Code Groups

153_VBnet_12 8/16/01 10:26 AM Page 588

Security • Chapter 12 589

2. Right-click the permission set LocalIntranet and select Duplicate; a
permission set called Copy of LocalIntranet is added to the list.

3. Select the permission set Copy of LocalIntranet and rename it to
PrivatePermissions.Then, right-click it and select Properties. Change
the Permission Set Name to PrivatePermissions and, while you’re
at it, change the corresponding Permission Set Description.

4. Change the permissions of the permission set: Right-click the
PrivatePermissions permission set and select Change Permissions.

5. The Create Permission Set dialog box appears (see Figure 12.7).You
see two permissions lists: on the left, the Available Permissions that are
not assigned, and on the right, the list with assigned permissions.

Between the two Permissions lists are four buttons.The Add and Remove
buttons let you move individual permissions between the lists. Note that you
cannot select more than one at the same time.This is done to prevent you from
making mistakes.You will better understand a given permission if you select that
permission in the Assigned Permissions list and press the Properties button.You
can use the fourth button (Import) to load an XML-coded permission set. Now,
let’s make some modifications to the permission set, because that was the reason
to duplicate the permission set:

www.syngress.com

Figure 12.7 Modify the Permission Set Using the Create Permission
Set Dialog Box

153_VBnet_12 8/16/01 10:26 AM Page 589

590 Chapter 12 • Security

■ Add the FileIOPermission to the Assigned Permission list.

■ Add the RegistryPermission to the Assigned Permission list.

■ Modify the SecurityPermission properties.

To do so:

1. Select FileIO in the Available Permissions list. (Notice that if you have
selected a permission in the Assigned Permissions list, this permission
stays selected.)

2. Click Add.A Permission Settings dialog box for the FileIO appears
(see Figure 12.8). (You can also double-click the permission to add it to
the Assigned Permissions list. But do not double-click an assigned per-
mission by accident—this will remove the permission from the assigned
permission list.) On the Permission Settings dialog box, you are given
the option to select between Grant assemblies access to the
following files and directories and Grant assemblies unrestricted
access to the file system.

3. Choose the first one, and because it is already selected, we can focus our
attention on the empty list window below the option.You may expect
an Add button below the list, especially because there is a Delete Entry
one. However, there is an auto-add list.You fill in a line, and it is auto-
matically added.Add a second line, and a third empty line will appear.

www.syngress.com

Figure 12.8 Modify the Settings of FileIO Using the Permission
Settings Dialog Box

153_VBnet_12 8/16/01 10:26 AM Page 590

Security • Chapter 12 591

4. As you saw earlier this chapter, this resembles the way we used
FileIOPermission and FileIOPermissionAttribute to demand and request
access to specific files in a specific directory. Go ahead, fill in
“C:\Test*.cfg”. Surprised you get an error message? The point is that
the field demands that you use UNC names.The advantage is that you
can reference to files on other servers in the domain. However, the
dialog box checks the existence of the path when you click OK, so be
sure that the UNC path exists.

5. Fill the File Path with a valid UNC of the machine you are working on,
and because we want to give full access, you can check all four boxes.
(Note that if you do not check any of the boxes, then this is accepted,
because you filled in a File Path. However if you check the properties of
FileIO as an assigned permission, you will notice that the line has disap-
peared—hence a beta bug!)

6. Click OK and you have added a permission to the assigned permission
list.You are now ready for the next permission.

7. Double-click the Registry permission and a Permissions Setting
dialog box appears that looks a lot alike the one you just saw with
FileIO. Keep the option Grant assemblies access to the following
registry keys.

8. Fill the Key field with a valid HKEY value, such as HKEY_LOCAL
_MACHINE, and check the Read box, so that we can give read per-
mission to the specified Registry tree.

9. Click OK, and you have added your second permission to your
permission set.

10. The last task is to modify the Security permission. So, select the
Security permission in the Assigned Permissions list (do not double-
click, because that will remove the permission from the list) and click
Properties.

11. A Permission Settings dialog box (see Figure 12.9) appears.You see that
the option Grant assemblies the following security permissions is
selected, together with the properties Enable assembly execution,
Assert any permission that has been granted, and Enable
remoting configuration.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 591

592 Chapter 12 • Security

12. We also want to grant our security policy the security permission proper-
ties. Check Allow calls to unmanaged assemblies because we want to
make calls to unmanaged code.Also check Allow principal control
because we want to be able to modify principal settings. Click OK, and
you are done, for now, with modifying your first permission set.

13. Click Finish.You will probably get a warning message stating that you
changed your security policy and you have to save it. Up until the point
you save the policy, an asterisk (*) will mark the user policy.

14. You can save the policy by right-clicking the User runtime security
policy and selecting Save.

If you want this permission set to also become part of the machine and/or
enterprise permission sets, you can simply copy and paste it.

You will also notice two other options: Reset and Restore Policy.The first
one resets the policy back to the default setting of the policy.You can try it, but it
will wipe out all the changes you made up until now.The latter makes it possible
to go back to the previous save.This is possible because for each of the runtime
security policies, the settings are saved in an XML-coded file that becomes the
current one. Before this happens, it renames the old one with the extension .old.
The current one has the extension .cch.The default policy has no extension, so
to speak. For the user security policy, you have the following files:

www.syngress.com

Figure 12.9 Modify the Settings of Security Using the Permission
Settings Dialog Box

153_VBnet_12 8/16/01 10:26 AM Page 592

Security • Chapter 12 593

■ security.config The default security; used by the Reset option.

■ security.config.cch The current/active policy.

■ security.config.old The last saved policy version; used by the
Restore Policy option.

The enterprise security uses the name enterprisesec.config and the machine
uses the name security.config.This is possible because the user security policy is
saved in the user’s directory tree in the following folder:

Document and Settings\User_Name\Application Data\Microsoft\CLR Security

config\v1.0.xxxx

The enterprise and machine security policies are saved in the following
directory:

WINNT\Microsoft.NET\Framework\v1.0.xxxx\CONFIG

This directory is located by the CLR through the HiveKey:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Catalog42\NetFrameworkv1\

MachineConfigdirectory

Because the configuration files are XML-coded, you can open them with a
Web browser and examine them.This will give you additional understanding
how the permission sets are set up.This also means that you can modify the
default security policies.

Modifying the Code Group Structure
Now that we have created a security permission set, it makes sense to start using
it.We can do so by attaching it to a code group.We are going to modify the code
groups structure of the user security policy. By default, the user already has a
basic structure (see Figure 12.10).A few things may strike you at first sight:

■ There is a code group called Wizard_Machine_Policy.The description of
this group tells you that a wizard, called the Adjust Security Wizard,
copied this group from the computer’s policy level and that you should
not modify it.This description is not totally true. In fact, if you take a
closer look at these code groups, you will see that all groups that end
with _Zone have a permission set of Nothing.This means that you, the
user, cannot make use of the permission sets of the machine that are

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 593

594 Chapter 12 • Security

based on the zone evidence. However, if you are given more permissions
based on the zone evidence, this will be toned down by the zone-based
permission of the machine policy.The user can have permissions based
on zoned evidence that is equal to or less than allowed by the machine.
However, you do see zone-based code groups at the same level as the
Wizard_Machine_Policy, because these are the code groups that are
copied from the machine policy.

■ The zone-based code groups contain NetCodeGroup and FileCodeGroup.
As the description states, they are generated by the .NET Configuration
Tool, hence the tool we are working with at the moment.The custom
code groups are based on XML-code files and can therefore not be
edited by the tool. However, you can use the caspol.exe tool to do so.
Without going into detail regarding what exactly these groups entail, it
suffices to state that they are necessary for you to use the .NET
Configuration Tool. If you remove or modify them, you may lock your-
self out from using this tool.

www.syngress.com

Figure 12.10 The Default Code Group Structure for the User
Security Policy

153_VBnet_12 8/16/01 10:26 AM Page 594

Security • Chapter 12 595

Let’s create a small code groups structure that is made up of two code groups
directly under the All_Code group and apply our own custom-made permission
set PrivatePermissions to the LocalIntranet_Zone group:

1. If you do not have the MMC with the .NET Management snap-in
open, open it now.

2. Expand the tree to .NET Configuration | My Computer |
Runtime Security Policy | User.

3. Now expand Code Groups | All_Code.

4. Right-click All_Code and select New; the Create Code Group dialog
box appears.

5. You are given two options: Create a new code Group and Import a
code group from a XML File. Use the first option. (Note: For the
NetCodeGroup and FileCodeGroup, the latter is used).

6. You have to enter at least the Name field. For this example, we choose
PrivateGroup_1. Now click Next.

7. The dialog box shows you a second page called Choose a condition
Type and has just one field called Choose the condition type for
this code group.The field has a pull-down menu containing the values
you can choose from.All of these, except the first and last one—All
Code and (custom)—are evidence-related (see Figure 12.11).

www.syngress.com

Figure 12.11 Select a Condition Type for a Code Group

153_VBnet_12 8/16/01 10:26 AM Page 595

596 Chapter 12 • Security

8. Select Site from the drop-down menu.A new field, called Site Name
appears and is related to the Site condition. For the sake of the example,
we choose the MSDN Subscribers download site, so we enter the value
msdn.one.microsoft.com in the site field.

9. Click Next and the third page, called Assign a Permission Set to the
Code Group, appears.

10. You can choose between the options Use existing permission set and
Create a new permission set. Because the site comes from the
Internet, that permission set will do.

11. Select the value Nothing from the drop-down menu. (Note:The per-
mission set we just made is also part of the list) and click Next.

12. Click Finish, and you have created your first code group.While we are
at it, let’s create the second code group, which will be the child of the
code group we just created.

13. Right-click the code group PrivateGroup_1 and select New.

14. Create a new code group named PrivateGroup_2 and click Next.

15. Select the value Publisher from the drop-down menu. Below the field,
a new box called Publisher Certificate Details appears and has to be
filled by importing a certificate.You can do this by reading out of a
signed assembly using the Import from Signed File button (Note: it
should say Import from signed Assembly). Or, you can import a certifi-
cate file, using the Import from Certificate File button.

16. For the purpose of this example, we use the Certificate from the
msdn.one.microsoft.com site. (Note: In case you have forgotten how this
is done, you go to a protected site, thus using SSL.You double-click the
icon indicating that the site is protected.This opens up the certificate.
Go to the Details tab and click the Copy to File button.) See CD file
Chapter 12/MSDN-One.cer.

17. Click the Import from Certificate File button, browse to the certifi-
cate file (the extension is .cer) and open it.You will see that the field in
the certificate box will be filled (see Figure 12.12).

18. Click Next.

19. Select the existing permission group LocalIntranet.We can give more
permissions now we know that the signed assemblies indeed comes from
Microsoft MSDN, but also originates from the corresponding Web site.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 596

Security • Chapter 12 597

20. Click Next and Finish.

Before tackling our last task, let’s recap what we have done.We were concerned
with creating a permission set for signed assemblies that come from the msdn.one
.microsoft.com site. So what if the assembly comes from this Web site but is not
signed? It meets the condition of PrivateGroup_1, so it will get the permission set of
this code group. Because this is Nothing, this would mean that these assemblies are
granted no permission. But because the msdn.one.microsoft.com site comes from
the Internet Zone, it also meets the condition of the code group Internet_Zone,
which grants any assembly from this zone the Internet permission set.And because
a union is taken from all the granted permission sets, these assemblies will still have
enough permissions to run.

Why not make the PrivateGroup_2 a child of Internet_Zone, because unsigned
assemblies from msdn.one.microsoft.com are granted the Internet permission set
any way? The reason is simple:We only want to give signed assemblies from
msdn.one.Microsoft.com additional permission if they also originate from the
appropriate Web site. In case such a signed assembly originates from another Web
site, we treat it as any other assembly coming from an Internet Zone.The reason
for giving PrivateGroup_1 the Nothing permission set is that it is only there to
force assemblies to meet both conditions, and PrivateGroup_1 is just an interme-
diate stage to meet all conditions.

www.syngress.com

Figure 12.12 Importing a Certificate for a Publisher Condition in a
Code Group

153_VBnet_12 8/16/01 10:26 AM Page 597

598 Chapter 12 • Security

What you have to keep in mind is that we only discussed how the actual per-
mission set is determined at the user security policy level.This will be intersected
with the actual permission set determined on the machine level.And because at
the machine level the assembly will be given only the Internet permission set,
our signed assembly will wind up with the effective permission set of Internet.
Normally, the actual permission set of the enterprise is also taken into the inter-
section, but because that code group tree has only the All_Code code group with
full trust, it will play no role in the intersection of this example.

Our last task is replacing a permission set:

1. Right-click the code group LocalIntranet_Zone and select Properties.The
LocalIntranet_Zone Properties dialog box appears (see Figure 12.13).

2. Select the Permission Set tab.

3. Open the pop-up menu with available permission sets and select
PrivatePermissions.You will see that the list box will reflect the permis-
sions that make up the PrivatePermissions permission set.

4. Click Apply and go back to the General tab.

On this tab, there is a frame called If the membership condition is met,
which shows two options:

www.syngress.com

Figure 12.13 Setting Attributes in the General Tab of the Code
Group Permission Dialog Box

153_VBnet_12 8/16/01 10:26 AM Page 598

Security • Chapter 12 599

■ This policy level will have only the permissions from the per-
mission set associated with this code group.This refers to the code
group attribute Exclusive.

■ Policy levels below this level will not be evaluated.This refers to
the code group attribute LevelFinal.

Both need some explanation, so let’s go back to our msdn.one.microsoft.com
example. Suppose you open the properties dialog box of the Internet_Zone code
group and check the Exclusive option (of course, you have to save it first for it
to become active).We received a signed assembly from msdn.one.microsoft.com
that also originates from this site.We had established that it would be granted the
LocalIntranet_Zone permission at the user policy level. But now the Exclusive
option comes into play. Because our signed assembly also meets the Internet_Zone
condition, the Internet permission set is valid.The exclusive that is set for the
Internet_Zone code group forces all other valid permission sets to be ignored by
not taking a union of these permission sets. Instead, the permission set with the
exclusive attribute becomes the actual permission set for the user policy level.
Because it will be intersected with the actual permission sets of the other security
levels, it also determines the maximum set of permissions that will be granted to
the signed assembly. Use this attribute with care, because from all the code groups
an assembly is a member, hence meets the condition, only one can have the
exclusive attribute.The CLR determines if this is the case.When the CLR deter-
mines that an assembly meets the condition of more than one code group with
the Exclusive attribute, it will throw an exception, and it fails to determine the
effective permission set and the assembly is not allowed to execute.

The way the LevelFinal is handled is more straightforward. Understand that by
establishing the effective permission set of an assembly, the CLR evaluates the
security policies starting at the highest level (enterprise, followed by user and
machine).Again take our MSDN example.We set a LevelFinal in the
PrivateGroup_2 code group and removed the Exclusive attribute from
Internet_Zone.When the effective permission set for a signed assembly from
msdn.one.microsoft.com that originates from that Web site has to be established,
the CLR starts with determining the actual permission set of the enterprise
policy level.This is for All_Code Full Trust, effectively taking this policy level out
of the intersection of actual permission sets. Now the user policy level gets its
turn in establishing the actual permission set.As you know by now, this will be
equal to the LocalIntranet_Zone permission set. But the CLR has also encountered
the LevelFinal attribute. It refrains from establishing the actual permission set of

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 599

600 Chapter 12 • Security

the machine policy level and intersects the actual permission sets from the
enterprise and user policy level.The actual permission set will be equal to
LocalIntranet_Zone.

Because the machine policy level is not considered the actual permission set
in this case has more permission than in the situation where the LevelFinal
attribute has not been set.

Remoting Security
Discussing security between systems always provides a new set of security issues.
This is no exception for remoting. Let’s start with the communication between
systems. If you use an HttpChannel, you can make use of the SSL encryption.The
FtpChannel does not have encryption, but if both servers support IPSec, you are
able to create a secured channel, through which the FtpChannel can communicate.

The next issue is to what extent you trust the other system. Even with a secure
channel in place, how do you know that the other system has not been compro-
mised? You need at least a sturdy authentication mechanism in place and need to
avoid the use of anonymous users, although this will not always be possible.At least
try to use NTLM or Kerberos for authentication.The latter is a perfect vehicle for
handling impersonation between multiple systems. If you need to use anonymous
users, you can use IIS as the store-front and let the IIS handle the impersonation.
You can also use a proxy to prevent a user from directly accessing your IIS.

The messages that are exchanged should always be signed so you are able to
verify the sender and/or origin. Even when you are sure that a message is trans-
ported over a secured channel, you are never sure if the message that is put in this
channel, has been sent out of ill-intent.

This chapter has discussed the use of code access and role-base security.The
more thoroughly you use this runtime security instrument, the better you can
control the remoting security.

Cryptography
There is no subject about security that does not reference cryptography.Although
it is an absolute necessity to create a secure environment, it is not the “Holy
Grail” of security.This section highlights the cryptography features that come
with the .NET Framework. If you already have worked with Windows 2000
Cryptographic Service Providers (CSPs) and/or used the CryptoAPI, you know
nearly everything there is to know about cryptography in the .NET Framework.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 600

Security • Chapter 12 601

The most important observation is that the ease-of-use of crypto functionali-
ties have improved a lot over the way we had to use the CryptoAPI, which only
was available for C/C++.An important addition in the design concept of the
cryptography namespace is the use of CryptoStreams, which make it possible to
chain any cryptographic object that makes use of CryptoStreams together.This
means that the output from one cryptographic object can be directly forwarded
as the input of another cryptographic object without the need of storing the
output result in an intermediate object.This can enhance the performance signif-
icantly if large pieces of data have to be encoded or hashed.Another addition is
the functionality to sign XML code, although only for use within the .NET
Framework security system.To what extend these methods comply with the
proposed standard RFC 3075 is unclear.Within the .NET Framework, three
namespaces involve cryptography:

■ System.Security.Cryptography The most important one; resembles the
CryptoAPI functionalities.

■ System.Security.Cryptography .X509 certificates Relates only to the X509
v3 certificate used with Authenticode.

■ System.Security.Cryptography.Xml For exclusive use within the .NET
Framework security system.

The cryptography namespaces support the following CSP classes that will be
matched on the Windows 2000 CSPs, by the CLR. If a CSP is available within
the .NET Framework, this does not automatically implies that the corresponding
Windows 2000 CSP is available on the system the CLR is running:

■ DESCryptoServiceProvider Provides the functionalities of the symmetric
key algorithm Data Encryption Standard.

■ DSACryptoServiceProvider Provides the functionalities of the asymmetric
key algorithm Data Signature Algorithm.

■ MD5CryptoServiceProvider Provides the functionalities of the hash
algorithm Message Digest 5.

■ RC2CryptoServiceProvider Provides the functionalities for the symmetric
key algorithm RC 2 (name after the inventor: Rivest’s Cipher 2).

■ RNGCryptoServiceProvider Provides the functionalities for a Random
Number Generator.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 601

602 Chapter 12 • Security

■ RSACryptoServiceProvider Provides the functionalities for the asymmetric
algorithm RSA (named after the inventors Rivest, Shamir, and
Adleman).

■ SHA1CryptoServiceProvider Provides the functionalities for the hash
algorithm Secure Hash Algorithm 1.

■ TripleDESCryptoServiceProvider Provides the functionalities for the
symmetric key algorithm 3DES.

To be complete, a short description of symmetric key algorithm, asymmetric
key algorithm, and hash algorithm are given.A symmetric key algorithm enables you
to encrypt/decrypt data that is sent between you and another party.The same key
is used to both encrypt and decrypt the data.That is why it is called a symmetric
algorithm.This algorithm forces you to exchange the key with your counter
party, but this must be done in a way that no other party can intercept this key.
Because symmetric key algorithms are often used for a short exchange of data, it
is also referred to as session key algorithm. For the exchange of session keys, the
parties involve use an asymmetric key algorithm.

An asymmetric key algorithm makes use of a key pair. One is private and is kept
under lock and key by the owner and the other is public and available for
everyone. Because the algorithm uses two related but different keys to encrypt
and decrypt, it is called an asymmetric algorithm, but is also referenced as a public
key algorithm.The public key is wrapped in a certificate that is a “proof of authen-
ticity,” and that certificate has to be issued by an organization that is trusted by all
involved parties.This organization is called a certificate authority, of which
Verisign is the best known. So what about using an asymmetric key algorithm to
exchange symmetric keys? The best example is two Windows 2000 servers that
need to regularly set up connection between both servers on behalf of their
users. Each connection, hence session, has to be secured and needs to use a ses-
sion key that is unique in relation to the other secured sessions.The servers
exchange a session key for every connection. Both have an asymmetric key-pair
and have exchanged the public key in a certificate. So if one server wants to send
a session key to the other server, it uses the public key of the other server to
encrypt the session key before it sends it.The server knows that only the other
server can decrypt the session key because that server has the private key that is
needed to decrypt the session key.

A hash algorithm, also referred to as a one-way hash algorithm, can take a vari-
able piece of data and transform it to a fixed-length piece of data, called a hash or
message digest that is nearly always much shorter, for example 160 bits for SHA-1.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 602

Security • Chapter 12 603

One-way means that you cannot derive the source data by examining only the
digest.Another important feature of the hash algorithm is that it generates a hash
that is unique for each piece of data, even if just one bit of data is changed.You
can see a hash value as the fingerprint of a piece of data. Let’s say, for example,
you send somebody a plain text e-mail. How do you and the receiver of the e-
mail know that the message has not been altered while it was sent? Here is where
the message digest comes in. Before you send your e-mail, you apply a hash algo-
rithm on that message, and you send the message and message digest to the
receiver.The receiver can perform the same hash on the message, and if both the
digest and the message are the same, the message has not been altered.Yes, some-
body who alters your message can also generate a new digest and obscure his act.
Well, that is where the next trick comes in.When you send the digest, you
encrypt it with your own private key, of which you know the receiver has the
public part. Because this not only prevents the message from being changed
without you and the receiver discovering it, but it also confirms to the receiver
that the message came from you and only you. How?

Well, let’s assume that somebody intercepts your message and wants to change
it. He has your public key, so he can decrypt your message digest. But, because he
doesn’t have your private key, he is unable to encrypt a newly generated digest.
So he cannot go forward with his plan to change the e-mail without anybody
finding out. Eventually the e-mail arrives at the receiver’s Inbox. He takes the
encrypted digest and decrypts it using your public key. If that succeeds, he knows
first of all that this message digest must have been sent by you because you are
the only one who has access to the private key. He calculates the hash on the
message and compares both digests. If they match, he not only knows that the
message hasn’t been tampered with, but also that the message came from only
you because every message has a unique hash.And because he already established
that the encrypted hash came from you, the message must also come from you.

Security Tools
The .NET Framework comes with ten command-line security tools (see
Table 12.4) that help you to perform your security tasks. For a more
thorough description of these tools, you should consult the .NET
Framework documentation.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 603

604 Chapter 12 • Security

Table 12.4 Command-Line Security Tools

Name of
Name of Tool Executable Description

Code Access Security Caspol.exe This tool can perform any operation in
Policy Utility relation to the code access security

policy. Because it can do more than the
.NET Configuration Tool we have been
using in this chapter, it is important that
you familiarize yourself with it.

Certificate Chktrust.exe With this tool, you can check a file that
Verification Utility has been signed using Authenticode.
Certificate Creation Makecert.exe Creates a X.509 certificate for testing
Utility purposes. A option you may consider is

to install the Certificates Services on
Windows 2000, which makes it a lot
easier to create and maintain certificates
for development and testing purposes.

Certificate Manager Certmgr.exe This utility manages your certificates,
Utility certificate trust lists, and so on. Use the

Microsoft Management Console with the
certificates snap-in, which enables you
to maintain not only your own certifi-
cates, but also (if you have the rights)
the certificates of your computer and
service accounts.

Software Publisher Cert2spc.exe This tool create a software publishers
Certificate Test Utility certificate for one or more X.509

certificates.
Permissions View Permview.exe This tool enables you to view the
Utility requested permissions of an assembly.
PE Verify Utility Peverify.exe This tool enables you to verify the type

safety of a portable executable file.
Secutil Utility Secutil.exe This tool extracts strong name or public

key information from an assembly and
converts it so that you can use it directly
in your code (for example, for a
permission demand).

www.syngress.com

Continued

153_VBnet_12 8/16/01 10:26 AM Page 604

Security • Chapter 12 605

File Signing Utility Signcode.exe This tool enables you to sign a PE file
with an Authenticode signature. If this
utility is called with no command-line
options, a Digital Signature Wizard is
started.

Strong Name Utility Sn.exe This tool enables you to sign assemblies
with strong names.

Set Registry Utility Setreg.exe This tools enables you to set Registry
keys for use of public key cryptography.
If you call this utility without options, it
will just list the settings.

Isolated Storage Storeadm.exe This tool enables you to manage isolated
Utility storage for the current user.

www.syngress.com

Table 12.4 Continued

Name of
Name of Tool Executable Description

153_VBnet_12 8/16/01 10:26 AM Page 605

606 Chapter 12 • Security

Summary
Positioning the .NET Framework as a distributed application environment,
Microsoft was well aware that they had to pay attention to how an application
can be secured, due to the great risks that distributed security incorporate.That is
why they introduced a rights- and permission-driven security mechanism, that is
flexible as well as rigid. Flexible because you can own your designed and cus-
tomized permissions and rigid because it is always there, even if the application
takes no notice of permissions.To add to that, the CLR will check the code on
type safety (it checks whether the code is trying to stick its nose in places it does
not belong) during the JIT compilation.

The .NET Common Language Runtime (CLR) will always perform a secu-
rity check—called code access security—on an assembly if it wants to access a
protected resource or operation.To prevent an assembly from obscuring its
restricted permissions by calling another assembly, the CLR will perform a secu-
rity stack walk. It checks every assembly in a calling chain of assemblies to see if
every single one has this permission. If this is not the case, the assembly is not
given access to this protected resource or operation.

What permissions an assembly is granted and what permission an assembly
requests is controlled in two ways.The first one is controlled by code groups that
grant permissions to an assembly based on the evidence it presents to the CLR.
The assembly itself controls the latter. Secure conscious assemblies request only
the permissions it needs, even if the CLR is willing to grant it more permissions.
By doing this, the assembly insures itself from being misused by other code that
wants to make use of its permission set.A code group hierarchy has to be set up
by an administrator, which he can do at different security policy levels: enterprise,
user, and machine.

To establish the effective set of permissions, the CLR uses a straightforward
and robust method: It determines all valid permission sets based on the evidence
an assembly presents per security policy level, and the actual permission set per
policy level is the union of the valid permission set.The CLR does this for all the
policy levels and intersects the actual permission set to determine the effective
permission set of an assembly.

Added to the code access security, the CLR still supports role-based security,
although its implementation is slightly different than you were accustomed to
with COM. Every executing thread has a security context called principal that
reference the identity of the user.The principal is also used for impersonation of
the executing user.The principal comes in a few forms: based on Windows user

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 606

Security • Chapter 12 607

accounts and the authentication mechanisms that come with it; not based on
Windows account, called “Generic” that can be controlled by custom made
authentication services and a “Base” form that enables you to custom make your
own principal and identity.The code can reference the principal to check if the
user has a specific role.

Still, the most important security feature is security policies, which not only
allow you to create code groups but to also build your own permission set that
can be enriched with custom permissions.The custom permissions can be added
to the .NET Framework without opening up the security system, provided that
you make no security mistakes in the coding of the permissions.

As can be expected from every framework that relies on security, the .NET
Framework comes with a complete set of cryptography functionalities, equal to
what we had with the CryptoAPI, only the ease-of-use has improved a lot and is
no longer dependent on C/C++.To control cryptographic functionalities, such
as certificates and code signing, the .NET Framework has a set of security utili-
ties that enables you to control and maintain the security of your applications
during its development and deployment process.

Solutions Fast Track

Security Concepts

Permissions are used to control the access to protected resources and
operations.

Principal is the security context that is attached to every executing
thread in the CLR. It also holds the identity of the user, such as
Windows account information, and the roles that user has. It also con-
tributes to the ability of the code to impersonate.

Authentication and authorization can be controlled by the application
itself or rely on external authentication methods, such as NTLM and
Kerberos. Once Windows has authorized a user to execute CLR-based
code, the code has to control all other authorization that is based on the
identity of the user and information that comes with assemblies, called
evidence.

Security policy is what controls the whole CLR security system.A
system administrator can build policies that grant assemblies permissions

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 607

608 Chapter 12 • Security

access to protected resources and operations.This permission granting is
based on evidence that the assemblies hands over to the CLR. If the
rules that make up the security policy are well constructed, it enables the
CLR to provide a secure runtime environment.

Type safety is related to the prevention of assembly code to reach into
memory/storage of other applications.Type safety is always checked
during JIT compilation and therefore before the code is even loaded
into the runtime environment. Only code that is granted the Skip
Verification permission can bypass type safety checking, unless this is
turned off altogether.

Code Access Security

Code access security is based on granting assemblies permission and
enforcing that it can never gain more permissions.This enforcing is done
by what is known as security stack walking.When a call is made to a
protected resource or operation, the assembly the CLR demanded from
the assembly that has a specific permission. But instead of checking only
the assembly that made the call, the CLR checks every assembly that is
part of a calling chain. If all these assemblies have that specific permis-
sion, the access to the protected resource/operation is allowed.

To be able to write secure code, it is possible to refrain from permissions
that are granted to the code.This is done by requesting the necessary
permissions for the assembly to run, whereby the CLR gives the
assembly only these permissions, under the reservation that the requested
permissions are part of the permission set the CLR was willing to grant
the assembly anyway. By making your assemblies request a limited per-
mission set, you can prevent other code from misusing the extended
permission set of your code. However, you can also make optional
requests, which allows the code to be executed even if the requested
permission is not part of the granted permission set. Only when the
code is confronted with a demand of having such a permission, it must
be able to handle the exception that is thrown, if it does not have this
permission.

The demanding of a caller to have a specific permission can be done
using declarative and imperative syntax. Requesting permissions can only
be done in a declarative way. Declarative means that it is not part of the

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 608

Security • Chapter 12 609

actual code but is attached to an assembly, class, or method using a spe-
cial syntax enclosed with <>.When the code is compiled to the inter-
mediate language (IL) or a portable executable (PE), these demands/
request are extracted from the code and placed in the metadata of the
assembly.This metadata is read and interpreted by the CLR before the
assembly is loaded.The imperative way makes the demands part of the
code.This can be sensible if the demands are conditional. Because a
demand can always fail and result in an exception being thrown by the
CLR, the code has to be equipped in handling these exceptions.

The code can control the way the security stack walk is performed. By
using Assert, Deny, or PermitOnly, which can be set with both the declar-
ative and imperative syntax, the stack walk is finished before it reaches
the end of the stack.When CLR comes across an Assert during a stack
walk, it finishes with a Succeed. If it encounters a Deny, it is finished
with a Fail.With the PermitOnly, it succeeds only if the checked permis-
sion is the same or a subset of the permission defined with the
PermitOnly. Every other demand will fail at the PermitOnly.

Custom permissions can be constructed and added to the runtime system.

Role-Based Security

Every executing thread in the .NET runtime system has a identity that
is part if the security context, called principal.

Based on the principal, role-based checks can be performed.

Role-based checks can be performed in a declarative, imperative, and
direct way.The direct way is by accessing the principal and/or identity
object and querying the values of the fields.

Security Policies

A security policy is defined on different levels: enterprise, user, machine,
and application domain.The latter is not always used.

A security policy has permission sets attached that are built-in—such as
FullTrust or Internet—or custom made.A permission set is a collection
of permissions. By grouping permissions, you can easily address them,
only using the name of the permission set.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 609

610 Chapter 12 • Security

The important part of the policy are the security rules, called code
groups; these groups are constructed in an hierarchy.

A code group checks the assembly based on the evidence it presents. If
the assembly’s evidence meets the condition, the assembly is regarded as
a member of this code group and is successively granted the permissions
of the permission set related to the code group.After all code groups are
checked, the permission sets of all the code groups the assembly is a
member of are united to an actual permission set for the assembly at that
security level.

The CLR performs this code group checking on every security level,
resulting in three or four actual permission sets.These are intersected to
result in the effective permission set of permissions granted to the
assembly.

Remoting limits the extent to which the security policy can be applied.
To create a secure environment, you need to secure remoting in such a
way that access to your secured CLR environment can be fully controlled.

Cryptography

The .NET Framework comes with a cryptography namespace that
covers all necessary cryptography functionalities that are at least equal to
the CryptoAPI that was used up until now.

Using the cryptography classes is much easier than using the CryptoAPI.

Security Tools

The .NET Framework comes with a set of security tools that enable
you to maintain certificates, sign code, create and maintain security poli-
cies, and control the security of assemblies.

Two comparable tools enable you to maintain code access security.
Caspol.exe (Code Access Security Policy Utility) has to be operated
from the command-line interface.The .NET Configuration Tool comes
as a snap-in for the Microsoft Management Console (MMC) and is
therefore more intuitive and easier to use than caspol.exe.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 610

Security • Chapter 12 611

Q: I want to prevent an overload of security stack walk, how can I control this?

A: This can indeed become a major concern if it turns out that the code
accesses a significant number of protected resources and/or operations, espe-
cially if they happen in a long calling-chain.The only way to prevent this
from happening is to put in a SecurityAction.Assert just before a protected
resource/operation is called.This implies that you need a thorough under-
standing of when a stack walk, hence demand, is triggered and on what per-
mission this stack walk will be performed. By just placing an Assert, you
create an uncontrolled security hole.What you can do is the following, which
can be applied in the situation in which you make a call to a protected
resource but do this from within a loop-structure.You can also use it in a sit-
uation in which you call a method that makes a number of calls to (different)
protected resources/operations that trigger the demand for the same type of
permission.

The only way to prevent a number of stack walks is to place an impera-
tive assertion on the permission that will be demanded. Now you know that
the stack walk will be stopped in its tracks.To close the security hole you just
opened, you place an imperative demand for the permission you asserted in
front of the assertion. If the demand succeeds, you know that in the other
part of the calling-chain everything is OK in regard to this permission.And
because nothing will change if you check a second or third time, you can
save yourself from a lot of unnecessary stack walks.Think about a 1,000-fold
loop:You just cleared your code from doing redundant 999 stack walks.

Q: When should I use the imperative syntax and when should I use the
declarative?

A: First, make sure that you understand the difference in the effect they take.The
imperative syntax makes a demand, or override for that matter, on part of
your code. It is executed when the line of code that holds the demand/

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_12 8/16/01 10:26 AM Page 611

612 Chapter 12 • Security

override is encountered during runtime.The declarative syntax brings these
demands and overrides right into the metadata of the assembly. During the
load phase of the assembly, the metadata is extracted and interpreted, meaning
that the CLR already takes action on this information. If a stack walk takes
place, the CLR can handle overrides much quicker than if they would occur
during execution, thus the imperative way. However, demands should only be
made at the point they are really necessary. Most of the time demands are
conditional—think about whether the demand is based on a role-based secu-
rity check. If you would make a demand declarative for a class or method, it
will be trigger a stack walk every time this class or method is referenced, even
if demands turns out to be not needed. So to recap: Make overrides declara-
tive and place them in the header of the method, unless all methods in the
class need the assertion; then, you place it in the class declaration. Remember
that an assembly cannot have more than one active override type. If you
cannot avoid this, you need to use declarative overrides anyway. Make
demands imperative and place them just before you have to access a protected
resource/operation.

Q: How should I go about building a code group hierarchy?

A: You need to remember four important issues in building a code group
hierarchy:

■ An assembly can not be a member of code groups that have conflicting
permissions; for example, one with unrestricted FileIOPermission and one
with a more restricted FileIOPermission.

■ The bigger the code group hierarchy, the harder it is to maintain it.

■ The larger the number of permission sets; the harder it is to maintain
them.

■ The harder it is to maintain code groups and permissions sets, the more
likely it is they contain security holes.

Anyhow the best approach is the largest common denominator. Security
demands simplicity with as few exceptions as possible. Before you start cre-
ating custom properties sets, convince yourself that this is absolutely necessary.
Nine out of ten times, one of the built-in permission sets suffices.The same
goes for code groups—most assemblies will fit nicely in a code group based
on their zone identity. If you conclude that this will not do, add only code

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 612

Security • Chapter 12 613

groups that are more specific than the zone identity, like the publisher iden-
tity, but still apply to a large group of assemblies. Use more than one level in
the code group hierarchy only if it is absolutely necessary to check on more
than one membership condition, hence identity attribute.Add a permission
set to the lowest level of the hierarchy only and apply the Nothing permis-
sion set to the parent code groups.

Take into account that the CLR will check on all policy levels, so check
if you have to modify the code group hierarchy of only one policy level, or
that this has to be done on more levels. Remember:The CLR will intersect
the actual permission sets of all the policy levels.

www.syngress.com

153_VBnet_12 8/16/01 10:26 AM Page 613

153_VBnet_12 8/16/01 10:26 AM Page 614

Application
Deployment

Solutions in this chapter:

■ Packaging Code

■ Configuring the .NET Framework

■ Deploying the Application

■ Deploying Controls

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 13

615

153_VBnet_13 8/16/01 10:28 AM Page 615

616 Chapter 13 • Application Deployment

Introduction
The final stage in developing an application is preparing it for deployment.The
first thing a user sees of your application is the installation. If problems arise
during installation, the customer already has a negative perception of your appli-
cation.Thankfully, deploying your application in Visual Basic .NET is simpler.
How many times have you heard customers say they installed your application
and now something else doesn’t work? Windows applications can get complicated
with many DLLs needed and so many versions available.The .NET Framework
will allow different versions of a component on the same computer.You don’t
have to worry about registration problems anymore.

Packaging your application can be as simple as copying all of the files into a
common directory.Your application will be comprised of one or more assemblies.
Because assemblies are self-describing, you don’t need to do much.You don’t
have to worry about all the correct Registry entries being set and whether or
not a version of your component(s) already exists on the computer. If you want
your application to set up the Start menu or maybe even create an icon in the
Quick Launch toolbar, you may want to package your application to be installed
by the Windows Installer.

The complexity of configuring your application varies. If you use private
assemblies, all you have to do is copy all the files to the same directory. If you want
to use public assemblies or use different directories for some assemblies, you will
need to create a configuration file.This is just an XML file that contains configura-
tion information. It allows for easy backup and can be created on an application,
user, or machine basis. It also allows for easier administration, because you only have
to worry about a file, you don’t have to concern yourself with the Registry.

Deploying your application can be as simple as copying the files from a CD-
ROM or across the network to a directory on the user’s computer. Because the
assemblies in your application are self-describing and contain all needed refer-
ences internally, when the user runs the application, it will search for these refer-
ences itself. No more runtime errors about components not being registered.
However, this simple installation may not always be suitable for your needs. In
this chapter, we cover how to install your Visual Basic .NET applications using
the Windows Installer and creating Web downloads.When deploying controls,
you need to take some additional factors into account.This chapter shows you
how to get your applications ready to deploy.

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 616

www.syngress.com

Packaging Code
The first step in getting your VB.NET application deployed is getting it packaged
(although for the .NET Framework it does not matter in what language the
application is written). Depending on the complexity of your application, it will
consist of one or more DLL and/or EXE files, also called portable executables.You
have to package them into one or more assemblies.An assembly consists of at least
two and at most four parts:

■ Assembly manifest Mandatory because it contains the metadata that
the CLR needs to execute the code.

■ Type metadata Describes the types (class and methods) that are con-
tained in the assembly.

■ Portable executables The actual IL code.

■ Resources Can be any type of nonexecutable file that needs to be used
by code in the assembly.

Let’s take a little closer look at the manifest because this is the “passport” of
the assembly. By using the Intermediate Language Disassembler (ildasm.exe), you
can see what is contained in an assembly. Figure 13.1 shows a part of the manifest
of a sample that comes with the .NET Framework SDK.The part under .assembly
graphic is interesting, not only because it states that the version (.ver) is 0.0.0.0,
which is not allowed if you want to distribute your code, but it also lacks a public
key, which is mandatory for sharing an assembly.What is actually missing is a
strong name—a prerequisite in deploying. Let’s set out to create an assembly that
has a strong name so that we have a distributable package:

1. Use the strong name utility sn.exe to generate a key-pair in a file name
GrphKey.snk:

sn –k GrphKey.snk

2. Copy this file to a directory where it is easily accessible if you compile
the program.

3. Add the necessary declarative statements to the code that take care of
the generation of a strong name in the manifest of the assembly.They
should be placed after the last import line and looks like this:

<assembly: System.Reflection.AssemblyVersion("1.0.0.1")>

<assembly: System.Reflection.AssemblyKeyFile("GrphKey.snk")>

Application Deployment • Chapter 13 617

153_VBnet_13 8/16/01 10:28 AM Page 617

618 Chapter 13 • Application Deployment

4. Recompile the program and check the manifest, which will look some-
thing like Figure 13.2.

5. To be publicly available, it has to be placed in the general assembly
cache, by using the General Assembly Cache utility tool (gacutil.exe).
Issue the following command:

Gacutil.exe –/i Graphic.dll

www.syngress.com

Figure 13.1 Part of the Manifest from the Private Graphic.exe

Figure 13.2 Part of the Manifest from the Public Shared Graphic.dll

153_VBnet_13 8/16/01 10:28 AM Page 618

Application Deployment • Chapter 13 619

6. Gacutil.exe returns with the message Assembly successfully added to the
cache. Open Windows Explorer and go to the directory %WinDir%\
Assembly.There you will find graphic.dll, ready for you to use (see
Figure 13.3).

This does not mean that you cannot distribute an assembly that has no strong
name; you can use it only for private use. If you try to add it in the general
assembly cache, it will be rejected.After you have added a strong name to all the
public shared assemblies and have set up all the private assemblies and other files
that are needed for the application, you have to decide how you are going to
package it to distribute.These are the two most commonly used methods:

■ Creating Cabinet files You can do this with the utility makecab.exe.
The advantage is that you compress the files, reducing the amount of
data you have to distribute. Cabinet files are often used to download
controls over the Internet using a Web browser.

■ Creating .msi filesYou can use Visual Studio .NET to create MSI files
for the deployment of your application.

www.syngress.com

Figure 13.3 Listing the Public Assemblies Available in the General
Assembly Cache

153_VBnet_13 8/16/01 10:28 AM Page 619

620 Chapter 13 • Application Deployment

www.syngress.com

Assembly Versioning
Versioning of executables has always been important. How often did you
see a dialog box that told you that you needed a DLL with version
1.2.3456 or higher? Whatever you did, you had just one version of that
DLL, and a program ran with it or broke. This has changed with the .NET
Framework because you can have as many different versions of an
assembly on your system as are available. You can have different applica-
tions that use an assembly with the same name, but with a different ver-
sion. The version number has become more of a “compatibility number”
and also controls the way the CLR locates the appropriate assembly.

A version number must have the following structure:

Major.Minor[.Build[.Revision]]

This means that the Major and Minor are mandatory, and that
Build and Revision are optional. However, if you want to use Revision,
you must have a Build. The value of all the four parts can range from 0
to 65534 (included). This will be enough, especially with the speed in
which Microsoft changes technologies.

As mentioned, the version number can also be regarded as a com-
patibility number, so a change in version number can reflect the fol-
lowing compatibility phases:

■ Compatible If only the Revision number changes. Change
of revision is seen as a quick fix engineering (QFE) update.

■ Possibly compatible If the Build number has changed.
There is no guarantee for backward compatibility.

■ Incompatible If Minor and/or Major changes.

Because you no longer need to be concerned with backward com-
patibility—because any version can be kept available—you need to take
care to use proper versioning. The versioning helps the CLR in finding a
compatible assembly. Let’s look at that process step-by-step:

1. The CLR reads the application configuration file, the machine
configuration file and the publisher policy configuration file
to determine what the correct version number is for the
assembly that is referenced, and thus needs to be loaded.

Configuring & Implementing…

Continued

153_VBnet_13 8/16/01 10:28 AM Page 620

Application Deployment • Chapter 13 621

www.syngress.com

The publisher policy configuration file is omitted if the
application configuration file has put the version resolving
in Safe Mode.

2. If the correct version has been established, the CLR checks if
this assembly has already been requested in the application
domain. If that is the case, the already loaded assembly is
used. Note that this check is based on the assembly’s full
name: name, version, culture and public key token (strong
name). You can get in trouble if you have two assemblies
with the same name, although one has the .dll and the other
the .exe extension. After the .exe version is loaded and
another assembly makes a reference to the .dll version, the
CLR will conclude that that assembly is already loaded
because the CLR makes the distinction based on the full
name, and that does not include a file extension.

3. In case the assembly is not loaded yet and is a strong name
base assembly (meaning that it can be a shared assembly),
the CLR checks the Global Assembly Cache (GAC).

4. If the assembly is not located in the GAC, the CLR goes on a
search mission:
■ It checks the configuration file if a <codeBase> is pro-

vided. If so, this directory is checked for the presence of
the assembly. In case the assembly is not located in the
<codeBase> directory, the lookup fails.

■ If no <codeBase> is provided, the application base is
checked.

■ If there is still no success, and the referenced assembly has
a culture, the appropriate culture directories are checked.
(By now the CLR is getting pretty desperate).

■ It checks the privatePath directories and is satisfied with
less than a full name.

Two final remarks on this subject: If you reference an assembly, but
it does not supply all the fields of the full name, called a partial refer-
ence, the CLR will quickly decide that it found the right assembly, even
if it turns out not to be the case. In this case, your assembly binds with
the wrong assembly (version). With partial references, the CLR goes for
a “best effort approach.”

Continued

153_VBnet_13 8/16/01 10:28 AM Page 621

622 Chapter 13 • Application Deployment

Configuring the .NET Framework
An important issue for deploying an application is to make sure that the installa-
tion process on a computer goes smoothly and that the application executes as
intended.You should also remember how and where the CLR finds the right
assemblies, chooses which assembly version to use; and how it sets security.The
list goes on and on. Before .NET, you mainly needed the Registry to accomplish
this. Now, you create the same information in XML-coded configuration files.
Perhaps you thought when you first read about the .NET Framework and how it
would free you from the hassles of the Registry that you would no longer have
to be concerned with configuration issues. If so, think again! There are three
types of configuration files—machine, application, and security—so you can fine-
tune the settings according to the needs of administrators and developers.

Creating Configuration Files
The configuration files, like nearly all other setting files within the .NET
Framework, are XML-coded, adhering to a well-formed XML schema. In
general, a configuration file consists of the following sections:

■ Startup Holds settings that are related to the CLR to use.

■ Runtime Holds settings that are related to the CLR working, especially
how and where the CLR can find the proper assemblies.

■ Remoting Holds settings related to the remoting system.

■ Crypto Holds the settings related to the cryptography system.

■ Security Holds the settings of the security policy.

■ Class API Holds the settings related to the use of API.

■ Configuration Holds the settings that are used by the application.

www.syngress.com

Second, if an assembly has no strong name, (remember, this is only
mandatory for the GAC), the CLR will not be checking on the correct ver-
sion, even if you supply a version with the reference. Now the CLR finds
itself thrown into a wild goose chase and again goes for the best effort
approach.

A good rule of thumb is that you should always supply every
assembly with a full name; it costs hardly any effort but makes it pos-
sible for the CLR to find the correct assembly and bind it.

153_VBnet_13 8/16/01 10:28 AM Page 622

Application Deployment • Chapter 13 623

Technically speaking, you can find or put any of these sections in any config-
uration file. However, if a section does not apply to the use of the configuration
file, it will be ignored.

NOTE

Configuration files, especially machine and security, have an impact on
the workings of all applications that make use of the .NET Framework. Be
very careful with making changes to these files before assessing the
impact they will have. When you deploy a new application, you should
not assume that certain modifications to general configuration files can
be made to suit your application needs. These changes may influence the
working of other applications.

A second warning about protecting your configuration files: Because
they are so readable, making changes to them is easy. Persons with ill
intent that have access to these files can do a lot of harm. Be sure that
you limit the access to these files and make them at least read-only to
also prevent accidental changes.

Machine/Administrator Configuration Files
Every machine that has the .NET runtime system installed has a machine config-
uration file named machine.config.You can find this file in the directory
%CLR_InstallDir%\config.This file is especially important to reflect the correct
assembly binding policy of that machine.The file also holds the settings for
remoting channels.The settings in the machine configuration file take precedence
over those in any other configuration file and cannot be overridden by any other
file.These settings are “etched in stone,” so to speak.The reason is obvious:The
machine.config is expected to reflect the machine; any change to it may result in
the breaking of the CLR. Nevertheless, you need to find the right balance
between putting certain settings in the application configuration file or in the
machine configuration file.

As an example, take a look at an excerpt from the machine.config file
regarding remoting:

<system.runtime.remoting>

<application>

</application>

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 623

624 Chapter 13 • Application Deployment

<channels>

<channel id="http"

type="System.Runtime.Remoting.Channels.Http.HttpChannel,

System.Runtime.Remoting" />

<channel id="http server"

type="System.Runtime.Remoting.Channels.Http

.HttpServerChannel,

System.Runtime.Remoting" />

<channel id="tcp"

type="System.Runtime.Remoting.Channels.Tcp.TcpChannel,

System.Runtime.Remoting" />

<channel id="tcp server"

type="System.Runtime.Remoting.Channels.Tcp.TcpServerChannel,

System.Runtime.Remoting" />

</channels>

<channelSinkProviders>

<serverProviders>

<formatter id="soap"

type="System.Runtime.Remoting.Channels

.SoapServerFormatterSinkProvider,

System.Runtime.Remoting" />

<formatter id="binary"

type="System.Runtime.Remoting.Channels

.BinaryServerFormatterSinkProvider,

System.Runtime.Remoting" />

<provider id="wsdl"

type="System.Runtime.Remoting.MetadataServices

.SdlChannelSinkProvider,

System.Runtime.Remoting" />

</serverProviders>

</channelSinkProviders>

</system.runtime.remoting>

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 624

Application Deployment • Chapter 13 625

Application Configuration Files
The application configuration file is located in the installation directory of the
application and is named after the application’s program executable with .config
added to the name, thus program.exe.config.The CLR checks the application
directory for that file. Because an application does not need its own configuration
file, it can completely depend on the machine configuration file, but nothing will
happen if it is not there.Take notice of this! If you put it somewhere else, or use
a different suffix, the CLR will not find it, which may mean that the CLR is not
able to load the application. In the case of a browser-based application, the
HTML page should use a link element to give the location of the configuration
file, which resides in a directory on the Web server.

The application configuration file is especially useful for assembly binding
settings that relate to specific assembly versions an application needs and the places
the CLR has to look for the application’s private assemblies, called probing. A pos-
sible configuration file for our earlier example of Graphic.dll may look like this:

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<probing privatePath=".\SubDir1;.\SubDir2"/>

<publisherPolicy apply="no"/>

<dependentAssembly>

<assemblyIdentity name="Graphic"

publicKeyToken="83f879e949c242e1"

culture=""/>

<publisherPolicy apply="no"/>

<bindingRedirect oldVersion="1.0.0.0"

newVersion="1.0.0.1"/>

</dependentAssembly>

</assemblyBinding>

</runtime>

</configuration>

This sample configuration shows the use of probing, telling the CLR that it’s
private assemblies reside in the directories SubDir1 or SubDir2, which are subdi-
rectories of the application directory. It also shows the use of binding redirection—

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 625

626 Chapter 13 • Application Deployment

applications that want to bind with version 1.0.0.0 of Graphic.dll can bind with
version 1.0.0.1 instead, without getting into compatibility problems.

The line <publisherPolicy apply=“no”/> is worth mentioning. It refers
to a publisher policy.A publisher policy file is a special kind of configuration file.
It can be issued by the publisher and holds compatibility information regarding a
fix or update of an existing component. It is used to let an assembly bind in a
proper way with a new version of a component.This publisher policy configura-
tion file resides in the assembly of a shared component. In our example, there can
be a publisher policy in the new assembly, version 1.0.0.1. Note that the informa-
tion in the publisher policy always overrides the settings in the application con-
figuration file.The only way to stop this is, as the example shows, to put
<publisherPolicy apply=”no”/> in the application configuration file.This is
called Safe Mode and is only valid for the assembly it is part of.

Security Configuration Files
Security configuration files describes the security policy settings.There are at
least three security configuration files applicable:

■ Enterprise Resides in the directory %CLR_InstallDir%\Config and is
called Enterprise.config.

■ User Resides in the directory %USERPROFILE%\Application Data\
Microsoft\CLR security config\x.x.xxxx (x.x.xxxx is the build
number) and is called Security.config.

■ Machine Resides in the directory %CLR_InstallDir%\Config and is
called Security.config.

What these configuration files do and how they are used is described in
Chapter 12. For the purpose of the example, take a look at some edited code
from the user Security.config file, listing the modifications that were made to it in
the exercises in Chapter 12:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

<mscorlib>

<security>

<policy>

<PolicyLevel version="1">

<NamedPermissionSets>

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 626

Application Deployment • Chapter 13 627

<PermissionSet class="NamedPermissionSet" version="1"

Name="PrivatePermissions"

Description="My Private Permission Set">

<IPermission class="EnvironmentPermission" version="1"

Read="USERNAME;TEMP;TMP"/>

<IPermission class="FileDialogPermission" version="1"

Unrestricted="true"/>

<IPermission class="FileIOPermission" version="1"/>

<IPermission class="IsolatedStorageFilePermission" version="1"

Allowed="AssemblyIsolationByUser"

UserQuota="9223372036854775807"

Expiry="9223372036854775807"

Permanent="True"/>

<IPermission class="ReflectionPermission" version="1"

Flags="ReflectionEmit"/>

<IPermission class="RegistryPermission" version="1"

Read="HKEY_LOCAL_MACHINE"/>

<IPermission class="SecurityPermission" version="1"

Flags="Assertion, Execution,

RemotingConfiguration"/>

<IPermission class="UIPermission" version="1"

Unrestricted="true"/>

<IPermission class="DnsPermission" version="1"

Unrestricted="true"/>

<IPermission class="PrintingPermission" version="1"

Level="DefaultPrinting"/>

<IPermission class="EventLogPermission" version="1">

<Machine name="." access="Instrument"/>

</IPermission>

<IPermission class="MessageQueuePermission"

version="1" Unrestricted="true"/>

</PermissionSet>

</NamedPermissionSets>

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 627

628 Chapter 13 • Application Deployment

<CodeGroup class="UnionCodeGroup" version="1"

PermissionSetName="Nothing"

Name="PrivateGroup_1"

Description="">

<IMembershipCondition class="SiteMembershipCondition"

version="1" Site="msdn.one.microsoft.com"/>

<CodeGroup class="UnionCodeGroup" version="1"

PermissionSetName="LocalIntranet"

Name="PrivateGroup_2"

Description="">

<IMembershipCondition class="PublisherMembershipCondition"

version="1"

X509Certificate="3082025A308201C702101DD1CB6CAEA347000491E0419A84A91E300D

06092A864886F70D0101040500305F310B30090603550406130255533120301E06035504

0A131752534120446174612053656375726974792C20496E632E312E302C060355040B13

25536563757265205365727665722043657274696669636174696F6E20417574686F7269

7479301E170D3031303331353030303030305A170D3032303331353233353935395A3081

80310B3009060355040613025553311330110603550408130A57617368696E67746F6E31

10300E060355040714075265646D6F6E6431123010060355040A14094D6963726F736F66

7431153013060355040B140C456D6572616C642043697479311F301D060355040314166D

73646E2E6F6E652E6D6963726F736F66742E636F6D30819F300D06092A864886F70D0101

01050003818D0030818902818100BFD980FAD50DBC19919C765F2B80EB84B4336C0FE1CB

979B859AD13E9858276BC28F1B3CD82AC24B6205EFEF05F928AAE5DB45724B805BE97ACD

5334EE24F7BD18AC48B648B8FFBD5DCFF3D6362C1E3DB8514247C6D2069EBA5FA7EE09C9

8428D6EED261E250A80E74894BD36D70712F7FC019E8A40F17832659749FAB87F6B90203

010001300D06092A864886F70D0101040500037E007DFCF465F5BB7E171028D8D57C1A39

A9F630DE0F3C6F6924A6F5D50D31A096D26208957168E8F3E81BE6A4DD4B04BDD6DF8F22

63C309BE82D4B880CEAC5927BEB386D1DADA736C3F2432B15C7D3A1849BE564AA1B7F4DF

772FC8EE4A41236E0290130DDDE391E115C2103015CB3D4EB6AC91CC72F7F7F4E234E0C9

FA7B"/>

</CodeGroup>

</CodeGroup>

</PolicyLevel>

</policy>

</security>

</mscorlib>

</configuration>

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 628

Application Deployment • Chapter 13 629

WARNING

You should under no circumstance edit the Security.config and
Enterprise.config files directly. It is very easy to compromise the integrity
of these files. Always use the Code Access Security Policy utility
(caspol.exe) or the .NET Configuration tool; these will guard the
integrity of the files and will also make a backup copy of the last saved
version.

Deploying the Application
Although preparing the deployment of an application still calls for a lot of atten-
tion, things have become far more easy to handle with the .NET environment.
Many people assume that deploying is nothing more than a XCOPY of the
application to the destination to get the application up and running. In essence
this is true, but it assumes that you have created correct working configuration
files, that the CLR is already installed, and that the application is self-contained
(does not integrate with other applications). Remember we are still in the Beta
phase of a new integrated application environment that gives the Microsoft
Windows environment possibilities it never had before.Although the signs are
good, we still have to wait for the final verdict until the first full-blown .NET
applications are rolled out.To prepare yourself for deploying your first .NET
application, we discuss a number of topics that can help you.

Common Language Runtime
In order to run a VB.NET application on a system, it needs to have the .NET
runtime environment.At this time it is very likely that a system does not have it
installed. Up to the point where it becomes available, remember that you are still
working with the Beta, and you will have to install it yourself.You need the
.NET Framework Full version, available on the Visual Studio .NET Windows
Component Update CD under the dotNetFramework directory with the name
setup.exe and residing under the directory dotNETRedist. Installing this version
enables you to run all .NET applications.There is also a limited runtime version
available, called Control Version that can be used if you use only a Web browser
download and run .NET controls.

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 629

630 Chapter 13 • Application Deployment

If (and how) Microsoft is going to deal with licensing and distribution of the
.NET runtime environment is not known at this point. It is likely that the .NET
runtime environment will become a default component of the Windows XP dis-
tribution because they put so much emphasis on the .NET Architecture.

Windows Installer
Using the Windows Installer 2.0 to install a complex .NET application is highly
recommended, because this Installer version can recognize assemblies and work
with them accordingly. Some of these features are the following:

■ Adding and removing, and repairing if necessary, assemblies in the
Global Assembly Cache

■ Installing and removing, and repairing if necessary, private assemblies in
the application’s directories

■ Rollback of failed assembly operations

■ Patching of assemblies

To be able to let the Windows Installer do all the work for you in a con-
trolled way, you need to group all files that directly relate to the assembly.The
Windows Installer handles such a group as a single component. If you uninstall
the assembly, all files of the component will be uninstalled also. Because assem-
blies can be used by more than one application, you must prevent the Windows
Installer from removing an assembly that is still in use. If you install all assemblies
through Installer, this will be no problem because Installer keeps track of the
Installer components reference an assembly. It will only remove an assembly if all
the components that reference that component are previously removed.

Here is where you should start paying extra attention. Suppose you added a
few assemblies to the cache using gacutil.exe and one of them references an
assembly, let’s call it Assembly X, installed by Windows Installer.Times goes by,
and Assembly X is uninstalled, but because other assemblies installed by Windows
Installer reference X, it was not removed.A bit more times goes by and the last
assembly referencing Assembly X is uninstalled.This is noticed by Windows
Installer, and it removes assembly X from the cache.The next time the assembly
(which you manually installed) runs, it will make a futile attempt to bind to
assembly X and fail.

If you are ever confronted with a .NET assembly that breaks, it most likely
tried to bind to an assembly that is not available.You can use the Fusion Log

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 630

Application Deployment • Chapter 13 631

Viewer (fuslogvb.exe) to examine where in the loading process things go
wrong. By the way, the loading and binding ID is performed by a program called
Fusion, hence the name of the viewer.

CAB Files
You can create Cabinet files in a few ways.You can use makecab.exe or the
deployment tool of Visual Studio .NET.The most important reason to use CAB
files is that the compression can decrease the size of the file significantly, thus cut-
ting down on the download time.When you create a CAB file you have to take
notice of the following:

■ A Cabinet file can contain only one assembly.

■ The Cabinet file must have the same name as the file in the assembly
holding the manifest.Take our first example, where we had the single
file assembly graphic.dll that also holds the manifest.The Cabinet file has
to be named graphic.dll. In a lot of cases, the assembly’s name is equal to
the name of this file holding the manifest.

After you have created the Cabinet files you deploy them, making them avail-
able for remote clients through a Web server.You can do this by referencing them
through the following:

■ A configuration file, using the <codeBase> tag

■ A Web page, using the <OBJECT> tag

An example for the <codeBase> may look like this:

<configuration>

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name = "graphic"

publicKeyToken="83f879e949c242e1"

culture=""/>

<codeBase version="1.0.0.1"

href="http://www.company.com/CABS/Graphic.cab"/>

</dependentAssembly>

</assemblyBinding>

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 631

632 Chapter 13 • Application Deployment

</runtime>

</configuration>

An example for the <OBJECT> may look like this:

<HTML>

<OBJECT

codebase="CABS/Graphic.CAB#version=1,0,0,1">

</OBJECT>

</HTML>

A final remark on the use of CAB files:The first reference to the CAB file
will extract the assembly and load it. However, subsequent references to the
assembly will fail because the CLR does not automatically expand Cabinet files.

Internet Explorer 5.5
Internet Explorer 5.5 and above can help you in deploying assemblies.You can
reference a managed executable, hence assembly, from a Web page and it will be
downloaded and executed.You can embed this in an installation guide that
embodies all information that is needed to install the application.

Some issues surrounding this method of deployment are related to security
policy and application domain. If you load an assembly from a Web site, the zone
of the Web site, which is Internet, is used as evidence to determine the permission
set. If the administrator did not make changes to be more specific with permis-
sions, for example site or strong name, then these assemblies are assigned the lim-
ited permission set of Internet.To establish a broader permission set, you have to
create appropriate Code Groups (see Chapter 12).

If you reference a Web site, the runtime creates an application domain for that
site, for example www.company.com. If an application domain already exists for
that site, the assembly referenced by this page will be added to that AppDomain.
As long as the Web site holds assemblies that belong to one application, assemblies
sharing one application domain are not a problem. However if the site holds
more than one application, for example http://www.company.com/app1 and
http://www.company.com/app2, this may be an unwanted situation.You can
solve this by placing a <LINK> tag on the Web page that points to an applica-
tion configuration file. Based on that configuration file, an AppDomain is created
and all assemblies on that page run in this application domain context.This is also
the case if more than one Web page has a <LINK> tag pointing to the same

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 632

Application Deployment • Chapter 13 633

application configuration file. Having mentioned this, a warning is in order: If
you forget to supply the <LINK> tag to a page, the assemblies of this page are
loaded in the site-related application domain.This will ultimately result in prob-
lems with the execution of the application.

In the “CAB Files” section earlier in the chapter, the use of the <OBJECT>
tag was discussed. However, there are two other ways of referencing to an
assembly that gets downloaded and loaded into a new application domain:

■ Using a HREF link, for example

■ Pointing your browser directly to the assembly, for example by entering
http://www.company.com/EXECS/Graphic.exe

In the first option, it is assumed that the assembly resides in the same direc-
tory that the Web page is pointing at.The CLR will also check this directory for
a configuration file. It is also assumed that the application base (AppBase) is set to
the directory the Web page is pointing at. In the case of the HREF link, this may
be www.company.com/App1. In the example of the second option, this is
www.company.com/EXECS.The AppBase is seen as the root directory from
which the CLR searches for subsequent referenced assemblies.

NOTE

As you install Visual Studio .NET Beta, the installation process first wants
to install a few “enhancements” before it installs the actual Visual Studio
.NET. One of these enhancements is the Installation of Internet Explorer
6.0 (Public Beta). The reason is that this version of Internet Explorer has
all the features to deal with advanced .NET applications. Take note that
you must be very cautious with installing IE 6.0 on your regular system if
you use it for tasks other than developing. Experience has shown that
some e-commerce Web sites have problems with IE 6.0, hence are so
well-tuned on IE 5.5. And because IE 6.0 is also still a Beta, it may
contain some incomplete functioning code.

Resource Files
A resource is a nonexecutable data file that is related to an assembly and packaged
in a resource format, so it can be automatically deployed together with the
assembly.A few examples of resource files would include Help text for the

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 633

634 Chapter 13 • Application Deployment

applications, icons, images, and sound-files.The most important advantages of
resource files are as follows:

■ Resources can contribute to a better localization of your application; by
using the Culture identifier of the assembly, the correct localized
resource is picked.

■ Resource files make access to different types of data files uniform by
using resource objects.

■ Resources can be part of an assembly file or compiled into a satellite
assembly.

Localization has always been a hassle in selecting the correct localized files.
Now this is handled by the CLR, presuming that you have packaged your
resource files in assemblies. If the Culture field is not empty, also called neutral,
the CLR checks the localization settings of the system and tries to find a refer-
enced assembly with the correct culture. If this is not the case, it will fall back on
the neutral version.This implies that when you use localized assemblies, you must
always have a neutral assembly available. If no localized assembly exists that
matches the localization setting of the system, the CLR always falls back on the
neutral version. In case the CLR cannot find the neutral version, it throws an
exception, and the loading process will fail.Also, for localized resource files, the
principal of satellite assemblies is used. So what about satellite assemblies?

They are called satellite because they do not contain any executable code.They
must be in close contact with an assembly that does contain executable code and
use the resources that are contained in the satellite assemblies.This concept is also
referenced to as hub and spoke, where the executable assembly is the hub and the
resource assemblies the spokes.This solution has the following advantages:

■ You can very easily add other localized versions to the application by
simply copying them to the correct directory.

■ You have to deploy only the localized versions that will be used.

■ Satellite assemblies can be replaced without having to change or
(partially) recompile the application.

The only drawback is that you must test your application against every
localized resource set.

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 634

Application Deployment • Chapter 13 635

NOTE

The localized resource assembly has to follow a specific naming conven-
tion. It is preferred that you use the Culture field to identify the localiza-
tion signature, although the CLR can also check the assembly name for
the localization signature. The format is ll-CC, what stands for two
lowercase characters for the language, followed by a dash, followed by
two uppercase characters for the country. These codes are standardized
in the ISO 3166 standard. Be sure to use these codes because there are
some exceptions to the rule. A few examples are the following:

■ en-UK English as spoken in the United Kingdom
■ en-US English as spoken in the United States
■ du-BE Dutch as spoken in Belgium
■ fr-BE French as spoken in Belgium

Let’s take a look at how you create the resource files from the command
line.The following code is a sample that comes with .NET Framework SDK
and is located in <SDK_InstallDir>\FrameworkSDK\Samples\tutorials\
resourcesandlocalization\graphic\vb.

The build.bat file, which is edited for the sake of readability, reads this way:

resxgen /i:un.jpg /o:Images.resx /n:flag

cd en

resxgen /i:en.jpg /o:Images.en.resx /n:flag

cd ..\en-us

resxgen /i:en-US.jpg /o:Images.en-US.resx /n:flag

cd..

resgen Images.resx Images.resources

resgen en\images.en.resx en\images.en.resources

resgen en-us\images.en-us.resx en-us\images.en-US.resources

al /out:en\Graphic.resources.dll /c:en

/embed:en\Images.en.resources,Images.en.resources,Private

al /out:en-us\Graphic.resources.dll /c:en-US

/embed:en-us\Images.en-US.resources,Images.

en-US.resources,Private

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 635

636 Chapter 13 • Application Deployment

vbc /target:library /optionstrict+ /r:System.DLL

/r:System.Drawing.DLL

/r:System.Windows.Forms.DLL /r:System.Data.DLL

/res:Images.resources,Images.resources graphic.vb

You see three commands that you most likely never encountered before:

■ Resxgen A utility that converts a JPG image into a RESX file.The
latter is an XML-coded resource file.You need this utility to be able to
generate a resource file for the JPG-image.

■ Resgen The command line Resource Generator utility that converts
the RESX file to a .resource-file. In fact, it can convert an input file
with the .txt, .resource, or .resx extension to an output file with a .txt,
.resource, or .resx extension, assuming that the file extension represents
the format of the file.

■ Al The Assembly Generation utility, but al is short for assembly linker. It
is used to generate an assembly (including a manifest) from one or more
MSIL files (without a manifest) or resource files. Let’s take a look at the
parameters in our example:

■ /out Gives the exact name of the output file.

■ /c Gives the culture string that has to be attached to the output file.
By the way, /c is short for /culture.

■ /embed The full syntax is: /embed[resource]:file[,name
[,private]], whereby file the name of the resource file that has to be
embedded in the output file, containing the manifest; name is the
internal identifier that will be used in the assembly to reference the
resource; private takes care that the assembly can only be used by
the application it is meant for and therefore will not be visible for
other assembles. In Figure 13.4 this all comes back in the line
.mresource private’Images.en-US.resources.

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 636

Application Deployment • Chapter 13 637

Deploying Controls
Up until now, we have discussed the deployment of assemblies, or managed code,
in general.When you start deploying .NET controls, you come across additional
issues that are similar to the issues you had to solve when you deploy ActiveX
controls, although you no longer have to bother with Registry settings and
CLSIDs (as long as your controls do not interact with COM+ components). Let’s
first list the steps involved in the deployment process and then discuss them in
further detail:

1. Obtain a X.509 Authenticode Certificate from a CA, such as Verisign, or
use a Software Publisher Certificate (SPC).

2. License your .NET control.

3. Sign the .NET control assembly.

4. Package the .NET control in a CAB file.

5. Make an application configuration file.

6. Create the Web page that makes an <OBJECT> reference to your CAB
file and a <LINK> reference to the application configuration file.

7. Test it.

Step 1 speaks for itself. For testing purposes, you can make use of the
makecert.exe tool. Step 2 involves the always important issue of software
licensing.The .NET Framework comes with a License Compiler utility
(lc.exe), which creates a .licenses file that will be included in the assembly as
a .resource file.

www.syngress.com

Figure 13.4 The Manifest of the Resource Assembly en-US/
Graphic.resources

153_VBnet_13 8/16/01 10:28 AM Page 637

638 Chapter 13 • Application Deployment

Step 3 can be done using the File Signing tool (signcode.exe).Although it is
a command-line utility that requests a whole series of options to be filled in, you
should locate the file with the Windows Explorer and double-click it.The Digital
Signature Wizard will be started, which takes you through the whole process in
an easy and straightforward way.You can check if the assembly is indeed signed
by performing the following steps:

1. Use the Windows Explorer to locate the assembly you just signed.

2. Right-click the file and select Properties.

3. Select the Digital Signature tab (see Figure 13.5).

4. Select the Certificate in the Signature List and click on Details to
view the Certificate. It should look familiar.

Steps 4, 5, and 6 have already been discussed. Step 7 should speak for itself—
testing has always been something that does not get the highest priority. But it
cannot be emphasized enough:Testing is a very important step in the develop-
ment and deployment process of an application. It doesn’t matter whether
you’re dealing with a large and complex application or a single control. Never
cut back on testing—you earn it back in all the hours you don’t have to spend
on troubleshooting.

www.syngress.com

Figure 13.5 The Proof of a Signed Assembly

153_VBnet_13 8/16/01 10:28 AM Page 638

Application Deployment • Chapter 13 639

Summary
With the .NET Framework application deployment has become easy again—no
battles with DLL versions and Registry settings.You are able to focus on what is
really important: going smoothly through the deployment phases.The first step in
deploying is versioning. This is sort of new from what you were used to. But now
you can run multiple versions of the same assemblies next to each other. It is
important that assemblies have correct version numbers so that assemblies can
bind with correct assemblies.To achieve this, it is important that assemblies get
full names, consisting of a name, strong name, culture (also known as locale or
localization), and a version number.The use of full names is also necessary to
share them.After this is taken care of, you can go to the next step, which is the
way the assemblies are going to be packaged for deployment.There are three
choices: do not package them, just XCOPY them; package every assembly in a
Cabinet file; or package the complete application in a Windows Installer file.The
packaging method depends through which channels you want the application to
distribute.Assemblies attribute also to the organization of data.All programs need
different kinds of resources, such as Help files, images, and audio files. By con-
verting these files into resource files, you can package them in assemblies without
executable code.These are called satellite assemblies, which are very useful to
solve deploying localized applications. By given them a culture identification, the
CLR will automatically pick up the resource assemblies with the correct localiza-
tion. Localized assemblies can be added without having to bring the application
down or to restart it.

Although you do not need to get involved in all kinds of registering of DLL
files, using Class Identifiers and other Registry settings, a lot of configuring is still
going on. Only now, they are different types of XML-coded configuration files.
Every application can have its application configuration file; every machine has its
machine configuration file (also called an administrator configuration file) and
security configuration files. Every possible setting is controlled by these configu-
ration files and enables you to go from a generic configuration to a tailor-made
configuration.

Before you can actually deploy an application, you must be sure that the
machines that run the application indeed have the .NET Framework runtime
installed.When you use Windows Installer, it can take a lot of work out of your
hand installing, and also uninstalling, of the application, especially because
Windows Installer recognizes assemblies and knows how to handle them, such as
installing them in the general assembly cache. CAB files are especially useful if

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 639

640 Chapter 13 • Application Deployment

you want to distribute the assemblies using the Internet Explorer 5.5 (and up).
When you want to deploy .NET Controls, which you can compare with ActiveX
Controls, issues such as licensing and signing are involved.

After deployment of an application, you do not have to reboot the system,
and you can easily replace assemblies, just by adding a new version of the
assembly to the assembly cache.You can modify configuration files, and the next
time an assembly is loaded by the CLR, the modified configuration file is used.

Solutions Fast Track

Packaging Code

An assembly has a Manifest that describes in detail what is wrapped in
the assembly and with which other assemblies it will bind.

An assembly is identified by its full name that consist of a name, string
name, version number and culture (localization identifier).

A single assembly can be packaged in a Cabinet (CAB) file, using the
Cabinet Maker (makecab.exe).

A complete .NET application can be packaged in a Windows Installer file.

Configuring the .NET Framework

Application dependent settings can be set in the application configura-
tion file.This file applies to all assemblies that are part of an application.

Machine dependent settings can be set in the machine/administrator file.
This file applies to all applications that run on this machine. Settings in
the application configuration file can not override the settings in the
machine configuration file.

There are three security configuration files: enterprise, which applies to
one or more systems and applications; user, which is related to the user
that starts up an application (every user has his own security configuration
file; and machine, which applies to a single machine that runs one or more
applications (every machine has its own security configuration file).

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 640

Application Deployment • Chapter 13 641

Deploying the Application

Before a .NET application can be deployed, the .NET Framework run-
time system must be installed on all the machines that will run (a part
of) the application.

With Windows Installer 2.0, a complete .NET application can be
installed and, if needed, be uninstalled later on.Windows Installer 2.0 is
fully assembly-aware and can take care of placing and updating assem-
blies in the general assembly cache.Windows Installer 2.0 keeps an inde-
pendent administration of assemblies it has installed and are referenced
by other assemblies installed by Windows Installer 2.0; it will never
remove a uninstalled assembly if it is still referenced by other assemblies.

With CAB files, you not only compress an assembly significantly, but it
can also be deployed using Internet Explorer 5.5 (or higher).

The nonexecutable data files—such as Help files, audio files, and
images—that are used by assemblies are converted in resource files (using
the Resource Generator utility resgen.exe) that can be added to
assembly files that hold executable code.They can also be compiled into
an assembly without executable code, using the Assembly Generation
utility (al.exe).This is called a satellite assembly, which are very useful in
deploying localized applications.

Deploying Controls

You can protect your controls by licensing them, using the License
Compiler utility (lc.exe).

You can authenticate your controls using a X.509 Authenticode
Certificate, with the File Signing utility (signcode.exe), that comes
with a Digital Signature Wizard.

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 641

642 Chapter 13 • Application Deployment

Q: If I can XCOPY a .NET application to its destination, why should I use
Installer instead?

A: You don’t need to use Installer; XCOPY will work just fine. But when you
need to deploy a more complex application, you may want to do a little more
than just an XCOPY.The most obvious is that you need to install shared
assemblies in the general assembly cache (GAC).Additionally, if you want to
uninstall the application, removing the sub tree will not remove assemblies
from the GAC. Besides how do you know if you can safely remove an
assembly from the cache without breaking another application? If you install
all your application with Windows Installer, Installer will take care of
removing an assembly when it is safe to.That is, if you install all the applica-
tions using Installer 2.0. It is a good practice to be able to install an applica-
tion with an as small as possible footprint and uninstall applications without
leaving a footprint. Packaging your application with Windows Installer takes
all that work away from you and the people who are responsible for the
installation and maintenance of the application. By the way, it looks far more
professional than copying files from a CD.

Another reason to use Windows Installer 2.0 is that you may have to inte-
grate with applications that run outside the .NET Framework or even ship
unmanaged components with the application, that still have all the installation
issues attached to it. It will help you a lot to keep using just a single method
of deployment and Windows Installer2.0 is not a bad choice to do so.

The XCOPY example is merely used as to imply that .NET applications
are no longer plagued with the hassles of checking for the proper DLL ver-
sion, using RegSvr32 to get your files registered, fixing CLSID problems and
all these other annoyances. On the other hand, you’re not out of the woods
right now! All these problems still apply dealing with the .NET Framework
runtime system and when there become more versions of this runtime system
available you may have to deal with all the problems all over again, because

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_13 8/16/01 10:28 AM Page 642

Application Deployment • Chapter 13 643

application may need a specific runtime version to run in. If Microsoft is not
able to make it possible to run different CLRs next to each other and indepen-
dent from each other, we may have to deal with all the issues all over again.

Q: What is the best way to deploy a localized application?

A: The best part of localization and the .NET Framework is that it uses the sys-
tems “Regional Options” to determine the “Culture”, in which the culture is
a combination of language (two lowercase characters) and country/region
(two uppercase characters). Compilation of .NET applications is language
independent and no longer poses the same localization problems. Because
culture is part of the assembly’s full name, assemblies with a culture set always
take precedent over assemblies that have no culture, called neutral.The
Culture property at least has to hold the language, but you are advised always
to be as specific as possible.This may help you to deploy your application in
as many localization settings as possible, without having to replace files later
on.Although the .NET Framework helps you a lot with easy localization
implementation, it is the program’s design and development that decides to
what extent your application is able to handle localization. For example,
address labels have another format in about every country.The .NET
Framework will not help you to solve that problem—that’s up to the pro-
gram. But if you create your code so that it can format an address label based
on a set of rules, you can save these rules as a resource in a localized assembly.
Your code just has to read the rules, because the CLR takes care that the
assembly with the proper localization is presented to the application.

Besides setting the culture of the assembly, put the culture in the name of
the resource (for example, Graphic.en-US.resources) because the CLR will
use this to determine the proper localized resource in case the Culture prop-
erty is not set.The last thing you should do is place all resources of the same
culture in a subdirectory that should be located directly under the applica-
tion’s root directory and must be named with the exact culture’s name.The
CLR will check this directory to locate the proper localized resource. If you
adhere to these things, adding a new language to your application is as easy as
copying a directory.

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 643

644 Chapter 13 • Application Deployment

Q: How do I transfer an image file to a resource file? Using resgen.exe doesn’t
work.

A: This seems to be a odd problem:You need to use resgen.exe to create a
resource file, only it excepts just two different formats— TXT files and
RESX files.The latter is an XMLized version of a resource. In fact, it is
advised to convert every resource into its XML-coded version.The reason is
that the whole .NET Framework is optimized in using XML-based input.
You can use streams to take care of all the formatting and stuff.That leads to
the problem that resgen is not able to convert an image to a RESX file. Let’s
hope that Microsoft comes up with a more versatile resgen that can handle
more types of input. Until then, you can use a program called ResXGen with
the C source included that is able to do the trick.You can find it in the sam-
ples section, under tutorials\resourcesandlocalization, of the Framework SDK.
You can use this .NET program or let the source help you to create your
own conversion program.After you have run your image file through this
program, you have the XMLized (RESX) version of your image that can be
converted to a resource file using Resgen.exe.

Q: Is there a method to use version numbers for assemblies?

A: There is no standard method of keeping track of version numbers. But
because the format of the version number is very clear, you have to go with
that.As long as you go with that format, you are in the clear. Change version
numbers only if it is really necessary.The reason is very simple:The CLR
considers every version number as a valid assembly and will check it as it tries
to find the correct version of an assembly.The more assemblies there are to
check, the longer this will take. For example:You have built a reasonably
extensive application, and you are now on version 2.0 (the major and minor
part of the version number) and want to change it to 2.1. But because you’ve
done a great deal in the development process, only half of the assemblies have
changed. If you would change the version number of all assemblies, you
double the number of assemblies while half of them are the same. Only by
removing the obsolete ones can you control the number of active assemblies.
This is no problem if the assemblies are used only by your own application,
but if you share the assemblies with other programs, this is not so straightfor-
ward.There are ways around it.The best way is to edit the application config-
uration file and put a <assemblyredirect> in for all the unchanged assemblies
and let the old versions point to the new one. Be careful with using publisher

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 644

Application Deployment • Chapter 13 645

policies to take control of these issues.Applications can run in Safe Mode,
thereby ignoring the publisher policy.As far as the build and revision goes,
change these only on a per-assembly basis.

There is another way of dealing with a lot of assemblies with version
changes by going for a select number of large assemblies, instead of with a
lot of small ones.This makes good sense if you can group a lot of code based
on a common functionality in relation to deploying such functionality. Be
sure that it has a limited number of exposed interfaces, or you will run into
version trouble again if the assembly is referenced all over the place.

www.syngress.com

153_VBnet_13 8/16/01 10:28 AM Page 645

153_VBnet_13 8/16/01 10:28 AM Page 646

Upgrading Visual
Basic Applications
to .NET

Solutions in this chapter:

■ Considerations Before Upgrading

■ Considering Architecture Before Migration

■ Data Types

■ Converting VB Forms to Windows Forms

■ Keyword Changes

■ Programming Differences

■ Understanding Error Handling

■ Data Access Changes in Visual Basic .NET

■ Upgrading Interfaces

■ Using the Upgrade Tool

Summary

Solutions Fast Track

Frequently Asked Questions

Chapter 14

647

153_VBnet_14 8/16/01 10:30 AM Page 647

648 Chapter 14 • Upgrading Visual Basic Applications to .NET

Introduction
Now that we have seen how to develop an application with Visual Basic .NET,
what about your existing applications? Do you leave them as is, or should you
upgrade them? There are different factors to consider when making this decision.
This chapter will focus on when to upgrade your application, and what is
involved in an upgrade when you decide to do it.

The .NET architecture is different from previous versions of Visual Basic and
some applications will require significant changes.Visual Basic .NET has transi-
tioned to making everything an object, prompting significant programming
changes.You will have to modify data types to match the new Common Type
System (CTS), which will impact applications using the Variant data type.There
are other considerations. Some keywords have been changed or even removed,
and your Visual Basic Forms will need to be upgraded to Windows Forms. Error
handling will be completely different as well, and you will have to convert all
existing error handling to the new exception-based format.

As you have seen, data access has changed drastically and is based on XML.
This is a major paradigm shift, and addressing these issues can take considerable
time and effort. Interfaces and events have changed from previous versions of
Visual Basic. Not all applications use these features, but you need to understand
how to convert them if they do. Fortunately, Microsoft has created an upgrade
tool.This will attempt to upgrade your application from Visual Basic 6.0 to Visual
Basic .NET. Of course, not all aspects of your application can be automatically
upgraded.The portions of your application that cannot be upgraded will be com-
mented out and will require manual conversion. Some applications will still
necessitate a large development effort, so think long and hard before an upgrade
and develop a plan for it.

Considerations Before Upgrading
Certain issues must be addressed before a legacy application can be upgraded to
Visual Basic .NET. Changing your application could mean anything from
changing the data type of a variable to rewriting an entire application so it uses a
different data access mechanism.The following points are recommendations
you should carefully look at before deciding on migration.We will cover these
recommendations in detail in the sections that follow:

■ Early binding of variables

■ Avoiding Null Propagation

www.syngress.com

153_VBnet_14 8/16/01 10:30 AM Page 648

www.syngress.com

■ Using ADO

■ Using the Date data type to store dates

■ Using constants instead of actual values

Early Binding of Variables
Visual Basic .NET, like Visual Basic 6.0, supports late-bound objects. Late binding
an object is the practice of declaring a variable to be of the data type Object and
assigning it to an instance of a class at runtime. Early binding also refers to the
practice of declaring a variable a specific data type other than type Object. The
advantage of early binding is that compiler errors, like using incorrect properties
or calling non-existent methods, can be immediately detected.This is made pos-
sible by using type library.Whenever you set a reference to a type library, all the
classes that are part of the component are available at design-time itself.

The usage of late binding objects has its disadvantages.The main drawback is
the inability to enumerate the type library during design-time. During an
upgrade process, late-bound objects can cause problems because of changes in
property names and the removal of the default property feature from the controls.
This is especially true if your legacy applications use code that late binds
Windows controls, like labels and command buttons.

The reason is that some of the property names have changed in Visual Basic
.NET, the most important being the name change for the Caption property. It is
now called Text. Suppose you had a form with the CommandButton control on
it.The following Visual Basic 6.0 code declares a variable of data type Object,
assigns a command button object to it, and sets a value to its Caption property:

Dim obj as Object

Set obj = Me.Command1

obj.Caption = "Ok"

The upgrade tool normally converts all references to the Caption property to
Text property. Since the preceding code uses late binding, the upgrade tool
cannot determine what type of object is being referenced here.Therefore, it
won’t have a clue as to how the properties must be translated.As a result, the
upgrade tool marks these statements with an upgrade error. In such cases, you
will have to change the code yourself.

In order to ensure a successful migration, make sure all variables are declared
a specific type other than Object.The following code will migrate successfully:

Upgrading Visual Basic Applications to .NET • Chapter 14 649

153_VBnet_14 8/16/01 10:30 AM Page 649

650 Chapter 14 • Upgrading Visual Basic Applications to .NET

Dim objCmd as CommandButton

Set objCmd = Me.Command1

objCmd.Caption = "Ok"

The practice of using late binding also affects Visual Basic 6.0 components
that implement classes and interfaces. In Visual Basic 6.0, it is possible to assign an
interface reference to a variable of type Object to access the properties and
methods of the interface.The following code shows this implementation:

Dim IMyInteface as Interface1

Dim clsMyClass as Class1 'Assuming Class1 implements Interface1

Dim obj as Object

…………

…………

Set IMyInterface = clsMyClass 'Gets a reference to the ImyInterface

Set obj = ImyInterface 'Assigns the ImyInterface reference to obj

obj.property1 = Value 'Accesing a property

Unfortunately, in Visual Basic .NET, you can only late bind to public mem-
bers of a class, not to interface members.Therefore, the previous code must be
edited so the object variable directly references the class, not the interface, as
shown next:

Set obj = clsMyClass 'Assigns the ImyInterface reference to obj

obj.property1 = Value 'Accesing a property

Avoiding Null Propagation
Null propagation means that if Null is used in an expression, the resulting expres-
sion is always Null. In previous versions of Visual Basic, the Null value dissemi-
nated throughout the expression.

Null propagation is commonly used in database applications where you
need to check for a Null in a specific field or fields.The following expressions
show you how a Null is propagated in an expression:

Dim var

var = 100 + Null

var = "hello" & Null

www.syngress.com

153_VBnet_14 8/16/01 10:30 AM Page 650

Upgrading Visual Basic Applications to .NET • Chapter 14 651

Null propagation is not supported in Visual Basic .NET. Consequently, the
statement var = 100 + Null will result in a type mismatch error. Moreover, the
Null keyword has been replaced with System.DBNull.Value. So, for the purpose
of successful migration, your code should always test for Null instead of for Null
propagation.Visual Basic uses the IsDBNull() function to determine if an expres-
sion contains a valid value or Null.

Using ADO
Visual Basic .NET supports DAO, RDO, and ADO code, but with some slight
modifications.Visual Basic .NET, however, does not support DAO and RDO data
binding to controls, data controls, and the RDO user connection. So, if a data
access application has DAO or RDO data binding, it is better to upgrade it to
ADO before migrating to Visual Basic .NET.This section aims to give you an
overview only. More detailed discussion will come later in the chapter.

It is possible to run existing data access applications that utilize ADO by using
Visual Basic .NET with very minor modifications. In order to accomplish this,
right-click the Reference node in the Solution Explorer and choose Add
Reference. From the References window, choose ADO library from the
supplied list of registered COM components.

What occurs next—behind the scenes—is quite elaborate.There is a tool
called TLBIMP.EXE, which is shipped with the .NET Framework, that generates
an assembly containing regular .NET metadata based on the content of the speci-
fied COM-type library.The following command imports the ADO object model
into .NET:

Tlbimp.exe msado15.dll

On executing this command, the tool creates a file called adodb.dll in the
current folder.The name of the output file can also be specified using the /out:
option.

Once the library is imported, all the ADO classes are available to the .NET
code as native classes. Using Visual Basic .NET, a typical data access application
that fetches rows from a table can be coded as follows:

String strSQLConn = "Provider=SQLOLEDB;Initial" +

"Catalog=pubs;Server=localhost;UID=sa;PWD=;"

Dim objCn As New ADODB.Connection()

Dim objRs As New ADODB.Recordset()

www.syngress.com

153_VBnet_14 8/16/01 10:30 AM Page 651

652 Chapter 14 • Upgrading Visual Basic Applications to .NET

objCn.ConnectionString = strSQLConn

objCn.Open()

objRs.Open("Select au_lname from authors", objCn,

ADODB.CursorTypeEnum.adOpenForwardOnly,

ADODB.LockTypeEnum.adLockReadOnly)

While Not objRs.EOF

Debug.WriteLine(objRs(0).Value)

objRs.MoveNext()

End While

objRs.Close()

objCn.Close()

Using Date Data Type
In Visual Basic 6.0, you could use the Double data type to store and manipulate
dates.This is not supported in Visual Basic .NET, however, because dates are not
stored as doubles.Therefore, the following code is invalid in Visual Basic .NET:

Dim dblVal as Double

Dim dtVal as Date

dtVal = now

dblVal = dtVal 'Invalid in Visual Basic .NET

The .NET Framework provides two methods that do the conversion between
dates and doubles.The functions are FromOADate and ToOADate.The
ToOADate function converts a Date type value to a double and the
FromOADate converts a double value to Date.

During an upgrade operation, it becomes very difficult to determine what the
code is trying to do when it uses double data type to store dates. In order to do
away with unwanted changes to your code, use the Date data type to store dates.

Using Constants
It is a good programming practice to use constants rather than the actual values
that represent the constants or variables that store these values. In Visual Basic

www.syngress.com

153_VBnet_14 8/16/01 10:30 AM Page 652

Upgrading Visual Basic Applications to .NET • Chapter 14 653

.NET, the value of True has been changed from –1 to 1.The usage of constants
ensures that the correct values are replaced when your project is upgraded.
However, if an actual value is used, it is quite possible your project will be
upgraded properly.

Considering Architecture
Before Migration
This section discusses what changes are to be made to your existing applications
before moving to the .NET platform.The migration to the .NET platform has
its own advantages. It is a quantum leap from the previous architectures and pro-
vides extended support for scaling applications.The key highlights are discon-
nected data access and resolution of the DLL hell problem by implementing a
file-copy-based deployment of components.To take advantage of these benefits,
your existing applications must be modified. Microsoft has provided a migration
tool that will make your applications .NET compatible. Not all applications can
be readily modified. Certain projects that will remain the same because of lack of
support in Visual Studio .NET.

The existing applications can be broadly classified into the following cate-
gories, which we will discuss in detail in the sections that follow:

■ Internet/Intranet Applications

■ Client/Server Applications

■ Single-tier Applications

■ Data Access Applications

Intranet/Internet Applications
Visual Basic 6.0 provided the following project types to build Intranet/Internet
applications:

■ Internet Information Server (IIS) Applications

■ DHTML Applications

■ ActiveX Documents

Each of these application types was unique in their way and helped devel-
opers build solutions best suited to the scenarios for which they were built. But,
over a period of time, DHTML applications and ActiveX documents were used

www.syngress.com

153_VBnet_14 8/16/01 10:30 AM Page 653

654 Chapter 14 • Upgrading Visual Basic Applications to .NET

less and less because none of these application types were extensible.The intro-
duction to Web forms and Web classes in the .NET architecture aims to increase
application compatibility and enhance the functionality of Internet or intranet
applications.Web forms are used to build feature-rich Web applications.Though
the functional aspect of Web forms remains the same, it offers a variety of bene-
fits. For example, the Web forms framework captures and stores information input
on a form and makes it available as object properties.Web application services
like these make Web forms unique.A separate section is devoted in this chapter
to Web forms.

Internet Information Server (IIS) Applications
A WebClass is the building block of an IIS application. It is a Visual Basic compo-
nent, and as such, resides on a Web server, responding to input from the browser.
WebClasses, however, do not exist in Visual Basic .NET.The migration tool
upgrades all WebClass applications to Web forms instead.As a result, migrated
applications have to undergo some modifications before they are ready to run. It
is also possible to navigate from a Visual Basic .NET Web form to a Visual Basic
6.0 WebClass.

www.syngress.com

Web Forms in ASP.NET
Visual Basic .NET introduces an enhanced version of ASP (Active Server
Pages) called ASP.NET, ushering in a new programming model to build
powerful Web applications.

Web Forms is an ASP.NET technology useful in creating pro-
grammable Web pages. Listed next are some of the highlights of Web
Forms:

■ Web Forms can be programmed using any of the Visual
Studio.NET languages, like C#, Visual Basic, and so on.

■ Web Forms can run on any browser and render browser-
compliant HTML.

■ Web Forms support user-created and third-party controls.
■ Web Forms support managed execution environments, type

safety, inheritance, and dynamic compilation.

Developing & Deploying…

153_VBnet_14 8/16/01 10:30 AM Page 654

Upgrading Visual Basic Applications to .NET • Chapter 14 655

DHTML Applications
DHTML applications typically house DHTML pages and client-side ActiveX
DLLs that contain the business logic. DHTML applications cannot be upgraded
to Visual Basic .NET.

ActiveX Documents
ActiveX documents, like DHTML applications, cannot be upgraded to Visual
Basic .NET.The only recommended option is to replace ActiveX documents
with user controls. Despite this, both ActiveX documents and DHTML applica-
tions can interoperate with Visual Basic .NET Web forms.

NOTE

Microsoft recommends implementing multi-tier architecture when
building applications, so migration is easier. The architecture involves
building the user-interface through ASP, and the business logic using
Visual Basic 6.0 or Visual C++ 6.0 component. ASP is fully supported in
Visual Basic .NET and the business components can either be upgraded
to Visual Studio .NET or used as is.

Client/Server and Multi-Tier Applications
Multi-tier projects typically house Visual Basic Forms, containing embedded user
controls, and middle-tier business components.The middle-tier components can
either be a Microsoft Transaction Server (MTS) component or a COM+ compo-
nent. Client/Server applications contain just two layers: the user-interface layer
(also called the client), and the database layer (called the server).The business
logic is embedded in either the client-side or server-side.

Visual Basic Forms has been replaced with Windows Forms in Visual Basic
.NET.The object model of Windows Forms is different from Visual Basic 6.0
Forms.The good news is that the object models are compatible.The Upgrade
Wizard converts Visual Basic Forms to Windows Forms during an upgrade opera-
tion. User controls are then upgraded to Windows controls, however, custom
property tags and accelerator key settings are not upgraded.

Middle-tier components can remain the same, but it’s advisable to upgrade
them to .NET as well.This begs the question of debugging, however. How can I

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 655

656 Chapter 14 • Upgrading Visual Basic Applications to .NET

debug a component written in Visual Basic 6.0 while in a Visual Studio.NET
environment? Visual Studio.NET provides a single integrated debugger for all
Visual Studio languages.The unified debugger goes beyond supporting compo-
nents written for the .NET Common Language Runtime (CLR). It also supports
debugging Win32 native applications and this includes MTS/COM+ compo-
nents written in Visual Basic 6.0.The only caveat is that they must be compiled
to native code, with symbolic debug information, and should not include any
optimizations.

Visual Basic .NET also introduces a new middle-tier component called Web
Services.A Web Service is a component that contains business logic and is hosted
by ASP.NET.They use HTTP methods as their transport mechanism and pass
and return data using XML.The use of XML allows heterogeneous systems to
interact with the Web Service, the only limitation being that Web Services does
not support distributed transactions.

Single-Tier Applications
Single-tier applications can be classified as:

■ Add-ins

■ Miscellaneous utility programs

Visual Basic .NET is now an integrated part of the Visual Studio .NET
Integrated Development Environment (IDE).This has necessitated a change in
the extensibility model used in Visual Studio .NET.Applications employing the
Visual Basic 6.0 IDE model cannot be migrated to exploit the advantages of the
Visual Studio .NET extensibility model.The new IDE extensibility model is
generic for all project types supported in Visual Studio .NET.The add-ins that
can be created using the new model can be shared by any of the Visual Studio
.NET supported languages.

Miscellaneous utility programs like those which perform file operations or
manipulate registry functions upgrade without any problems.The migrated appli-
cations can then take advantage of many of the new features available in Visual
Basic .NET, like structured exception handling, free threading, and so on.

Data Access Applications
Data Access applications typically use the following methods to perform data
manipulation:

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 656

Upgrading Visual Basic Applications to .NET • Chapter 14 657

■ ActiveX Data Objects

■ Remote Data Objects

■ Data Access Objects

Visual Basic .NET introduces ADO.NET, an enhanced version of ADO.
ADO.NET provides performance enhancements over ADO and aims at discon-
nected data.A separate section at the end of this chapter is devoted to high-
lighting the differences between the two.

DAO, RDO, and ADO applications can still be used in Visual Basic .NET
after making some minor modifications.Visual Basic .NET doesn’t support data
binding to DAO or RDO controls. So if any of your applications use data
binding, it is best to leave them to Visual Basic 6.0, or port the code to ADO
before migrating to Visual Studio .NET. Data binding is still available in VB.NET
and is implemented with the help of the Binding class.

Data Types
Visual Basic .NET has not only brought in language enhancements but also
changed the way we work with data types. It is imperative the programmer have
adequate information on the changes made to ensure a successful and smooth
migration to Visual Basic .NET.This section is devoted to dealing with changes
that have been effected in Visual Basic .NET.

Variants
Variant is a special data type.What makes the Variant data type so unique is that it
can be assigned to any primitive data type such as Empty, Nothing, Error, and
Null.A primitive data type is one that is supported by the compiler natively.The
only limitation with the Variant data type is that it cannot be assigned to fixed-
length strings.

Visual Basic .NET uses the Object data type that effectively replaces the Visual
Basic 6.0 Variant data type. In fact, the functionality of both Object and Variant
data types has been combined into the new Object data type.The Object data type
can be assigned to any primitive data type, Empty, Nothing, Error, Null and as a
pointer to an object.The default data type in Visual Basic .NET is Object.

When a project is migrated to Visual Basic .NET, all variables of type Variant
are converted to Object. It is a better programming practice to declare variables a
specific data type before beginning the upgrade process. Not only does this help

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 657

658 Chapter 14 • Upgrading Visual Basic Applications to .NET

identify the type of data these variables will store, but it will also result in less
ambiguous code after the upgrade has been completed.

Integers
In Visual Basic 6.0, the Long data type is used to represent signed 32-bit num-
bers, while the Integer data type is used to store 16-bit numbers.This has been
changed in Visual Basic .NET. In Visual Basic .NET, the Long data type is used to
store signed 64-bit numbers, the Integer to store 32-bit numbers, and the Short
data type to store 16-bit numbers.

The Short data type can store numbers between –32768 to 32767.You must
use the Short data type in case the possible values for a variable fall between the
specified upper and lower limits. It is possible to convert a Short data type to
Integer, Long, and Decimal without an overflow.

The Integer data type can store numbers between –2,147,483,648 to
2,147,483,647. In the earlier versions of Visual Basic, the variable needed to be
declared as Long in case you wanted to store large numbers. Now, in order to
enhance performance of your applications running on a 32-bit processor, it is
advised you use the Integer data type.

The Long data type, meanwhile, stores numbers between
–9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, each stored
as an 8-byte number. Refer to the following Visual Basic 6.0 code, where:

Dim Ctr as Integer

Dim Total as Long

is upgraded to:

Dim Ctr as Short

Dim Total as Integer

Dates
Visual Basic 6.0 and earlier versions used the Double data type to store dates.The
Double data type uses four bytes to store the value.Visual Basic .NET, however,
uses the Datetime data type, which is an 8-byte integer value. Since the represen-
tations are quite different in each of the versions, there is no implicit conversion
between the Datetime and Double data types in Visual Basic .NET.The
ToOADate and FromOADate can be used to convert between the Double and
Visual Basic 6.0 representation of Date value.The upgrade tool inserts the

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 658

Upgrading Visual Basic Applications to .NET • Chapter 14 659

ToOADate or FromOADate method where a Double is assigned to a Date, as
shown in the following code, where:

Dim dblVal as Double

Dim dtVal as Date

DblVal = dtVal

is changed to:

Dim dblVal as Double

Dim dtVal as Date

DblVal = dtVal.ToOADate

You can avoid calls to the ToOADate and FromOADate functions by using
the Date data type to declare variables that store dates instead of using the
Double data type.The OA in both the functions stands for OLE Automation-
compatible date format.

Boolean
Boolean variables are stored as 32-bit numbers and can hold one of two values:
True or False.True evaluates to 1, False to 0.The actual value translation is dif-
ferent that what it is in Visual Basic 6.0. In previous versions of Visual Basic, a
Boolean value of True evaluated to –1 and a False evaluated to 0. Before
upgrading, check your code to ensure you are not comparing Boolean variables
to the hard-coded value –1 or 0, but to True and False.

Arrays
In Visual Basic 6.0, it is possible to declare arrays with any lower or upper bound
numbers.The Option Base statement is used to determine the lower bound
number if a range was not specified in the declaration.Visual Basic 6.0 also allows
use of the ReDim statement to reassign a variant to an array.

In order to maintain interoperability with other languages, arrays defined in
Visual Basic .NET have a default lower bound of zero.This has made the
Option Base statement obsolete. In Visual Basic .NET, a ReDim statement
cannot be used unless the variable has been declared as an array.To illustrate, the
following code is valid in Visual Basic 6.0, but invalid in Visual Basic .NET:

Dim x

ReDim x(20) 'Cannot use ReDim since x has not been declared as an array

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 659

660 Chapter 14 • Upgrading Visual Basic Applications to .NET

Consider the following declaration:

Dim x(10) as Integer

In Visual Basic 6.0, the preceding code declares an array of 11 integers. Since
arrays in Visual Studio .NET are zero-based, the previous declaration pronounces
an array of 10 integers, from 0 to 9.

During the upgrade process, all Option Base statements are removed.All
arrays that have their lower bound as zero are left as is while those that are non-
zero-based are upgraded to an array wrapper class. For example, the following
Visual Basic 6.0 code

Dim arr(1 to 10) as double

is converted to:

Dim arr as object = new VB6.GetArray(GetType(Double), 1, 10)

There are a host of functions available in the wrapper class.This particular
class is called Microsoft.VisualBasic.Compatibility and needs to be imported.

Fixed-Length Strings
In Visual Basic 6.0, variables can be declared with fixed-length strings except for
public variables in class modules. Fixed-length strings are not supported in Visual
Basic .NET. If the application contains fixed-length strings, then the Upgrade
Wizard uses a wrapper function to implement the functionality.This is shown in
the following Visual Basic 6.0 code, where:

Dim fxString as String * 50

is converted to:

Dim fxString as new VB6.FixedLengthString(50)

This lack of support also means that changes have to be made if your applica-
tions employ User-Defined Types (UDT). User-defined types are called structures
in VB.NET. Structures do not support primitive types. So, if your VB6 application
contains the following UDT declaration:

Type EmployeeRecord

EmpID as Integer

EmpFirstName as String * 20

EmpMiddleName as String * 10

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 660

Upgrading Visual Basic Applications to .NET • Chapter 14 661

EmpLastName as String * 20

EndType

The upgrade tool will mark the statements containing fixed-length strings,
telling you to initialize each fixed-length string. However, you can modify the
fixed-length strings declarations to strings in the following manner:

Type EmployeeRecord

EmpID as Integer

EmpFirstName as String

EmpMiddleName as String

EmpLastName as String

EndType

This declaration will ensure that the UDT is migrated to Visual Basic .NET
without any changes.The same holds true for fixed size arrays. So, if you have the
following array declaration:

Dim arrSample(12) as String

you can change it to:

Dim arrSample() as string

Windows API Data Types
A majority of the Windows API functions can be used as they are in Visual Basic
.NET.The only modification you will have to make is to change the data types
accordingly.The upgrade tool does the following to all your API declarations:

■ Changes all occurrences of Integer to Short. (i.e.,Visual Basic 6.0 Integer
data type is now Short.)

■ Changes all occurrences of Long to Integer. (i.e.,Visual Basic 6.0 Long
data type is now Integer.)

■ Upgrades fixed-length string data types to a fixed-length string wrapper
class.

The following Visual Basic 6.0 code displays the name of the logged in user
on a Windows 2000 Server:

Public Declare Function GetUserName Lib "advapi32.dll" Alias

"GetUserNameA" (ByVal lpBuffer As String, nSize As Long) As Long

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 661

662 Chapter 14 • Upgrading Visual Basic Applications to .NET

Sub DisplayUserName()

Dim strUserName As String

strUserName = String(20, " ")

Module1.GetUserName strUserName, 20

MsgBox strUserName

End Sub

After the upgrade, the code is transformed into:
Public Declare Function GetUserName Lib "advapi32.dll" Alias

"GetUserNameA"(ByVal lpBuffer As String, ByRef nSize As Integer) As

Integer

Sub DisplayUserName()

Dim strUserName As String

strUserName = New String(CChar(" "), 20)

Module1.GetUserName(strUserName, 20)

MsgBox(strUserName)

End Sub

Note the differences between the code written in Visual Basic 6.0 and that
written in Visual Basic .NET:

■ The nSize parameter in the Visual Basic 6.0 code is Long, whereas it is
Integer in Visual Basic .NET.

■ The data type of the return value has been changed from Long to
Integer.

■ The initialization of strings has been prompted.

Converting VB Forms to Windows Forms
Visual Basic .NET has a new Forms package called Windows Forms.While
Windows Forms is largely compatible with Visual Basic 6.0 Forms, there are
some minor changes that need to be done.The following differences exist
between Visual Basic 6.0 Forms and Windows Forms:

■ Windows Forms does not support the Form.PrintForm method.
Therefore, you cannot print an image of the Windows Forms on a
printer.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 662

Upgrading Visual Basic Applications to .NET • Chapter 14 663

■ Graphics commands like Circle, Pset, Line, Point, and Cls are not sup-
ported in Windows Forms.The Windows Forms package is built on a
more feature-rich layer called GDI+.

■ Windows Forms supports only twips as the unit of measurement in the
ScaleMode property. If your Visual Basic 6.0 Forms used twips as the
measurement, then it is upgraded correctly.There will be sizing issues if
pixels were used as a unit of measurement.

■ Visual Basic 6.0 supported any font type for forms and controls. But
Visual Basic .NET supports only TrueType or OpenType fonts. If your
existing application uses a non-TrueType font, they are changed to the
default Windows Form font.All formatting is lost during this change,
however. If you have formatted text, Microsoft recommends you use
Arial instead of Visual Basic’s default MS Sans Serif.

■ In Windows Forms, the MousePointer property of the Screen object can be
used only for forms inside the application.

■ In Visual Basic 6.0, assigning a value of zero to the Interval property of
the Timer object disables the Timer.Visual Basic .NET resets the value to
one when a value of zero is assigned.To disable the timer, you should set
the Enabled property to False. During an upgrade operation, if the tool
detects a statement that assigns a value of zero to the Interval property,
then the statement is commented with an upgrade error.

■ Windows Forms does not support the Name property for forms and
controls at runtime.Any Visual Basic 6.0 code that iterates through the
Control Collection looking for a Name property will not be upgraded
correctly.

■ Windows Forms has two menu controls.They are MainMenu and
ContextMenu.Visual Basic 6.0 has only one menu control called Menu
that can be opened as a MainMenu or a ContextMenu. During an
upgrade operation, Menu controls are upgraded to MainMenu controls.
The ContextMenu controls, however, have to be explicitly re-created.

■ Windows Forms does not support the OLE Container control. If your
application has to use an OLE Container control, you can use the
WebBrowser control as an alternative. During an upgrade process, an
error is added to the upgrade report and an unsupported-control
placeholder is inserted into the form.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 663

664 Chapter 14 • Upgrading Visual Basic Applications to .NET

■ Image controls are not supported in Visual Basic .NET.As a result, all
Image and PictureBox controls are upgraded solely to PictureBox
controls.

■ The clipboard object in Visual Basic .NET has more functionality than
the Visual Basic 6.0 clipboard object.The new clipboard object supports
more formats than the previous clipboard object.As a result, any Visual
Basic 6.0 clipboard code cannot be upgraded to Visual Basic .NET.All
clipboard statements will be marked with an upgrade error.

■ Windows Forms has no built-in Dynamic Data Exchange (DDE) sup-
port. DDE is a form of interprocess communication that uses a concept
called shared memory to exchange data between applications. Since
Windows Forms does not support DDE, you cannot use the LinkMode
property available in Visual Basic 6.0 forms. During an upgrade opera-
tion, all DDE properties and methods are commented with an upgrade
warning.

Control Anchoring
If you are designing a form that the user might resize at runtime, you might want
to make your controls resize and reposition correctly on the form. In order to
resize controls correctly with the form, you should use the Anchor property.The
Anchor property defines an anchor position for the controls on the forms.When a
control is anchored on the form and the form is resized, the relative positions will
be maintained after the resize. So, if a control’s anchor position is set to bottom-
right, irrespective of how the form is resized, horizontally or vertically, the con-
trol will always be placed in the bottom-right corner.Without the Anchor
property, the control’s position is fixed and it will not retain its original position
after it is resized.

The anchor position value can be chosen from one of the AnchorStyles enu-
meration values.The following statement anchors a Button Control to the top-
left corner of the form:

Button1.Anchor = AnchorStyles.TopLeft

Table 14.1 lists various AnchorStyles enumeration values.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 664

Upgrading Visual Basic Applications to .NET • Chapter 14 665

Table 14.1 AnchorStyles Enumeration Values

Member Name Description

All Each edge of the control anchors to the corresponding
edge of its container.

Bottom The control is anchored to the bottom edge of its
container.

BottomLeft The control is anchored to the bottom and left edges of
its container.

BottomLeftRight The control is anchored to the bottom, left, and right
edges of its container.

BottomRight The control is anchored to the bottom and right edges of
its container.

Left The control is anchored to the left edge of its container.
LeftRight The control is anchored to the left and right edges of its

container.
None The control is not anchored to any of the edges.
Right The control is anchored to the right edge of its container.
Top The control is anchored to the top edge of its container.
TopBottom The control is anchored to the top and bottom edges of

its container.
TopBottomLeft The control is anchored to the top, bottom, and left edges

of its container.
TopBottomRight The control is anchored to the top, bottom, and right

edges of its container.
TopLeft The control is anchored to the top and left edges of its

container.
TopLeftRight The control is anchored to the top, left, and right edges

of its container.
TopRight The control is anchored to the top and right edges of its

container.

Keyword Changes
The following keywords have either been removed from Visual Basic or replaced
with a Visual Basic .NET specific version.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 665

666 Chapter 14 • Upgrading Visual Basic Applications to .NET

Goto
The Goto statement is present in Visual Basic .NET only for the purposes of
error-handling and can be used only with On Error…Goto.The Goto state-
ment cannot be used to perform multiple-branching. Instead, use the
Select…Case statement to perform multiple-branching.

GoSub
The GoSub statement calls a procedure within a subprocedure.There is no sup-
port for the GoSub statement in Visual Basic .NET. Instead, method calls can be
made using the Call, Sub, and Function statements.

Option Base
Arrays in Visual Basic .NET always have a lower bound of zero.This has rendered
the Option Base obsolete in Visual Basic .NET.The Option Base statement was
used in Visual Basic 6.0 to determine the lower bound value of those arrays that
were not declared with an explicit lower bound value.

AND/OR
In Visual Basic 6.0, the AND, OR, XOR, and NOT operators perform both log-
ical and bitwise operations depending on the expressions. In Visual Basic .NET,
AND, OR, XOR, and NOT operators apply only to type Boolean.The AND and
OR operator short-circuits evaluation if the value of the first operand is enough
to determine the result of the operation.

Visual Basic .NET uses the new bitwise operators.They are BitOr, BitAnd,
and BitXor.The new bitwise operators do not short-circuit.

The Upgrade Wizard upgrades an AND/OR statement which is non-
Boolean or contains functions, methods, or properties that use a compatibility
function with the same behavior as that in Visual Basic 6.0. For Boolean state-
ments, it is upgraded to use the native Visual Basic .NET statement.

Lset
The Lset statement can be used in two ways:

■ It can assign a variable of one user-defined data type to another variable
of a different user-defined data type.This is not supported in Visual Basic
.NET.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 666

Upgrading Visual Basic Applications to .NET • Chapter 14 667

■ It can pad a string with spaces to make it a specified length.The
PadRight method of the string class can be used to achieve this
functionality.

VarPtr
VarPtr is used to acquire the address of a variable or array element. It takes the
variable name or an array element as the parameter and returns the address. Since
Visual Basic .NET does not support this function, the upgrade tool does not
upgrade this statement and therefore marks it with an upgrade error.

StrPtr
Strings in Visual Basic are stored as BSTRs. If you pass a string variable to the
VarPtr function, you will get the address of the BSTR which acts as a pointer to
the string.To get the address of the string buffer, you need to use the StrPtr func-
tion.This function returns the address of the first character in the string. Because
Visual Basic.NET doesn’t support StrPtr, the upgrade tool reports an upgrade
error when it encounters this statement.

Def
The purpose of the DefBool, DefByte, DefInt, DefLng, DefCur, DefSng,
DefDbl, DefDec, DefDate, DefStr, DefObj and DefVar statements is to set
the default data type for those variables, parameters, and procedure variables
whose names start with the specified character.To improve the readability and
robustness of the code,Visual Basic .NET does not support these statements.
Sample Visual Basic 6.0 code is illustrated in the following:

DefStr x-z

Sub Test

x = "hello world"

End Sub

is upgraded to:

Sub Test

Dim x as String

x = "hello world"

End Sub

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 667

668 Chapter 14 • Upgrading Visual Basic Applications to .NET

Programming Differences
The programming differences between the previous versions of Visual Basic and
Visual Basic .NET are many.They include changes in the way methods and
properties are implemented, and the fact that a host of old features, like GoSub,
are not supported.This section discusses the following differences:

■ Method implementation

■ Dealing with unmanaged code

■ Properties

■ Property name changes for some controls

■ Default properties

■ Null usage

Method Implementation
Procedures and functions in Visual Basic .NET have undergone some changes,
ranging from treatment of optional arguments to the latest feature of function
overloading. Modifications regarding how methods are implemented can be dis-
cussed under the following headings:

■ Optional Parameters

■ Static Modifier

■ Return Statement

■ Procedure Calls

■ External Procedure Declaration

■ Passing Parameters

■ ParamArray

■ Overloading

Optional Parameters
In Visual Basic 6.0, you can declare a procedure parameter as optional without
specifying a default value. If the optional parameter was of type Variant, the
IsMissing function can be used to determine whether the optional parameter is

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 668

Upgrading Visual Basic Applications to .NET • Chapter 14 669

present.This is something Visual Basic .NET can not do, since the IsMissing
function is not supported there. But, In Visual Basic .NET, an optional procedure
parameter must be declared with a default value.This value is then passed to the
procedure if the calling program does not supply the optional parameter.The fol-
lowing declaration shows you how to code a procedure that accepts an optional
parameter:

Function CheckBalance(ByVal strACNUM as string, Optional ByVal

strACName as String = "")

You can easily check if the optional parameter was passed to a function or
procedure with the help of the default value. In the procedure, check to see if the
optional parameter contains the default value. If it has the same value, then the
optional parameter has not been passed. If the optional parameter contains a dif-
ferent value than that of the default, then the parameter was passed.To success-
fully use this method, you must make sure the default value you assign is unique.

Static Modifier
You can declare a procedure in Visual Basic 6.0 with the Static modifier.All vari-
ables inside the procedure are then treated as static variables. Static variables retain
their value even after a function has finished execution. But in Visual Basic .NET,
the Static modifier cannot be used when declaring procedures or functions. If
you want to declare a variable as a static variable, you need to declare it explicitly.

Return Statement
The functionality of the Return statement has changed in Visual Basic .NET. In
Visual Basic 6.0, the Return statement can be used only to branch to a particular
statement in the calling code.This is typically the next statement following the
GoSub statement. In Visual Basic .NET, you use the Return statement to give
back control to the calling program, which is done by coding the Return state-
ment in a Function or Sub procedure. (It is important to note that the GoSub
statement is not supported in Visual Basic .NET.)

The following Visual Basic 6.0 code illustrates how the Return statement is
used to return control to the line following the GoSub statement. First, the
GoSub statement transfers control to the Add subroutine.The Add subroutine
then adds the two integers and transfers control to the line following the GoSub
statement with the help of the Return statement.After the control is transferred,
the result is displayed and the Exit Sub statement terminates the operation.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 669

670 Chapter 14 • Upgrading Visual Basic Applications to .NET

(The Exit Sub statement is required to prevent the control from executing the
add subroutine.)

Function AddInt() as Integer

Dim x As Integer

Dim y As Integer

Dim result As Integer

x = 10

y = 20

MsgBox result

Return

End Sub

The following subroutine demonstrates implementation of the Return state-
ment in giving back control to the calling program. First, the subroutine checks
the value of the denominator. If the value is zero, then the control is returned to
the calling program after displaying an error message.This is done with the help
of the Return statement. If the denominator has a value greater than zero, the
resulting division is displayed:

Sub Divide(Byval x as Short, ByVal y as short)

If y = 0 then

Msgbox "Cannot Divide by zero"

Return 0

Else

Return x / y

End if

End Sub

Procedure Calls
In Visual Basic 6.0, all function calls require parentheses around the parameter list.
If you are invoking a Sub procedure, the parentheses are required if you use the
Call statement.You cannot use parentheses when you invoke a Sub procedure

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 670

Upgrading Visual Basic Applications to .NET • Chapter 14 671

without a Call statement.The following code fragment shows you the variations
when a subroutine is called in Visual Basic 6.0:

Result = Add(10, 20)

Call FindDetails(aulname, aufname)

FindDetails aulname, aufname

In Visual Basic .NET, parentheses are required for any invocation of a
Function or Sub procedure that contains parameters.The usage of a Call state-
ment is optional. If a Sub or Function procedure does not contain any parame-
ters, you can either choose to use parentheses, or leave them out altogether.The
following code fragments illustrate how function calls are made:

Result = Add(10, 20)

FindDetails(aulname, aufname)

External Procedure Declaration
In Visual Basic 6.0, you can reference an external procedure using a Declare
statement. External procedures are typically API calls. In some cases, when a data
type for a parameter is unknown, or a return value is unknown, you can use the
Any keyword.The Any keyword allows you to pass any data type to parameters
that have been declared of this type.This does not, however, involve type safety.
Visual Basic .NET, on the other hand, does not support the Any keyword. So, if
an external procedure contains a parameter that has been declared as Any, the
Upgrade Wizard converts it to the Object data type.This was done to increase
type safety and ensure consistency and interoperability between applications.You
will have to declare parameters to be of a specific type before you can use them.
Declaring external procedures in Visual Basic .NET is done in much the same
way as Visual Basic 6.0.The following is a Visual Basic 6.0 external procedure
declaration:

Public Declare Function GetComputerNameW Lib "kernel32" (lpBuffer As

Any, nSize As Long) As Long

In Visual Basic .NET, it will be changed to:

Public Declare Function GetComputerNameW Lib "kernel32" (ByRef lpBuffer

As Object, ByRef nSize As Integer) As Integer

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 671

672 Chapter 14 • Upgrading Visual Basic Applications to .NET

Passing Parameters
The default parameter passing mechanism in Visual Basic 6.0 is ByRef.This
means that any change made to the parameter in the called program is reflected
in the calling program. Of course, such passing mechanisms have their pros and
cons. In Visual Basic .NET, on the other hand, the default parameter passing
mechanism is ByVal.When parameters are passed ByVal, any changes made to the
parameter values are effective only in the called function.The original values
present in the calling function are not affected.

When an argument is passed as ByVal, a copy of the variables is passed to the
called function.The advantage is that original values are retained.Arguments
passed using ByRef, however, run the risk of being modified the called function
or subroutine.

ParamArray
In Visual Basic 6.0, you can designate the ParamArray parameter to be the last
parameter to accept an array of parameters.This can be helpful when you don’t
know the number of parameters being passed to a procedure. In addition, you
cannot explicitly specify the passing mechanism as ByVal or ByRef for parame-
ters declared to be ParamArray.They are always passed as ByRef.This, unfortu-
nately, cannot be changed. Likewise, the data type for ParamArray parameters can
only be Variant. In Visual Basic .NET, on the other hand, the ParamArray param-
eters are always passed as ByVal, and need to be declared as the Object data type.

The following Visual Basic 6.0 code uses the subroutine called AddToArray.
This subroutine receives the array, as well as the elements added to the array, and
appends the list of values to it. Since the number of individual array elements
cannot be determined in advance, the ParamArray parameter is used to pass
multiple parameters:

Private Sub Command1_Click()

Dim x() As Integer

Dim ctr As Integer

Call AddToArray(x, 1, 2, 3, 4)

For ctr = 0 To UBound(x)

Debug.Print x(ctr)

Next

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 672

Upgrading Visual Basic Applications to .NET • Chapter 14 673

End Sub

Sub AddToArray(x() As Integer, ParamArray Values() As Variant)

Dim ctr As Integer

For ctr = 0 To UBound(Values)

ReDim Preserve x(ctr)

x(ctr) = Values(ctr)

Next

End Sub

The following code illustrates the same program written in Visual Basic .NET:

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As

System.EventArgs)

Dim x() As Integer

Dim ctr As Integer

Call AddToArray(x, 1, 2, 3, 4)

For ctr = 0 To UBound(x)

system.Diagnostics.Debug.WriteLine(x(ctr))

Next

End Sub

Sub AddToArray(ByRef x() As Integer, ParamArray ByVal Values() As

Object)

Dim ctr As Integer

ctr = 0

ReDim x((ubound(Values)) + 1)

For ctr = 0 To UBound(Values)

x(ctr) = values(ctr)

Next

End Sub

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 673

674 Chapter 14 • Upgrading Visual Basic Applications to .NET

Note the change to the ParamArray parameter data type from Variant to
Object, as well as the change to the ReDim statement.A value of one is added
to the Ubound function when the array is re-dimensioned.This is necessary
because arrays in Visual Basic .NET are zero-based.

The sample program demonstrates the use of ParamArray.The AddToArray
function accepts an array as the first argument, as well as a series of values to be
inserted into the array.The second parameter is declared to be a ParamArray
since the number of values vary depending on the situation, while the subroutine
re-dimensions the array to accommodate the actual number of elements that can
be stored there.When re-dimensioning the array, it is necessary to add one to the
size since arrays in VB.NET are zero-based.

Overloading
Overloading is a concept that has been in vogue for a number of years now.The
C++ language introduced this feature as a means to achieve the same function-
ality, differing only in terms of the number or types of parameters.A new
paradigm called function signature is closely related to function overloading.A
function signature is nothing but a template used by a compiler to check when a
call is made to the function or procedure.The signature consists of the following:

■ Name of the procedure

■ Number of parameters

■ Order of parameters

■ Data types of parameters

The following are not a part of a function signature:

■ Procedure modifiers like Private, Public, and so on

■ Parameter names

■ Parameter modifiers like ByRef and ByVal

■ Return values and types

Overloading a function involves changing at least one of the elements that
form part of the signature. Overload procedures have the following features:

■ Overloaded functions must differ only in their signatures, not on
anything else.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 674

Upgrading Visual Basic Applications to .NET • Chapter 14 675

■ Functions differentiated by virtue of their signatures can have any proce-
dure modifier or return type.

■ It is possible to overload a Function procedure with a Sub procedure or
vice-versa, provided their parameters are different. It is also possible to
overload a property or method in a class.

Earlier versions of Visual Basic do not support the concept of overloading.As
a result, you cannot have two or more procedures or functions with the same
name that differ only in their arguments. Each procedure, even if they offer the
same functionality, must be given a unique name.Thus, if you were writing a
procedure to divide two values, and you want to offer variations in the arguments
passed to these procedures, you have to write the procedures with the idea that
each procedure should be different from the other, not only in name but in the
arguments passed to it.The following code fragment illustrates this:

Function DivideInteger(i1 As Integer, i2 As Integer) As Integer

DivideInteger = i1 / i2

End Function

Function DivideLong(l1 As Long, l2 As Long) As Long

DivideLong = l1 / l2

End Function

The two functions, DivideInteger and DivideLong, offer variations on
dividing two integers or two longs.This puts added pressure on the programmer
to remember the correct name of the procedure when making a call to one or
both.Visual Basic .NET, however, overcomes this problem with the help of func-
tion overloading.The same code fragment rewritten in Visual Basic .NET is
shown next:

Overloads Function Divide(i1 As Integer, i2 As Integer) As Integer

If i2 = 0 Then

Return 0

Else

Return i1 / i2

End If

End Function

Overloads Function Divide(l1 As Long, l2 As Long) As Long

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 675

676 Chapter 14 • Upgrading Visual Basic Applications to .NET

If i2 = 0 Then

Return 0

Else

Return i1 / i2

End If

End Function

Now, both functions share the same name, differing only in the data type
passed as arguments.The runtime chooses the appropriate method depending on
the parameters used when the call is made.

Since overloading is not supported in Visual Basic 6.0, the functions written
in Visual Basic 6.0 undergo the same modifications that relate to data type
changes, keyword changes, and so on, used in the procedure.The following points
summarize changes affected by Visual Basic .NET:

■ Optional parameters must be declared with a default value.

■ Visual Basic .NET does not support the IsMissing function.

■ Static modifiers cannot be used in Visual Basic .NET when declaring
procedures or functions.

■ The Return statement is now used to transfer control to the calling
program.

■ Visual Basic .NET requires parentheses to invoke any procedure or
function containing parameters.

■ Use of the Any keyword is not supported in Visual Basic .NET.The
Any keyword is used in external procedure declarations to indicate a
particular parameter can contain data of any type.

■ The default parameter passing mechanism in Visual Basic .NET is ByVal.

■ ParamArray parameters are always passed as ByVal and the data type for
the parameters must be of type Object.

■ Implementation of overloading—the concept of using the same
procedure name with varying function signatures.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 676

Upgrading Visual Basic Applications to .NET • Chapter 14 677

References to Unmanaged Libraries
The introduction of the .NET Framework has certainly given programming a
new dimension. Likely the biggest worry you have, concerns all those COM
components you created over the years.The good news is that all of them can
still be used with applications from the .NET Framework.The .NET Framework
provides you with various techniques to help leverage the functionality of
existing components.

The following example illustrates a very simple implementation of a .NET
component, and the unmanaged client accessing that component.The code for
the .NET component is shown next:

Namespace SimpleComponent

Public Class Simple1

Public Sub New()

End Sub

Public Function SimpleMethod() As String

Return "From SimpleComponent in .NET"

End Function

End Class

End Namespace

The following is the code for the unmanaged client:

Sub AccessNETComponent()

Dim obj as Object

Set obj = CreateObject("SimpleComponent.Simple1")

Msgbox obj.SimpleMethod

End Sub

Though the method of coding has not changed much, the background work
necessary to allow the unmanaged code to access the .NET component is quite
substantial.The following steps detail the process:

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 677

678 Chapter 14 • Upgrading Visual Basic Applications to .NET

1. Once the .NET component is coded, it must be compiled.This is done
using the Visual Basic .NET compiler, which can be invoked from the
command-line by typing: vbc.exe.The .NET component then has to be
compiled into a DLL, the syntax for which is:

Vbc.exe /target:library <sourcefile>

The /target:library option instructs the compiler to produce a DLL
as the output. In this example, the code is contained in
SimpleComponent.vb, making the command:

Vbc.exe /target:library SimpleComponent.vb

2. Once the .NET component is compiled, the next step is to register with
COM. Dynamic Link Libraries compiled in the .NET environment are
different from COM DLLs. Since the old regsvr32.exe cannot be used to
register the DLLs, the Register Assembly tool (regasm.exe) should be
employed instead.Available as part of the .NET SDK, this tool reads the
component’s metadata and makes appropriate entries in the registry.
These entries include the programmatic identifier (ProgID) and the class
ID (CLSID) for the co-classes, which register the appropriate subkeys.
You can also use this tool to register the type library when you register
the component. So, in this example, you can issue the following com-
mand to register the .NET component:

Regasm.exe /tlb:simplecomponent.tlb simplecomponent.dll

3. Once the component is registered, the unmanaged client application can
be copied to the same folder as the .NET component, and then run.

The Common Language Runtime (CLR), which is the core of the .NET
Framework, manages all code that runs inside the .NET Framework.This code is
called the managed code, whereas any code that runs outside the confines of the
.NET Framework is called unmanaged code.All COM, COM+ components,
ActiveX controls, and Win32 API functions fall under this category.The managed
and unmanaged object models vary regarding data types, error handling, and so
on.The main function of the CLR is to simplify the interoperation between
these components.This is achieved in various ways.This section introduces some
of the concepts that aid in this transition:

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 678

Upgrading Visual Basic Applications to .NET • Chapter 14 679

■ Metadata

■ Runtime Callable Wrapper

■ COM Callable Wrapper

Metadata
The word Metadata means data about data. Metadata can be defined as a collec-
tion of binary code that describes a .NET component. It is either stored in
memory or in a .NET Framework portable executable file. It helps interoperate

www.syngress.com

Attaching a Debugger
Visual Studio .NET introduces a feature called Debugger that allows you
to attach to a process running outside the context of Visual Studio. This
feature of attaching to a process allows you to:

■ Debug a program that runs in a different process on the
same machine, or on a different machine. Debugging a pro-
cess in a different machine is called remote debugging. It is
important to note that remote debugging is not supported in
this beta version.

■ Debug multiple programs at the same time.
■ Invoke the debugger automatically whenever the debugged

process crashes. This is also referred to as Just-In-Time (JIT)
debugging.

Attaching a debugger to a process is very helpful when attempting
to debug an application that interoperates with several other compo-
nents. You can also debug unmanaged code from within managed code.
This can be done by selecting Processes from the Debug menu. The list
of currently running processes is listed in the available processes pane.
The next step is to select the process you want to debug and click the
Attach button. This brings up a dialog box displaying the list of avail-
able program types. Select the program type related to the application
you wish to debug. Click the OK button to close this window, followed
by the Close button on the Processes window.

Debugging…

153_VBnet_14 8/16/01 10:31 AM Page 679

680 Chapter 14 • Upgrading Visual Basic Applications to .NET

with pre-existing COM components, so if your .NET component wants to work
with a COM component, the COM component needs to provide information
about itself so the .NET component can identify the methods and properties
contained in the COM object.The runtime uses the metadata definition to bind
the component during compile time and generate the relevant wrapper.The
metadata about the COM component is available just like any other managed
namespace the CLR provides.

Various tools can be used to generate metadata of a COM component.
They are:

■ Type Library Importer

■ TypeLibConverter Class

The Type Library Importer, tlbimp.exe, is a command-line utility that con-
verts classes and interfaces contained in the COM type library to .NET metadata.
The metadata is then used by the .NET clients to instantiate a COM object.
Unfortunately, the Type Library Importer utility converts the entire COM type
library, not just a portion of it. It also cannot convert an in-memory type library
to metadata.The syntax of the tlbimp.exe tool is:

tlbimp.exe <TypeLibrary file> [/out: outputfilename]

For example, the following command will allow you to convert the ADO
type library to .NET metadata:

Tlbimp.exe msado25.tlb /out:adonet.dll

You can use the Intermediate Language Disassembler (ILDASM) tool to view
the contents of the file generated by the tlbimp.exe tool.

The TypeLibConverter class, meanwhile, is part of the System.Runtime
.InteropServices namespace and can convert the classes and interfaces contained in
the COM type library to .NET metadata.The class contains two methods that
aid in this conversion.They are:

■ ConvertAssemblyToTypeLib

■ ConvertTypeLibToAssembly

Both methods output the same metadata.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 680

Upgrading Visual Basic Applications to .NET • Chapter 14 681

Runtime Callable Wrapper
The Microsoft Component Object Model (COM) differs from the .NET
Framework in a number of ways.There is also another CLR component, apart
from using metadata, that helps .NET clients talk to COM components. It’s
called the Runtime Callable Wrapper (RCW).The RCW is a proxy created by
the CLR when a .NET client generates an instance of the COM object. From
the client’s point of view, the RCW is seen as an instance of the managed object.
The primary function of a RCW is to marshal calls between a .NET client and a
COM object.

The CLR creates one RCW for each COM object. Even though a client
may hold multiple references to the COM object, only one RCW will be cre-
ated.The runtime is responsible for creating both the COM object and that for
the Runtime Callable Wrapper.The Runtime Callable Wrapper object contains a
repository, which holds the interface pointers to the COM object. It releases the
reference to the COM object when the number of references is zero.

The RCW marshals data between managed and unmanaged code. It also rec-
onciles the data representation differences that exist between the client and the
COM object in terms of arguments passed to methods and return values.
Marshalling is a mechanism that refers to the method by which a client in one
process makes a call to functions in another process running on the same
machine or on a remote machine.This is achieved in two steps. First, the client
must be aware of the existence of the server process.This is done by taking a ref-
erence to the interface and passing it over to the client process.The second step is
to pass the parameters from the client to the server.The underlying architecture
creates a server proxy in the client process and a stub in the server process.The
client sees the proxy as the server and makes method calls as if it is the actual
server. Once a method call is made, the proxy accepts the call and passes on the
stub located in the server process.The actual transportation is handled by some
form of remote process communication like shared memory, named pipes, or
others.After the stub receives the request, it parses the call and passes it onto the
server. Marshalling is needed whenever the client and server are loaded in dif-
ferent processes either on the same or a different machine.

Garbage Collection is another issue to be contended with if you are working
with objects.The .NET Framework does an excellent job of Garbage Collection
and programmers can now concentrate more on building applications rather that
worry about releasing objects or leaking memory.Visual Basic .NET controls the
way objects are created and destroyed.The New keyword is used to create an

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 681

682 Chapter 14 • Upgrading Visual Basic Applications to .NET

object in Visual Basic .NET.When you set an object to Nothing, the object is
destroyed and the memory referenced by the object is freed. But there is more to
this than meets the eye.The Sub New procedure is a constructor that is called
whenever you create an object, and can contain code that does common initial-
ization tasks. It replaces the Class_Initialize method in Visual Basic 6.0.The Sub
New constructor cannot be explicitly invoked from anywhere in the program
except from another overloaded constructor in the same class or in a derived
class. Just as a constructor is called when an object is created, the Sub Finalize
method performs the role of a destructor, effectively replacing the Class_Terminate
method and performing all cleanup activities.

The .NET Framework automatically calls the destructor when it determines
that objects are not being used anymore. But it is important to note that the call
to the destructor is not immediate.The .NET Framework does not invoke the
destructor as soon as the object goes out of scope or is destroyed explicitly by
setting it to Nothing.The framework instead calls the destructor sometime after
the object has been destroyed.The main advantage with Garbage Collection in
Visual Basic .NET is that it is automatic. Objects are released and memory is
freed without any additional changes from the application.The disadvantage is
that some objects might stay in memory longer than needed, causing the unnec-
essary locking of memory locations.Another disadvantage is that an application
cannot directly make a call to the destructor.

You can also implement an additional destructor called Dispose if you want
to take control of management of resources.The Dispose method can contain
code to implement all cleanup activities just like the Finalize method.The Dispose
method is not automatically invoked, so your application must summon it to per-
form finalization tasks.

COM Callable Wrapper
The COM Callable Wrapper does the same thing as the Runtime Callable
Wrapper but from the COM client’s point of view.When a COM client creates
an instance of the managed class, the runtime creates a COM Callable Wrapper
for the managed object.The runtime creates only one wrapper for the managed
object irrespective of the number of COM clients requesting the reference to the
managed object.The primary responsibility of a COM Callable Wrapper is to
marshal calls between the managed object and the COM client.The following
points summarize how references to unmanaged libraries are handled in Visual
Basic .NET:

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 682

Upgrading Visual Basic Applications to .NET • Chapter 14 683

■ Metadata is binary data that describes a .NET component.

■ The Runtime Callable Wrapper (RCW) is a proxy that helps .NET
clients talk to COM components.

■ The COM Callable Wrapper (CCW) is a proxy that helps COM clients
talk to .NET components.

www.syngress.com

Tracing Code
The Debug class present in the System.Diagnostics namespace provides
you with various methods that allow you to trace code. Code tracing is
important during development because it aids you in identifying a
problem or in analyzing performance. The Write and the WriteLine
methods allow you to print messages in the Output window. This way,
you can place temporary messages to track the application flow. This is
a very important factor to consider if you are building a client and server
application and want to track the code-paths in both applications.

The .NET Framework also contains the Trace class which helps you
trace the flow of the application. To embed tracing in your application,
you should compile your application with a set of trace switches. These
switches also allow you to specify where the trace information should be
displayed and to what extent tracing should be done.

Since the Trace and Debug classes allow you to monitor an appli-
cation’s performance, as well as provide information about application
flow, you may want to include code, when developing an application,
that use the methods of the Trace and Debug class. The Debug class is
normally used to display diagnostic or non-tracing information about
your application. After the application has been developed and is ready
to be deployed, you can compile the application by turning off Debug
switches and turning on Trace switches.

To enable or disable Trace or Debug switches, open Solution
explorer, right-click Solution, and choose Properties. In the Property
Page dialog box, choose Configuration Properties from the left pane
and select Build. In the right pane, select the Define Debug Constant
and/or the Define Trace Constant checkboxes under conditional com-
pilation constants, depending on whether you want debug and/or trace.

Debugging…

153_VBnet_14 8/16/01 10:31 AM Page 683

684 Chapter 14 • Upgrading Visual Basic Applications to .NET

Properties
Property Procedures are implemented differently in Visual Basic .NET.With the
Set statement no longer supported, both variable assignments and object assign-
ments are treated the same.A property procedure consists of a set of Visual Basic
statements that allow you to work with properties that are user-defined.These
properties are defined in a class or a module.Visual Basic .NET provides two
types of property procedures to work with properties.They are:

■ Get:The Get procedure is used to return the property’s value.

■ Set:The Set procedure is used to assign a value to the property.

Working with Property Procedures
In Visual Basic 6.0, a property procedure is declared in the following manner:

Property Let CustName(strCustName as string)

m_CustName = strCustName

End Property

Property Get CustName() as String

CustName = m_CustName

End Property

In VB.NET, however, they are declared differently. Property procedure state-
ments are contained within the Property and End Property statements.The
Get and Set procedures are coded within this block.A property can be declared
as a default property by prefixing the property procedure with the Default key-
word, or you can define the scope of the property procedure using the Public,
Protected, Friend, or Private keywords. Properties are public by default, unless
otherwise specified.The following code shows you the implementation of a
property procedure:

Public Property CustName() as String

Get

Return m_CustName

End Get

Set

m_CustName = Value

End Set

End Property

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 684

Upgrading Visual Basic Applications to .NET • Chapter 14 685

If you look closely at the procedure declaration, you will see that a variable
with the name Value is being used.Visual Basic .NET uses this variable name as
the default variable if you did not declare the Set procedure as receiving any
arguments.

In a Get procedure, the return value is the value of the property returned to
the calling expression. In a Set procedure, the new property value is passed in as
the argument of the Set statement. If an argument is declared, then it must be of
the same data type as the property. If an argument is not specified, then the
implicit argument named Value is used to represent the new value.

The following code fragment shows you how to implement a property
procedure with arguments:

Public Class Class1

Private intSamp As Integer

Property Sample(ByVal x As Integer)

Get

Sample = intSamp

End Get

Set

intSamp = Value

End Set

End Property

End Class

The method of declaring arguments for property procedures is the same as
declaring arguments for a Function or a Sub procedure.The only difference in
the declarations is that all parameters are passed as ByVal.You can also declare
optional arguments to property procedures.Arguments declared as optional must
have a default value assigned to them.The new syntax is vastly different from the
earlier versions of Visual Basic.

Control Property Name Changes
Visual Basic .NET has replaced many property names with new names. Besides
this, all data binding properties have been implemented differently in VB.NET.
The following section provides a summary of changes effected for property
names.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 685

686 Chapter 14 • Upgrading Visual Basic Applications to .NET

Label Control
The Label control has undergone the following changes in Visual Basic .NET:

■ The Align property has been changed to TextAlign.

■ The Appearance property has no equivalent and has been combined with
the BorderStyle property.

■ The Caption property has been replaced with the new Text property.

■ A new property called Modifiers has been introduced to fix the scope of
the control.The possible values are Private, Public, and Protected.

■ All data binding and OLE properties have been removed.

Button Control
The Visual Basic 6.0 CommandButton control has been renamed Button
Control. Besides the change in name, the CommandButton control has also
undergone the following changes:

■ The Caption property has been changed to Text property.

■ The Button Control can now have a ContextMenu associated with it
through the ContextMenu property.

■ A new property called the DialogResult property has been introduced.
This property has the following valid values:Abort, Cancel, Ignore, No,
None, OK, Retry, and Yes. If the value of this property is set to anything
other than None, and if the parent form was displayed through the
ShowDialog method, clicking the button closes the parent form without
having to code for any events.The form’s DialogResult property is then
set to the same value as the DialogResult property of the Button object.

■ The Default and Cancel properties have been removed.

Textbox Control
The Textbox control has undergone the following changes in Visual Basic .NET:

■ Two new properties have been introduced to facilitate formatting the
contents of the Textbox control.The properties are AcceptsTab and
AcceptsReturn.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 686

Upgrading Visual Basic Applications to .NET • Chapter 14 687

■ A new property called CharacterCase has been introduced to set the case
of text entered in the Textbox control.

■ A new property called Lines has been introduced, allowing a user to
enter multiple lines during design time.

In general, all controls have undergone changes with respect to the following
properties:

■ The Index property is no longer supported in any of the controls.

■ The MousePointer property has been changed to Cursor property.

■ A new property called Modifiers has been added.This can be used in
selecting the access specifier for the control.

■ The Caption property has been changed to Text property.

■ A new property called ImageAlign has been added.This property can be
used to set the alignment of the control in the form.

■ A new property called Dock can be used to dock the controls to a
specific location.

During an upgrade, the older properties supported will be automatically
mapped to newer properties.This includes properties that have been retained as is
or properties that have had their names changed. If your control used properties
that are unsupported in Visual Basic .NET, then they are marked as
UPGRADE_ISSUE with an appropriate description of the issue.

Default Property
A default property is a property that can be accessed by referencing the object
directly. In reality, it is more of a programming shortcut. For example, the Label
object has the Caption property as its default property. So, if you had a label
named label1, instead of writing the following line of code to set the caption on
the label:

label1.Caption = "Enter Name"

you can write:
label1 = "Enter Name"

The default property is resolved when the code is compiled. It is also possible
to use late-bound objects with default properties.When using late-bound objects,
the property is resolved at runtime, as shown in the following:

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 687

688 Chapter 14 • Upgrading Visual Basic Applications to .NET

Dim objLbl as Object

Set objLbl = Form1.label1

ObjLbl = "Enter Name"

There are a lot of disadvantages in using default properties as implemented in
Visual Basic 6.0:

■ Default properties assume that the programmer knows what default
property is associated with each object.This leads to uncertainty when
debugging programs. In the preceding code fragment, it is difficult to
determine whether the string value “Enter Name” is assigned to a vari-
able called label1 or whether the string value is assigned to the default
property of the object called label1.

■ It is not easy to determine if an object has a default property and if so,
what property that should be.

■ Default properties necessitate the usage of the Set statement.This is
because we need to differentiate between working with an object and
working with a default property of the object.With the Set statement
becoming obsolete in Visual Basic .NET, the need for using parameterless
default properties is also done away with.The following example illustrates
the need for using the Set statement when assigning an object reference:

Dim Text1 as Textbox

Dim Text2 as Textbox

Text1 = "Some Text" 'Assigning a value to the text property

Set Text2 = Text1 'Assigning the Text1's object reference

'to Text2

Text2 = Text1 'Assigning the text property of Text1 to

'text property of Text2

Visual Basic .NET does not implement the concept of parameterless default
properties. So, during an upgrade process, the Upgrade Wizard resolves the
default properties to the appropriate property. But if you are using late-bound
objects, then the Upgrade Wizard does not have much information about the
type of object this object will be bound to.The preceding example can be
rewritten in Visual Basic .NET as:

Dim Text1 as Textbox

Dim Text2 as Textbox

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 688

Upgrading Visual Basic Applications to .NET • Chapter 14 689

Text1.text = "Some Text" 'Assigning a value to the text property

Text2 = Text1 'Assigning the Text1's object reference

'to Text2

Text2.text = Text1.text 'Assigning the text property of Text1 to

'text property of Text2

However,Visual Basic .NET does support default properties with parameters.
The nomenclature of the two terms can be a little confusing.The following code
aims to clear this up, however.The System.Collections namespace implements a
Dictionary class that stores various key-value pairs. Consider the following code
which adds two words to the dictionary collection and displays them:

Dim objCol As New System.Collections.Dictionary()

objcol.Add(1, "Amrita")

objcol.Add(2, "Aarthi")

Msgbox(objcol.Item(1).ToString) 'Explicitly referencing the

'Item property

Msgbox(objcol(2).ToString) 'Using the default property

'with parameter

The Item property is the default property for the Collection object. Since this
property can be accessed by specifying an index as a parameter, you can reference
this as a default parameter so the statement becomes a valid reference to the
default parameter (see the code fragment that follows):

Msgbox(objcol(2).ToString)

The following points summarize the changes that have been made to the
process of working with properties in Visual Basic .NET:

■ The syntax of property procedures has been changed.

■ There is no longer a Let procedure.

■ Property names for commonly-used controls have undergone changes in
name.Also, some properties have been removed.

■ A property can be considered a default property only if it can be
parameterized.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 689

690 Chapter 14 • Upgrading Visual Basic Applications to .NET

Null Usage
The Null keyword and Empty keywords are not supported in Visual Basic .NET.
The Null keyword was used in previous versions of Visual Basic to indicate that a
variable does not contain any valid data.The Empty keyword, when assigned to a
variable, indicates that the variable is uninitialized.Visual Basic .NET introduces
the Nothing keyword, effectively replacing the Null and Empty keywords.
Alternatively, you can use the DBNull class in the System namespace to represent a
Null value. Note that the Null keyword is no longer in use.

The word Null is a reserved keyword in Visual Basic .NET, but does not have
any implementation so far.With the Empty keyword phased out, the IsEmpty
function is no longer supported in Visual Basic .NET.The IsNull function has
been replaced by the IsDBNull function.The following code illustrates this.A
variable of type Object is assigned a DBNull value and the IsDBNull function is
used to check for the same:

Dim objSample As Object

objSample = System.DBNull.Value

If IsDBNull(objSample) Then

Msgbox("Sample is null")

Else

Msgbox("Sample is not null")

End If

It is important to note that some expressions which you might expect to
evaluate to True under certain circumstances (such as If Var = DbNull and If Var
<> DbNull) are always False.This is because any expression containing a DbNull
is itself DbNull and, therefore, False.

Understanding Error Handling
Applications written using Visual Basic 6.0 used the On Error statement to
handle errors.The Err object provided diagnostic information about the error.
The Number and Description properties provided the error code and a description
of the error.The main drawback of this kind of error handling is the inability to
trap errors raised by Windows DLLs. System errors that arise during calls to
Windows DLLs do not raise exceptions and cannot be trapped by this style of
error handling.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 690

Upgrading Visual Basic Applications to .NET • Chapter 14 691

Visual Basic .NET uses structured exception handling to handle errors and
exceptions. Most of the object-oriented (OO) languages use this mechanism to
handle errors. Structured exception handling enables you to create more robust
and comprehensive error handlers.The Common Language Runtime (CLR) uses
structured exception handling based on exception objects and protected blocks of
code.When an exception or an error occurs, an object is created to represent the
exception.The exception objects created are objects of exception classes derived
from System.Exception. It is also possible to create custom exception classes.All
languages that use the CLR handle exceptions in a similar manner. Structured
exception handling consists of using the Try…Catch…Finally syntax.The Try
block normally contains both the corresponding Catch and Finally blocks.The
code that throws the exception is surrounded in a Try block.The Catch block
consists of a series of statements beginning with the keyword Catch, followed by
an optional filter that specifies the exception type. It is also possible to code mul-
tiple Catch blocks for a Try block.A Catch block that contains a filter for a spe-
cific exception type is invoked when that exception is thrown.The Catch block
that contains no parameters, also called a general exception handler, is invoked for
all other exceptions.The Finally block follows the Catch block, and contains the
cleanup code.

It is important to note the order of the Catch statements if you are coding a
general exception handler as well as specific exception handlers.The general han-
dler should be the last if you are coding Catch blocks to handle specific excep-
tions. If the general handler is coded first followed by other specific handlers, the
runtime invokes the general handler by default since the general handler handles
all exceptions.The rule of thumb is to go from specific exception handlers to
general exception handlers. See the code that follows:

Try

<Statements to be executed>

'Indicates the beginning of the exception handler

'Contains code that might throw exceptions

Catch [<variable> As <ExceptionType>]

<Exception processing statements>

'This will be executed if the statements in the Try

'block fails and the exception thrown matches the

'exception specified as a parameter

[Additional Catch Blocks]

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 691

692 Chapter 14 • Upgrading Visual Basic Applications to .NET

Finally

<Cleanup Code>

'Contains cleanup code

End Try

Consider the following code fragment that demonstrates how to implement a
Try…Catch…Finally in a Visual Basic program.

Try

result = intVar1 / intVar2

Catch ex as System.OverflowException

Msgbox (ex.Message)

Finally

End Try

The statement that divides two integers is included in the Try block because
there might be a situation when the denominator could be zero.The Catch block
is defined with an object of the specific exception type.This is the exception we
expect the code to throw. Once the exception is caught, you can display a
custom error message to the user. In this case, the message displayed is the default
message for this exception as defined in the CLR. Normally, the Finally block
contains cleanup code. In this case, however, the Finally block is left empty.

It is also possible to extend exception handling by implementing custom
interfaces. Custom exception handlers are implemented by creating a new excep-
tion that inherits from a System.Exception class or a class derived from the
System.Exception class.Then you need to determine the situations under which
this exception will be thrown, and finally, write appropriate code to throw that
exception.The following exercise walks you through these steps.

Exercise 14.1: Using Error Handling
1. Add a class to your project.The first step is to inherit from the

System.Exception class or a class derived from the System.Exception class.
The following code shows you the implementation:

Public Class CreditDebitException

Inherits System.Exception

'Call the base class constructor from the constructor

'of this class.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 692

Upgrading Visual Basic Applications to .NET • Chapter 14 693

Public Sub New(ByVal strMessage as String)

MyBase.New(strMessage)

End Sub

End Class

2. The second step is to decide how and when to use this exception.This
can be done by examining the code and determining where this excep-
tion could fit in.

3. After finalizing the usage, you can use the exception in the application.
Use the Throw statement to explicitly raise an exception.This is equiv-
alent to calling the Raise method of the Err object in Visual Basic 6.0. In
this example, a middle-tier component throws the CreditDebitException
when the Credit and Debit amounts are not equal. Once the exception
is thrown by the component, the client receives the exception.The
client would typically code the CheckDebitCredit method in the Try
block and the Catch block can be coded to receive the
CreditDebitException, as shown next:

Public Sub CheckDebitCredit(ByVal intDebitVal as Integer, ByVal _

intCreditVal as Integer)

If (intDebitVal != intCreditVal) Then

Throw New CreditDebitException("Credit and Debit must

be equal")

End If

End Sub

Data Access Changes
in Visual Basic .NET
ADO.NET is a vast improvement over its predecessor ADO.ADO.NET offers a
variety of features that include disconnected data access, performance optimiza-
tion, and better and richer data type support.There are a lot of differences
between ADO and ADO.NET.This section attempts to cover most of them..
ADO.NET introduces the Dataset object which can represent multiple tables,
store relationship information, and provide disconnected access to data.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 693

694 Chapter 14 • Upgrading Visual Basic Applications to .NET

Dataset and Recordset
ADO uses the Recordset object to represent the entire set of records from a single
base table. Even though you cannot store multiple tables in a recordset, it is pos-
sible to store data from multiple tables using a JOIN clause in the SELECT
query that builds the recordset.The ADO.NET DataSet object is a collection of
one or more tables, and the tables contained in the dataset are called data tables.
These can be accessed using the DataTable objects.The TablesCollection object
contains all the DataTable objects in a DataSet, each DataTable object corre-
sponding to a table in the actual database.

The columns in a DataSet are represented using a DataColumn object. It is
also possible to relate the tables in the dataset using the DataRelation objects.The
DataRelation object uses the DataColumn object to relate two or more tables by
employing the concept of a foreign key.This feature allows the user to implement
more complex operations than were hitherto possible.The DataSet, with the
ability to store multiple tables and the relationships between those tables, offers a
feature-rich implementation.

From the user’s perspective, a dataset is a representation of an actual database
residing on the client’s machine.After an upgrade, you can still continue to use
your existing applications but will not be able to leverage the benefits of
ADO.NET.The Microsoft ActiveX Data Objects type library is automatically
upgraded and the code is modified to reflect the syntax of VB.NET during the
upgrade.

Application Interoperability
Marshalling ADO disconnected recordsets was achieved through Component
Object Model (COM).The disadvantage with COM marshalling is the restricted
availability of data types.The data types that are available are what COM pro-
vides. By comparison,ADO.NET transmits datasets as XML streams. Since XML
has no restriction on data types, the component consuming the datasets is free to
use whatever appropriate data types it normally uses.

Transmitting a large disconnected ADO recordset over the network places
enormous stress on the network resources.The increase in stress is directly pro-
portional to the size of the recordset being transmitted.Though ADO does offer
its own performance optimization, it still suffers because of its dependency on
COM.The data type conversions are required for COM marshalling between
components.ADO.NET, on the other hand, does not need to enforce any data
conversions and data is marshaled as XML.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 694

Upgrading Visual Basic Applications to .NET • Chapter 14 695

Disconnected ADO recordsets that are marshaled across intranets or the
Internet suffer from restrictions imposed by firewalls.A firewall allows only
HTML text to pass, preventing any operations that access system resources. Here
again,ADO.NET scores over ADO in that ADO.NET passes data around as XML
streams.The advantage of XML streams is that they are just text data.This allows
the data to be transmitted using the HTTP protocol which most firewalls allow.
However, if you have to pass an ADO recordset, you also need to package and
send interface methods and parameters from the client to the server or vice-versa.

Cursor Location
The ADO Recordset object can be created by the application in two places: within
the application as a client-side cursor, or within the data store as a server-side
cursor. Client-side cursors are supported in ADO.NET by the DataSet object,
while server-side cursors are implemented using the DataReader object.

When you upgrade an ADO application from Visual Basic 6.0 to Visual Basic
.NET, the Upgrade Wizard modifies the Microsoft ActiveX Data Objects library
as well, prompting your existing code to be altered in order to suit the .NET
Framework.Any reference to the CursorLocation constants is upgraded to reflect
the change. So, the values of adUseClient and adUseServer are upgraded to
ADODB.CursorLocationEnum.adUseClient and ADODB.CursorLocation
.adUseServer, respectively.

Disconnected Access
While ADO is primarily designed for connected access to the database,
ADO.NET provides disconnected access to data.Whereas ADO communicates
with the database by making calls to the OLEDB provider, or through any of the
APIs provided by the DBMS,ADO.NET communicates through the data adapter
object.The DataSetCommand object in turn makes calls to the OLEDB provider.
The main difference between disconnected access in ADO and ADO.NET is that
the DataSetCommand object optimizes performance, performs validity checks, and
controls the way the changes are written to the database.

Data Navigation
The data in an ADO recordset can be accessed by calling any one of the move
methods supported by the Recordset object. In ADO.NET, rows are represented as
collections.This allows the programmer to work with them just like objects. New
rows can be added through the Add method, rows can be deleted using the

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 695

696 Chapter 14 • Upgrading Visual Basic Applications to .NET

Remove method, and rows can be accessed through an ordinal or a primary key,
such as an index. DataRelation objects allow the programmer to maintain a
master-detail relationship between the tables in the database.This means that as
you move from one record to another in a master table, the corresponding
records in the transaction table are made available.

The object models for ADO and ADO.NET are radically different.ADO
does not support any of the objects present in the new object model.The choice
here is to either retain the application as it is, or re-write your application to take
advantage of the new features.

Lock Implementation
ADO holds up database locks and database connections for long durations that
result in performance bottlenecks and resource contentions.The disconnected
data access implemented by ADO.NET ensures that database locks or database
connections are not held for longer periods of time.When you upgrade an
existing Visual Basic 6.0 ADO application, the Upgrade Wizard converts the
existing ADO type library to .NET metadata.The existing classes and their asso-
ciated methods and properties can be used as they are, without any modifications.

Upgrading Interfaces
Earlier versions of Visual Basic used interfaces, but could not create them directly.
Visual Basic .NET introduces this feature with the Interface statement, which
allows you to define true interfaces.The interfaces you define are distinctly dif-
ferent from classes, and it is now possible to actually implement them using the
enhanced Implements keyword.

Interfaces define the properties, methods, and events that classes can imple-
ment.The basic purpose of defining an interface is to logically group properties,
methods, and events that represent a logical entity. Besides, it is also possible to
extend interfaces by creating new interfaces from the old, and adding more
functionality without breaking existing clients.

The main purpose of interfaces in any language is to allow the objects and
their interfaces (methods, parameters, properties, and so on) to be designed for all
the objects in a system.This allows developers to work concurrently on different
objects without having to wait on one or the other to be implemented since the
interfaces between the objects are defined.

An interface, unlike a class, does not provide implementation, it defines a
contract between itself and a class.This is a two-way relationship.The class

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 696

Upgrading Visual Basic Applications to .NET • Chapter 14 697

implementing the interface must implement all the methods, and the interface
guarantees no change will be made to the existing interface. In order to incorpo-
rate functionality changes, you can create a new interface that inherits from the
original version.

Visual Basic .NET uses the Interface and End Interface statements to
define an interface.The property, method, and event definitions are then
embedded within these statements.The following rules apply to interfaces:

■ The Inherits statement follows the Interface statement if the interface
inherits from another interface.

■ The Inherits statement must be the first statement after the Interface
statement. Only comments, if any, can precede the Inherits statement.

■ The interface can only contain Event, Sub, Function, or Property
statements. Interfaces cannot contain any implementation code or even
End Sub or End Function statements.

■ Interface statements are Public by default, but they can also be declared
as Friend, Protected, or Private.

While an Interface declaration can contain any of the four modifiers just
mentioned, it is not possible to declare a Sub, Function, or Property definition
with any other modifier than the OverLoads or Default keywords.Therefore, a
function cannot be declared with Public, Private, Friend, Protected, Shared,
Overrides, MustOverride, or Overridable.The reasons for this restriction are
described in the following bullet points:

■ The Public modifier indicates the entity has unrestricted access and can
be accessed by any object, even those that do not implement the inter-
face containing this entity.This disassociates the entity as a member of
the interface.

■ The Private modifier restricts the entity’s access to only its declaration
context, thereby rendering the entity totally inaccessible.

■ The Friend modifier restricts access to only the program that contains
the entity declaration.

■ The Protected modifier restricts the entity’s access to only those inter-
faces that derive from this class.As a result, those classes that implement
this interface have no access to the entity.

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 697

698 Chapter 14 • Upgrading Visual Basic Applications to .NET

■ An entity declared with the Shared modifier does not operate on a spe-
cific instance of a type, meaning that the entity can be invoked directly
from a class rather than from the instance.

■ The Overrides modifier indicates that the entity will be overridden in
the derived class.This goes against the contract between the Interface
and the class, being that a class is required to implement all the entities
in the interface without any changes.

■ The MustOverride modifier means that the derived class must override
the entity in order to be creatable.

■ The Overridable modifier indicates that the entity can be overridden.

The Implements keyword signifies that a class member implements a spe-
cific interface.An Implements statement requires a comma-separated list of
values, each value representing a single interface member that is implemented in a
class. Normally, only a single interface member is specified, but it is also possible
to implement multiple members.The interface member is specified in the fol-
lowing format:

<InterfaceName.InterfaceMember>

The method that implements the entity need not follow the Visual Basic 6.0
convention of InterfaceName_MethodName.The method name can be any legal
identifier.The following code fragment illustrates a method that implements an
interface:

Function Add(ByVal intOper1 as integer, ByVal intOper2 as integer) as_

Integer Implements ICalculator.Add

Add = intOper1 + intOper2

End Function

The implementing method’s function signature should match the Interface
method’s function signature. In other words, the data type of the arguments,
return value, and so on, must be exactly the same.You can declare the method
that implements the interface member with any of the legal modifiers allowed on
the instance method declarations.The legal modifiers are Overloads, Overrides,
Overridable, Public, Private, Protected, Friend, Protected Friend, MustOverride,
Default, and Static.

The Implements statement can also be used to declare a single method that
implements multiple methods of multiple interfaces.This feature comes in handy

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 698

Upgrading Visual Basic Applications to .NET • Chapter 14 699

when all the methods exhibit the same functionality. Consider the following code
fragment:

Sub Method1 Implements InterfaceA.Method1, InterfaceB.Method2, _

InterfaceC.Method3, InterfaceD.Method4

'Visual Basic Code

End Sub

Upgrading Interfaces from Visual Basic 6.0
Visual Basic 6.0 allowed only components consume interfaces.There was no way
an interface could actually be created.There might be situations when you decide
to upgrade your component to Visual Basic .NET to take advantage of a lot of
new features.When you do the upgrade, the Upgrade Wizard will make changes
to your existing component to make it compatible with Visual Basic .NET.This
section is devoted to demystifying the changes the Upgrade Wizard will make to
your existing component.

Consider the following program, written in Visual Basic 6.0, which imple-
ments a simple calculator.The ICalculator interface implements four simple func-
tions of Add, Subtract, Multiply, and Divide. Each of the functions accepts two
integers and returns a third integer as a result.The clsCalc class implements all the
interface methods.The client code, meanwhile, is implemented in a Form.

The code for the ICalculator interface is shown in the following:

Function Add(intOper1 As Integer, intOper2 As Integer) As Integer

End Function

Function Subtract(intOper1 As Integer, intOper2 As Integer) As Integer

End Function

Function Divide(intOper1 As Integer, intOper2 As Integer) As Integer

End Function

Function Multiply(intOper1 As Integer, intOper2 As Integer) As Integer

End Function

The code implementing the ICalculator interface is shown next.

www.syngress.com

CD File
14-1

153_VBnet_14 8/16/01 10:31 AM Page 699

700 Chapter 14 • Upgrading Visual Basic Applications to .NET

Implements _ICalc

Private Function ICalc_Add(intOper1 As Integer, _

intOper2 As Integer) As Integer

ICalc_Add = intOper1 + intOper2

End Function

Private Function ICalc_Divide(intOper1 As Integer, _

intOper2 As Integer) As Integer

ICalc_Divide = intOper1 \ intOper2

End Function

Private Function ICalc_Multiply(intOper1 As Integer, _

intOper2 As_ Integer) As Integer

ICalc_Multiply = intOper1 * intOper2

End Function

Private Function ICalc_Subtract(intOper1 As Integer, _

intOper2 As Integer) As Integer

ICalc_Subtract = intOper1 - intOper2

End Function

The client uses the methods of the ICalculator interface as illustrated in the
following:

Private Sub TestInterface()

Dim objCalc As ICalc

Set objCalc = New clsCalc

MsgBox objCalc.Add(10, 20)

End Sub

The succeeding code segment illustrates the changes made to the ICalculator
interface after the project is upgraded to Visual Basic .NET:

Namespace Project1

Interface _ICalc

Function Add(ByRef intOper1 As Short, _

ByRef intOper2 As Short) As Short

www.syngress.com

CD File
14-2

CD File
14-3

CD File
14-4

153_VBnet_14 8/16/01 10:31 AM Page 700

Upgrading Visual Basic Applications to .NET • Chapter 14 701

Function Subtract(ByRef intOper1 As Short, _

ByRef intOper2 As_ Short) As Short

Function Divide(ByRef intOper1 As Short, _

ByRef intOper2 As_ Short) As Short

Function Multiply(ByRef intOper1 As Short, _

ByRef intOper2 As_ Short) As Short

End Interface

Public Class ICalc

Implements _ICalc

Function Add(ByRef intOper1 As Short, ByRef intOper2

As Short) As _

Short Implements _ICalc.Add

End Function

Function Subtract(ByRef intOper1 As Short, ByRef intOper2

As Short) As_

Short Implements _ICalc.Subtract

End Function

Function Divide(ByRef intOper1 As Short, ByRef intOper2 As Short) As _

Short Implements _ICalc.Divide

End Function

Function Multiply(ByRef intOper1 As Short, ByRef intOper2

As Short) As _

Short Implements _ICalc.Multiply

End Function

End Class

End NameSpace

www.syngress.com

153_VBnet_14 8/16/01 10:31 AM Page 701

702 Chapter 14 • Upgrading Visual Basic Applications to .NET

The changes that the Upgrade Wizard makes to the existing code are quite
noteworthy:

1. The Upgrade Wizard creates a new interface called _ICalc.This name is
the name of the Visual Basic 6.0 class that holds the interface definitions.

2. The interface definitions are coded within the Interface…End Interface.
The End Functions are also removed so that definitions contain only the
function names without any implementation code.

3. The integer data type is changed to short.

4. The Upgrade Wizard then creates a new class called ICalc that derives
from _ICalc.This wrapper class contains interface member definitions
with the partial implementation.

5. Then another derived class, which actually contains the full implementa-
tion of the four functions, is created.This class is called clsCalc, the con-
tents of which are shown in the following:

Namespace Project1

Public Class clsCalc

Implements _ICalc

Private Function ICalc_Add(ByRef intOper1 As Short,

ByRef_ intOper2 As Short) As Short

Implements _ICalc.Add

ICalc_Add = intOper1 + intOper2

End Function

Private Function ICalc_Divide(ByRef intOper1 As Short,

ByRef intOper2 As Short) As Short

Implements _ICalc.Divide

ICalc_Divide = intOper1 \ intOper2

End Function

Private Function ICalc_Multiply(ByRef intOper1 As Short,

ByRef intOper2 As Short) As Short

Implements _ICalc.Multiply

ICalc_Multiply = intOper1 * intOper2

www.syngress.com

CD File
14-5

153_VBnet_14 8/16/01 10:31 AM Page 702

Upgrading Visual Basic Applications to .NET • Chapter 14 703

End Function

Private Function ICalc_Subtract(ByRef intOper1 As Short,

ByRef intOper2 As Short) As Short

Implements _ICalc.Subtract

ICalc_Subtract = intOper1 - intOper2

End Function

End Class

End NameSpace

6. The clsCalc class implements the _ICalc interface and contains code that
implements the four functions.

7. The client instantiates the _ICalc interface and assigns a reference to the
clsCalc class.Afterward, the Add method is called with two short values.
The code for the client is shown in the following:

Public Sub TestInterface()

Dim objCalc As _ICalc

objCalc = New clsCalc

MsgBox(CStr(objCalc.Add(10, 20)))

End Sub

Using the Upgrade Tool
Visual Basic .NET is a paradigm shift from the previous versions of Visual Basic,
and there are a lot of advantages in upgrading to it. Exercise 14.2 walks you
through this process.

Exercise 14.2 Using the Upgrade Wizard
1. The upgrade tool is launched as soon as you open a Visual Basic 6.0

project in Visual Basic .NET. Figure 14.1 shows you the initial screen of
the Upgrade Wizard.The first step in the wizard summarizes the actions
that will be done throughout the Upgrade Wizard. It then creates a new
Visual Basic .NET project in a separate folder you specify, leaving your

www.syngress.com

CD File
14-6

153_VBnet_14 8/16/01 10:32 AM Page 703

704 Chapter 14 • Upgrading Visual Basic Applications to .NET

existing project unchanged. (It is important to note that a Visual Basic
.NET project cannot be opened in Visual Basic 6.0.)

2. After the initial screen is displayed, the next step in the upgrade process
is to choose what kind of project the existing project should be
upgraded to, as well as configuring certain other options.The Upgrade
Wizard determines the project type of the existing Visual Basic 6.0 pro-
ject and selects the appropriate option. It also displays the existing pro-
ject type in the first line. For internationalization projects, you can select
the code page that translates the project.This step also allows you to
configure other options.You can decide if you want to generate default
interfaces for public classes, update ActiveX references to Windows
Forms, and make arrays zero-based. Refer to Figure 14.2.

www.syngress.com

Figure 14.1 Step 1 of 5 of the Upgrade Wizard

Figure 14.2 Step 2 of 5 of the Upgrade Wizard

153_VBnet_14 8/16/01 10:32 AM Page 704

Upgrading Visual Basic Applications to .NET • Chapter 14 705

3. Step 3 in the upgrade process is to specify where the new upgraded pro-
ject should be created. Note that your existing project will be left as is,
and that the upgraded project won’t be able to be opened in previous
versions of Visual Basic. Figure 14.3 displays this process.

4. Figure 14.4 shows the screen informing the user that the project is ready
to be upgraded. If you are set to proceed, click Next.When the project
is upgraded, the language is modified for any syntax changes and Visual
Basic Forms is converted to Windows Forms. More often than not, you
will have to make changes to the code after it is upgraded.This is neces-
sary because certain objects either have no equivalents, or the properties
of some objects have been either erased or renamed.

www.syngress.com

Figure 14.3 Step 3 of 5 of the Upgrade Wizard

Figure 14.4 Step 4 of 5 of the Upgrade Wizard

153_VBnet_14 8/16/01 10:32 AM Page 705

706 Chapter 14 • Upgrading Visual Basic Applications to .NET

5. The last screen (Figure 14.5) shows the current status of the upgrade
process.After the project is upgraded, the Upgrade Wizard creates an
upgrade report that itemizes problems and inserts comments in the code,
informing the programmer of what changes should be made. It is not
difficult to find the parts of the code that need updating, because the
Upgrade Wizard marks that code which needs changing, even including
comments with the designation.The comments begin with the text
TODO, and the IDE picks up these statements and lists them in the
TaskList window. Navigating to the appropriate line is as easy as double-
clicking the item in the TaskList window. Each item in the upgrade
report is even associated with a related online help topic, which not only
explains the need to change the code, but how to do it.

After the upgrade is completed, the Upgrade Wizard attaches various com-
ments to the upgraded code.These can be categorized into the following four
types, based on their severity:

■ UPGRADE_ISSUE errors are items that will generate build errors and
prevent the application from compiling.As a result, they are marked as
compiler errors. It is necessary to correct them before running the project.
These errors are logged in the upgrade report, as well as the Task List.

■ UPGRADE_TODO errors are items that will not hinder the compila-
tion process, but that do result in runtime errors. It is necessary to correct
them before the solution will run successfully.These are reported in the
upgrade report as both items in the TaskList and comments in the code.

www.syngress.com

Figure 14.5 Step 5 of 5 of the Upgrade Wizard

153_VBnet_14 8/16/01 10:32 AM Page 706

Upgrading Visual Basic Applications to .NET • Chapter 14 707

■ UPGRADE_WARNING errors are items that will not result in com-
piler errors but that might still cause an error when referencing the item
during runtime. It is not absolutely necessary to rectify them, but doing
so will result in a smoother execution of the project.These items are
outlined in the upgrade report as both items in the TaskList window and
comments in the code.

■ UPGRADE_NOTE indicates serious changes in the code. Upgrade
notes are added when there is a major structural change in code.
Reported as comments in code, you should read them thoroughly
before deciding on a course of action.

After the Visual Basic 6.0 project has been upgraded to Visual Basic .NET, an
upgrade report is added to the project.This report contains the following details
and is named _Upgradereport.htm:

■ Project name

■ Time of upgrade

■ Upgrade settings consist of the following key-value pairs:

■ A Boolean value indicating whether ADO+ was used.

■ A Boolean value indicating whether the user requested the Upgrade
Wizard to generate public interfaces for classes.

■ The name of the logfile.

■ The kind of project this project migrated from.

■ A Boolean value to indicate if the user preferred to change the
arrays to zero-based.

■ The path to the output directory.

■ The name of the project that was created.

■ The actual path to the project that was created.

■ A list of project files with information regarding the new filename, the
old filename, file type, status, errors, warnings, as well as other issues.

www.syngress.com

153_VBnet_14 8/16/01 10:32 AM Page 707

708 Chapter 14 • Upgrading Visual Basic Applications to .NET

Summary
There are special considerations that must be taken into account when migrating
your Visual Basic 6.0 applications to .NET. For instance, you should bind vari-
ables because of the changes to property names and data type changes. In addi-
tion, you should make sure to avoid null propagation, use ADO for all database
applications, use the Date data type to store dates, avoid fixed-length strings, and
use constants instead of underlying values.There are changes that have been made
to the application architecture in .NET, so it is advisable to port all your applica-
tions to ADO before they are moved to .NET.

Data types have also undergone a significant number of changes.Visual Basic
.NET, for example uses the Object data type instead of the Variant data type. It
also introduces a new data type called Short to store 16-bit numbers.The Integer
data type, meanwhile, has been modified to store 32-bit numbers, the Long data
type now stores 64-bit numbers, and the underlying value of Boolean True has
been changed to –1.Arrays, too, have undergone a change, in that the lower-
bound value is now fixed as zero and is impossible to change.

A host of new features have been added to Windows Forms as well, effec-
tively replacing the Visual Basic 6.0 forms. Keywords like GoSub, Option Base,
Lset, VarPtr, StrPtr, Set, and Def are no longer supported. In addition, the
functionality of the GoTo statement is restricted only to error-handlers now.

Several new modifiers to functions, meanwhile, have been introduced in Visual
Basic .NET.The functionality of the Return statement has been extended to
return a value to the calling function besides returning control.Visual Basic .NET
has also introduced the new concept of function overloading, allowing multiple
functions to have the same name with each function differing only in their signa-
ture. In other developments, the syntax of property procedures has changed,Visual
Basic .NET no longer allows parameter-less default properties, and with no sup-
port for the Set statement, you cannot have a Set property procedure.

Visual Basic .NET allows interoperability with COM components using
metadata, Runtime Callable Wrappers, and COM Callable Wrappers.This allows
you to leverage the functionality of existing components.Visual Basic .NET also
allows you to implement true interfaces, and introduces structured exception
handling that uses the Try…Catch…Finally block to handle errors instead of just
extending support for the On error...Goto statement. Database applications can
now take advantage of the new data access mechanism called ADO.NET, as well,
which is very different from the earlier connection-based ADO model.

www.syngress.com

153_VBnet_14 8/16/01 10:32 AM Page 708

Upgrading Visual Basic Applications to .NET • Chapter 14 709

Finally, the Upgrade Wizard is available to ensure the smooth and easy migra-
tion of your existing applications to .NET. Its various upgrade messages clearly
outline the changes that must be made before your application is ready to run.

Solutions Fast Track

Considerations Before Upgrading

Early binding of variables is necessary because Visual Basic .NET has
introduced changes to property names and default properties.

The Null keyword is not available in Visual Basic .NET. Instead, you can
use the DBNull.Value available in the System namespace to specify a
Null value.

It is advisable to change the data type of date variables to the Date data
type in your legacy applications to facilitate an easier migration.

It is recommended that constants be used instead of the actual
underlying value.

Considering Architecture Before Migrating

DHTML and ActiveX Document applications cannot be upgraded to
Visual Basic .NET.

Visual Basic 6.0 Forms has been replaced with a new architecture called
Windows Forms.

DAO or RDO data-binding applications must be ported to ADO first
before they can be moved to Visual Basic .NET.

Data Types

All Variant data types will be converted to the Object data type during
an upgrade.

Visual Basic .NET introduces a new data type called Short.The Visual
Basic 6.0 Integer data type is now represented by the Short data type
(which stores 16-bit numbers), the Visual Basic 6.0 Long data type is

www.syngress.com

153_VBnet_14 8/16/01 10:32 AM Page 709

710 Chapter 14 • Upgrading Visual Basic Applications to .NET

now represented by the Integer data type (which stores 32-bit numbers),
And the Long data-type stores 64-bit numbers.

ToOADate and FromOADate are used to convert between the Double
and Visual Basic 6.0 representation of the date value.

The underlying value of the True has been changed from –1 to 1.

Arrays in Visual Basic .NET are zero-based.

Fixed-length strings are not supported in Visual Basic .NET.

Converting VB Forms to Windows Forms

Windows Forms does not support the OLE Container control.

Windows Forms contains two menu controls called MainMenu and
ContextMenu.

Image controls are not supported in Windows Forms.

Keyword Changes

GoSub, Option Base, VarPtr, StrPtr, and Def keywords are not
supported in Visual Basic .NET.

GoTo can be used only for the purposes of error handling.

Visual Basic .NET introduces three new operators to perform bitwise
operations.They are BitOr, BitAnd, and BitXor.

Programming Differences

Optional parameters must be supplied with a default value.

The Return statement returns control to the calling program.

The default parameter passing mechanism is ByVal.

ParamArray parameters must be declared as Object.

Overloading is implemented with the help of function signature.

The Runtime Callable Wrapper (RCW) helps .NET clients talk to
COM components.

www.syngress.com

153_VBnet_14 8/16/01 10:32 AM Page 710

Upgrading Visual Basic Applications to .NET • Chapter 14 711

The COM Callable Wrapper (CCW) helps COM clients talk to .NET
components.

The Set property procedure is not supported in Visual Basic .NET.

Visual Basic .NET supports default properties only if the properties can
be parameterized.

Understanding Error Handling

Visual Basic .NET introduces structured error handling with the help of
the Try, Catch, and Finally statements.

It is possible to have multiple Catch statements to handle multiple
exceptions.

You can also create custom exceptions by creating a class that derives
from the System.Exception class.

Data Access Changes in Visual Basic .NET

Visual Basic .NET introduces a new object model called ADO.NET.

The DataSet object can hold multiple tables and store relationships
between the tables.

The DataReader object implements the server-side cursor.

ADO.NET provides disconnected access to the database.

Upgrading Interfaces

Interfaces are created using the Interface keyword.

The Implements keyword is used to implement an interface.

Using the Upgrade Tool

The Upgrade Wizard is automatically launched when you open a Visual
Basic 6.0 project in Visual Basic .NET.

The upgraded code is placed in a different folder than that containing
the source.

www.syngress.com

153_VBnet_14 8/16/01 10:32 AM Page 711

712 Chapter 14 • Upgrading Visual Basic Applications to .NET

The Upgrade Wizard lists various upgrade messages indicating what
changes must be made to the existing code to ensure a smooth run of
the upgraded project.

Q: Can I manually invoke the Upgrade Wizard?

A: No, you cannot.Visual Basic .NET automatically invokes the wizard when
you open an older version of a Visual Basic application.

Q: Should I only use structured exception handling to manage errors in my
application?

A: Structured exception handling is a more comprehensive way to managing
errors. However, you can still continue to use the On Error statements.

Q: Is the object model for ADO.NET frozen? Can I start port my ADO code to
ADO.NET?

A: At present, it is unclear whether this will be the final draft of ADO.NET.
Therefore, it is best to hold on to your existing ADO applications.You can
still, however, use the current model to write new non-critical applications
for use in your current environment.

Q: What is the purpose of the Microsoft Visual Basic 6.0 Compatibility library?

A: The Microsoft Visual Basic 6.0 compatibility library contains functions and
methods that are a part of Visual Basic 6.0 but not Visual Basic .NET.The
contents of this library are used so that your existing applications do not
break down solely because the implementation of a concept differed between
the two versions.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

153_VBnet_14 8/16/01 10:32 AM Page 712

713

Index
/? option, 546
32-bit numbers, 659

A
A1. See Assembly

Generation
About option, 108
Abstract classes, 67–68
AcceptsReturn property,

686
AcceptsTab property, 686
Access. See Disconnected

access
applications. See Data
permissions, limiting, 558
security. See Code

model. See .NET
Accessibility, 130

options, 141
Action attribute, 471
Active MDI child forms

arranging, 299–300
determination, 299

Active Server Pages (ASP),
7, 461

applications, 14
ASP.NET, 7–8, 37, 83, 443

server controls, 476–492
World Wide Web forms,

usage, 654
ASPX files, 7
contrast. See World Wide

Web forms
developers, 466
pages, 8, 15

ActiveForm property, 299
ActiveLinkColor property,

354
ActiveX

Control Container, 339

Control Importer, 270,
338

usage. See Windows
forms

controls, 461, 678
DLL, 260

projects, 112
documents, 653, 655

usage, 14
EXE, 112

Add method, 246, 380, 396
AddHandler method, 502
Add-in Manager, 104
Add-ins, 104–108, 656

creation,Add-In Wizard
(usage), 105–108

objects, 101
AddMenu method, 327
AddRef, 36
Address text box, 515
AddressOf (keyword), 235
AddToArray, 672
Adjust Security Wizard, 593
Administrator

configuration files,
624–625

policy, applying, 50
ADO

ADO.NET (contrast), 414
applications, 657
code, 651
disconnected recordsets,

marshalling, 694, 695
libraries, 417, 418
usage, 241, 649, 651–652
versions, 410

ADO.NET
architecture, understand-

ing, 412–416, 455
configuration, 415

contrast. See ADO
product introduction, 657
remoting, 415
usage

FAQs, 267–268
introduction, 410
solutions, 454–456

ADO.NET.XML, 414
AdRotator

control, 487
server, 488

Advanced programming
concepts

FAQs, 267–268
introduction, 220–221
solutions, 265–267

AfterClosing event, 103
Alias

command, 138
creation, 138–139
setting. See Namespaces

Align property, 686
All Code, 563
All Languages folder, 135
All_Code, 587

code group, 598
group, 595

Allocation. See Objects
AllowMargins property, 322
Alphabetic character, 173
AlternatingItemStyle prop-

erty, 482
Anchor

property, 301, 442, 664
styles, 302

Anchoring, 300. See also
Controls

AnchorStyles enumeration
values, 664

AND operator, 666

153_VBnet_index 8/16/01 2:32 PM Page 713

714 Index

Any (keyword), 671, 676
API, 9. See also Graphics

Design Interface;
Metadata

calls, 265
data types. See Windows
declarations, 661
programming, 8
set, 52

AppBindingMode element,
48

AppDomain, 50
Appearance, 130

property, 686
Application-related infor-

mation, 306
Applications. See Client;

Intranet; Multi-tier
applications; Self-
describing applica-
tions; Single-tier
applications

coding, 573
configuration files,

626–627
creation. See Multiple

Document Interface
deployment, 616,

629–638, 642
FAQs, 643–646
solutions, 641–642

development, 516–518
domains, 83–84
host, 106
interoperability, 694–695
model, 270–275, 340
upgrading. SeeVisual Basic

Architecture, considerations.
See Migration

Archive attribute, 394
Arrays, 187–192, 215,

659–660. See also

Dynamic arrays;
Multidimensional
arrays; Single dimen-
sion arrays

declaration, 188–189
location, 271
re-dimensioning, 674

.ASAX, 467
ASCII characters, usage, 360
ASCII files/format, 411
ASCII-readable characters,

243
ASP. See Active Server Pages
ASP.NET. See Active Server

Pages
handler, 505

Assemblies. See Resource;
Satellite assemblies

access, 57
binding, 46
cache, 45. See also Global

assembly cache
code. See Unmanaged

assembly code
compiling, 45, 567
creation, 39–51, 86
dependencies, 41, 55–56
enabling, 559
enumeration, 57
files. See Private assembly

files; Shared assembly
files

granting, 559
identification, metadata

(usage), 53
identity, 259
location, 46–51. See also

Module/assembly
location

probing/codebase,
usage, 49–50

manifest, 618

members. See Local
assembly members

name, 40, 463
options. See .NET
passport, 618
references, 260. See also

External assembly ref-
erences

versioning, 621–623
Assembly Generation (A1)

utility, 637
AssemblyRef, 46
Assert method, 540
Assert Override method,

572–574
Assertions, 525, 540–541
Asymmetric key algorithm,

602
At Startup Show, 112
Attacks, target, 577
Attributes, 57–58
Authentication, 557. See also

Windows
modules, 83
type, 585

Authorization, 557–558
Auto Hide, 123
Automatic resource man-

agement, 34, 62
reliance, 68–78, 87–88

AutoSize property, 353

B
B2B. See Business-to-

business
BackColor property, 396
BackgroundImage property,

396
Backward-compatible class,

59
Bandwidth, 427
Base class, 203

153_VBnet_index 8/16/01 2:32 PM Page 714

Index 715

/baseaddress option, 546
BeforeClosing event, 103
Behavior, 130
Beta testing, 547
Bin directory, 476, 516
Binary file, 241
BinaryReader, 241
BinaryWriter, 241
Bindable attribute, 495
BindData procedure, 444
Binding. See Data;Variables

class, 657
mode, 48

BindingPolicy, 48, 49
BindingRedir element, 48
Bindings, 130
Bitmap, 388
Bitwise operations, 20, 666
Boolean, 134

type, 20
value, 181, 707
variables, 659

BooleanSwitch, 540
Borders

adjustments, 321
changing. See Forms

BorderStyle property,
289–290, 395

Bound controls, 478
Boundary. See Reference;

Security;Type;Version
BoundColumn control,

483, 484
Boxes, 415. See also Dialog

boxes; Drop-down
boxes

creation. See Dialog boxes
displaying. See Message

Branching. See Multiple
branching

Breakpoints, 525, 528,
531–532

BringToFront method, 304
Browser-compliant HTML,

654
Browsers, 464, 508

independence, 133
BSTRs, 667
/bugreport option, 545
Bugs. See Syntax-related

bugs
reporting, 538
types, 524–525

Build errors, locating, 123
Build objects, 101
BuildEvents, 101
Built-in commands, cus-

tomization, 137–139
Built-in controls, 348–399,

407
Built-in customization, 100
Built-in data types, specifi-

cation. See Common
Language Runtime

Bulleted paragraphs, 367
Business logic, 655
Business-to-business (B2B),

504
Button control, 361–363,

664, 686
Button1_Click() method,

533
Button-click event, 511
Buttons property, 332
ByRef mechanism/modifi-

er, 672, 674
ByVal mechanism/modifier,

672, 674, 685

C
C, 601

exposure, 60
usage, 67

C#, 9, 37, 105, 133, 262,
654

class, 237
usage, 220

C++, 8–9, 19, 37, 262, 601.
See also ISO C/C++

classes, 172
client application, 260
concept, 57
DLL function declaration,

270
environment. SeeVisual

C++
exposure, 60
function pointers, 233
Java, relationship, 20
(language), 18
programmers, 9, 175
usage, 67, 220
users, 270

/c parameter, 637
Cabinet (CAB) files,

632–633
creation, 620

Caches. See Assemblies
services, 466
usage. See Global assembly

cache
Call

parameters. See Functions
statement, 273, 670

usage, 671
Call Stack, 540
Callable Wrapper. See

Component Object
Model; Runtime
Callable Wrapper

Caller identity, usage, 559
Calling chain, 560
Calling code, 669

class, 57
CAML, 38
Capital letters, 489
Caption property, 353, 363,

686, 687

153_VBnet_index 8/16/01 2:32 PM Page 715

716 Index

Carriage-return delimited,
243

CAS. See Code access
security

Case statement, 183. See also
Select Case statement

Caspol.exe. See Code Access
Security Policy utility

Casting, 18–19. See also
Type

Catch
block, 103, 691, 692
(keyword), 211
set. See Try/catch
statement, 103, 104, 691
wrapper, 60

Category, 123
CCW. See Component

Object Model
Callable Wrapper

CDbl, 272
Certificate authority, 602
CFG file, 569, 573
CFirst

class, 402
instance, 403, 406
object, 401

CFirstLib class library, 400
CharacterCase property, 687
Check boxes, group, 371
CheckBox control, 364–365
CheckBox property, 393
Checked, 123
Checked property, 364
CheckedListBox control,

374–376
CheckedState property, 364
CheckOnClick property,

375
Checks, overriding. See

Security

Child
code groups, 562
forms, creation. See

Multiple Document
Interface

relationship. See Parent-
child relationship

windows, 120–123, 297
Class API, 623
Class ID (CLSID), 56, 678
Class (keyword), 198
Class Library, projects, 116

creation, 400
Class Viewer, usage. See

Windows forms
ClassAct class, 571
ClassActing class, 571
Classes, 198–202, 226. See

also Abstract classes;
Base class; Images;
Managed wrapper
classes;Wrapper
classes

contracts, 54
loader, 79
module, 196
organization, namespace

system (usage), 64–65,
87

properties, addition, 402
Class_Terminate method,

542
CLI. See Command-line

interface
Click event, 356, 363

handler, 361
Clickable headers, 378
Client

applications, 464, 653,
655–656

platform, 464
processors, 513

Client/server applications,
465, 655

Client-side cursor, 695
Clipboard, 349

object, 664
Ring, 119–120

CLng function, 19
Close() method, 542
Close/dispose, 276
CLR. See Common

Language Runtime
/cls option, 545
clsCalc class, 699, 702, 703
CLSID. See Class ID
CMyButton control, 405
CMyButtonLib class library,

404
COBOL/Cobol, 38
Code. See DataBinding

code; Generated code;
Malicious code;
Packaging code;
Source code;
Spaghetti code

access permissions, 555
addition, 526
annotating, 126–127
behind, 473
block, 192, 447
editor. SeeVisual Studio

.NET
customization, 135

elements. See Hide/show
code elements

execution, 288
control, 528

groups, 559, 562–564,
587. See also Child

structure, matching,
593–600

identity, 559, 561–562
impersonation, 581, 582

153_VBnet_index 8/16/01 2:32 PM Page 716

Index 717

locating, 126
objects, 101
optimization, 541–546,

551
paths, 683
protection, 558
reusing, 492
sandboxing, 555
segment, 139
tracing, 683
view pane, 531
window, 276, 297

Code access security (CAS),
80, 554, 558–578,
608–609

Code Access Security
Policy utility
(caspol.exe), 585, 630

CodeAccessPermission, 578
CodeBase attribute, 48
Codebase, usage. See

Assemblies
CodeBehind file, 448
COFF. See Common

Object File Format
Collections, 246–248, 266,

275. See also Garbage
collection

objects. See Project
Color property, 314
ColorDialog control,

313–315
Columns property, 316, 380
COM. See Component

Object Model
ComboBox, 117

control, 381–387
Command

addition. See Toolbars
customization. See Built-

in commands
objects, 101, 421–425

window, 534–536
CommandBarEvents, 102
CommandEvents, 102
Command-line interface

(CLI), 585
Command-line parameters,

116
Command-line programs,

60
Comment tokens, 126
Common Language

Runtime (CLR), 2,
8–10, 256, 259–261,
630–631

breaking, 624
built-in data types, specifi-

cation, 173
checking, 622, 626
FAQs, 279–281
history, 8–9
installation, 630
introduction, 35–37,

85–86, 257–258
operation, 558
probing ability, 50
reflection API, 338
rules, 83
security features, 554
sharing, 34
solutions, 278–279
support, 621
updating, 71
usage, 29, 656, 678, 692

Common Object File
Format (COFF), 63

Common Type System
(CTS), 8, 257,
269–273, 278–279

matching, 648
usage, 65–68, 87

Compability
phases, 621

version, 59
CompactView option, 118
Compare function, 209
CompareValidator, 488
Compilation. See

Conditional compila-
tion; Dynamic compi-
lation

Compile errors, locating,
123

Compilers, 20–22, 30, 674.
See also Just-in-time

architecture. SeeVisual
Basic

errors, 649
options, 544–546
usage. See Integrated

Development
Environment

Compile-time errors, 275
Complete Word window,

288
Complex data binding, 333
Component Object Model

Callable Wrapper
(CCW), 264, 270,
679, 682–683

Component Object Model
(COM), 6, 681

classes, 56
COM+

applications, 557
component, 418, 555,

638, 655–656, 678
component, 578, 677
controls, 118
developers, 274
interop. See Unmanaged

COM interop
library file, 55
object, 104, 199, 258–259,

509
reference counting, 276

153_VBnet_index 8/16/01 2:32 PM Page 717

718 Index

Services, 258
type library, 55, 339, 680

Components, 119. See also
Windows Forms

architecture, 257,
259–261, 278

coding/compiling. See
.NET

creation, 403. See also
Custom Windows

file-copy-based deploy-
ment, 653

registration, 678
testing, 402–403, 405–406
usage, 403, 406

Composite custom control,
creation, 497–504

CompositeCustomControl,
503, 517

Compound expressions, 181
Computational processes,

262
Concurrent users, 548
Condition, 184
Conditional compilation,

525, 536–537
constants, 538

Conditional statement, 185
Configuration, 466

files, 47–49, 627. See also
Administrator;
Applications;
eXtensible Markup
Language; Machine;
Security

creation, 623–624
hierarchy, 488
objects. See Window
section, 623

Connected layer, 417–427,
455

Connection. See Database;
SqlClient connections

maintenance, 413
pooling, 420
strings, 418–419. See also

SQL Server
creation, 419

Console Application
projects, 116

Console I/O, 62–63
#Const (keyword), 537
Constants, 175–176

usage, 649, 652–653
Constructors, 201–202

addition, 401, 405
ContextMenu property, 686
Contracts, usage, 54–55
Control Importer, usage. See

Windows forms
Control library project,

creation, 404
ControlEvidence, 561
Control-menu box, 305
ControlPrincipal, 581
Controls. See Bound con-

trols; Button control;
Custom controls;
Data; Images; Intrinsic
controls; Label con-
trol; Program flow
control;Textbox con-
trol; User;Validation
controls;Windows
Forms

addition. See Forms;
World Wide Web
forms

anchoring, 664–665. See
also Forms

creation. See Composite
custom control;
Custom Web form
controls; Custom
Windows;World
Wide Web forms

deployment, 638–639, 642
docking. See Forms
positioning. See Forms
property name, changes,

685–687
usage. See DataGrid
visual layering, 304

Convergence, 9–10
ConvertAssemblyToTypeLib,

680
ConvertTypeLibToAssembly,

680
CookieAuthentication

Module, 466
CORBA, 6
Counter, 548
CPU cycles, optimization,

439
CPU/RAM usage

situation, 64
systems, 63

CreditsCorrect function, 25
Cross-language integration,

260, 271
capabilities, 269

Cross-language support, 65
Cross-platform develop-

ment, 35
Crypto section, 623
CryptoAPI, 600, 601
Cryptographic Service

Providers (CSPs), 600,
601

Cryptography, 600–603, 610
CsharpProjectEvents, 103
CSng, 272
CSPs. See Cryptographic

Service Providers
CSS, 126
CStr, 272
ctr (variable), 185
CTS. See Common Type

System

153_VBnet_index 8/16/01 2:32 PM Page 718

Index 719

Cursor. See Client-side cur-
sor; Server-side cursor

location, 414, 695
property, 687
types, 414

Custom controls, 476,
487–488

Custom parameters, array,
109

Custom permissions, 556,
559, 576–578, 595

Custom token, setup, 124
Custom Web form controls,

creation, 520
Custom Windows

components, creation,
399–403, 407

controls, creation,
403–406, 408

Customer class, 230, 231
CustomerID, 479, 490–492,

513
orders, 514
retrieval, 502
returning, 498, 518
usage, 481, 485

Custom-made controls, 348
CustomPrincipal, 579
CustomValidator, 488

control, 491, 492

D
DAO

applications, 657
code, 651
controls, 657

Data, 130. See also In-mem-
ory data; Relational
data

access, 270
applications, 651, 653,

656–657

changes. SeeVisual Basic
.NET

performing, 262
adapter object, 695
binary format, 414
binding, 332–338, 343.

See also Complex data
binding; Simple data
binding

data sources, 333–334
controls, 117, 440–453,

456
conversion, 19
entry, speeding, 361
files, 241–243
navigation, 695–696
source, 427, 440

binding, 332
states, 431–432
streams, 221
types, 26–27, 270,

657–662. See also API;
Decimal data type;
Double data type;
Long data type;
Parameters; Primitive
data types; Return;
Short data type; User-
defined data type;
Variant data type;
Windows

specification. See
Common Language
Runtime

support, 578
verification, 412

validation. See eXtensible
Markup Language

Data Access Components 2,
7, 93

Data Encryption Standard
(DES), 601

Data Form Wizard, usage,
334–338

Data Signature Algorithm
(DSA), 601

Data Type Definition
(DTD), 412

Database
connection, 422
connectivity, 538
counterparts, 428
layer, 655
size, 78

DataBinding code, 452
Data-bound form, 334, 335
DataColumn, 434

object, 694
Datafield, 483
DataGrid, 410, 431,

440–446, 478. See also
WebForm

customization, 517
DataGrid control

customization, 482–487
tag, 483
usage, 478–482

DataList, 410, 446–450
DataReader, 425–426
DataRelation, 429–430

usage, 441–446
DataRow, 431, 434
DataSet, 425–427, 433, 440

creation, 439, 453
object, 438, 439
usage, 428–435

Dataset, 334, 335, 338, 694
object, 693

DataSetCommand, usage,
695. See also
Populating

DataSetView, 440
DataTable, 415, 434, 440

object, 694
DataTypes, 424
DataView, 440

153_VBnet_index 8/16/01 2:32 PM Page 719

720 Index

DataXmlNavigator object,
412

Date data type, usage, 649,
652

Dates, 658–659
DateTimePicker control,

391–394
DBMS, 695
DCOM. See Distributed

Component Object
Model

DDE. See Dynamic Data
Exchange

Deallocation. See Objects
DebitsCorrect function, 25
Debug

class, 683
menu, 528–529

Debugger
attachment, 679. See

External process
objects, 101

Debugging, 103–104, 467.
See also Projects

concepts, 524–541, 551
FAQs, 552
introduction, 524
services, 262
solutions, 551

Decimal data type, 658
Decimal values, usage, 355
DecimalPlaces property, 387
Decision making, 172
Declarative security, 559,

564–565
support, implementation,

578
Declare statement, 671
Def statement, 667
Default (keyword), 697
Default parameter, 676, 689
Default properties, 27, 668,

687–689

/define option, 546
Delegates, 226, 232–236,

266. See also Multicast
delegates; Simple del-
egates

signature, 236
DELETE statement, 421
DeleteCommand, 423
Demands, 556
Deny override method,

574–576
Deployment, 465, 467. See

also Side-by-side
deployment

unit, 41
DES. See Data Encryption

Standard
Description, 123

property, 690
DESCryptoServiceProvider,

601
Design, 130, 272

surface, 469
Design-time properties,

129, 348
DesktopLocation property,

294
Destructors, addition, 401,

405
Deterministic finalization,

68, 276. See also Non-
deterministic finaliza-
tion

Development accelerators.
See Integrated
Development
Environment

Development Tool
Environment (DTE)

events, 102
extension, 104
object, 109

DHTML. See Dynamic
HTML

Dialog boxes, 270–271,
305–323, 342

creation, 322–323
Dialog Editor, 119
DialogResult property, 686
Dictionary object, 487
Digital signature, 40, 639
Dim

(keyword), 174. See also
Redim

statement, 176, 188
Dir() function, 239
Directory

Entry, 119
listing, 239–241, 240
Searcher, 119

DisabledLinkColor
property, 354

Disconnected access, 695
Disconnected layer,

427–435, 455–456
Discovery, 510
Dispose. See Close/dispose

method, 682
Distributed applications, 17

Windows forms, usage,
513–518, 520

Distributed architecture,
440

Distributed Component
Object Model
(DCOM), 2, 6, 504

Distributed Network
Architecture (DNA),
6

model, 2
Divide-by-zero exceptions,

211
DivideInteger function, 675
DivideLong function, 675

153_VBnet_index 8/16/01 2:32 PM Page 720

Index 721

DLL. See Dynamic Link
Library

DNA. See Distributed
Network Architecture

Do Until statement, 184
Do While (keyword), 184
Dock property, 303, 687
Docking, 122, 300
Document windows, 122
DocumentClosing event,

102
DocumentEvents, 102
DocumentOpened event,

102
DocumentOpening event,

102
DocumentSaved event, 102
Do..Loop structure, 573
Domain up-down control,

384
Domains. See Applications

policy. See Applications
DomainUpDown control,

384–386
dotNETRedist, 630
Double data type, 652, 658
Double-click event, 361
Download cache, 45
Drawing, 267–268
Drop-down boxes, 415
Drop-down list style, 381
Drop-down menus, 330
Drop-down style buttons,

330
DSA. See Data Signature

Algorithm
DSACryptoServiceProvider,

601
DTD. See Data Type

Definition
DTE. See Development

Tool Environment
Dyalog APL, 38

Dynamic arrays, 191–192
Dynamic compilation, 654
Dynamic Data Exchange

(DDE), 6, 664
Dynamic Help window, 112
Dynamic HTML

(DHTML), 490
applications, 14, 112, 653,

655
Dynamic Link Library

(DLL), 18, 21, 222,
225, 542

avoidance, 467
base address, 546
breaking, 42
classes, 224
compiling, 678
files, 36, 44, 61
function declaration. See

C++
hell, ending/escape, 58,

259, 653
need, 617
observing, 473
problems, 58–59

Dynamic reference, 46

E
Early binding, 436. See also

Variables
E-commerce application,

464
EditCommandColumn,

445, 446
Eiffel, 38
Else

block, 179
statement, 178, 179

ElseIf statement, 178
Else...If statement, 182
E-mail

change, 603

folders, 369
manager application, 352

/embed parameter, 637
Empty (keyword), 690
Encapsulation, 196–198
End function, 193
End Function statement,

697
End If statement, 135
End Interface statement,

697
End Property statement,

684
End Sub statement, 697
Enhanced scalability, 133
Enhanced state manage-

ment, 133
Enterprise

files, 627
security level, 563, 586

Entities, 698
Entries, sorting, 123
Entry points, 41
Enumerations, 226
EnvDTE assembly, 109
Environment automation

model. See Integrated
Development
Environment

E-procurement, 504
Error. See Compile-time

errors; Logic errors;
Runtime errors

description, 62
handling, 172, 210–212,

216
understanding, 690–693
usage, 692–693

locating. See Build errors;
Compile errors

message, 670
Error-checking options, 545
Error-handling code, 525

153_VBnet_index 8/16/01 2:32 PM Page 721

722 Index

Event-driven model, 466
Event-driven programming

model, 467
EventLog, 119
EventLogTraceListener, 538
Events, 56, 232–236, 266.

See also Forms;
Properties methods
and events

contract, 55
manipulation, 133
objects, 101
programming, 236
statement, 697

EveryThing permission set,
586

Exception
class, 61
handling, 60–62, 103–104.

See also Structured
exception handling

usage, 210
window, 525, 532–534

Exception-based format,
648

EXE. See ActiveX; Standard
EXE

Executable code, 635
Executables. See Portable

executables
compiling, 20–21

Execute method, 109
Execution

environments. See
Managed execution
environments

permission set, 569, 586
Exit Do statement, 185
Exit function, 24, 193
Exit Sub statement, 669,

670
Expressionlist, 183
Extensibility. See Platform

models, 100. See also
Visual Studio .NET

eXtensible Markup
Language Data
Reduced (XDR),
139, 412

eXtensible Markup
Language Schema
Definition (XSD),
412

schema, 119
tool, usage, 416–417, 455
XSD.EXE, 438

eXtensible Markup
Language (XML),
126, 439, 656

data validation, 416
documents, 411, 415
encoding/decoding,

implementation, 578
files, 47, 466, 617
leveraging, 415
overview, 411–412,

454–455
schema files, 412
support, 15, 414–415
tags, 17
usage, 410. See also

Populating
XML-coded configura-

tion files, 593, 623
XML-coded file, 592
XML-coded permission

sets, 570, 588, 589
XML-coded resource file,

637
eXtensible Stylesheet

Language (XSL),
411–412

External assembly refer-
ences, 52

External procedure
declaration, 668, 671

External process, debugger
(attachment), 541

F
Family access, 57
FAT16 file system, 100
FAT32 file system, 100
Fields, 53, 198, 334
File. See Active Server

Pages; Data;Text
appending, 246
I/O, 243, 266–267
management. SeeVisual

Basic
manipulation. See Images
name variables, 242
opening, 129
operations, 221, 239–246,

266
options. See Output
table, 259–260
version information, 58

File Signing tool (sign-
code.exe), 639

FileCodeGroup, 594
FileIOPermission, 564–565,

569–570, 575,
590–591

permission, 577
FileIOPermissionAttribute,

591
Filename filter string, 310
File-opening logic, 307
File-saving logic, 310
FileStream, 267
FileSystemObject, 240
FileSystemWatcher, 119
Filter

property, 311
string. See Filename filter

string
Finalization, 542

153_VBnet_index 8/16/01 2:32 PM Page 722

Index 723

Finalize method, 76, 682.
See also Raw finalize
method

Finally
block, 103, 691, 692
statement, 104

FindEvents, 102
Firewalls, 15
Fixed-length strings, 23,

660–661
Floating toolbar, 136
Focus, 130
Font property, 275
FontDialog control,

311–313
For loops, 178, 186–187,

189, 196
For...Each...Next loop, 187
Form class, 294
Format property, 391, 393,

394
Form.paint event, 249
Form.PrintForm method,

662
Forms. See Multiple

Document Interface;
Windows forms;
World Wide Web
forms

arranging/determination.
See Active MDI child
forms

borders, changing,
289–291

controls
addition, 300–305, 341
anchoring, 301–303
docking, 303–304
positioning, 304–305

creation. See Multiple
Document Interface;
Windows forms

Designer, 526

displaying. See Modal
forms; Modeless
forms; Multiple
Document Interface;
Top-most forms

events, 294–297, 341
layout toolbar, 130–132
location, setting, 292–294
menus, addition, 323–327
objects, layering, 304
properties, 271–275. See

also Windows forms
resizing, 291–292
status bars, addition,

328–330, 342
submission, 468
toolbars, addition,

330–332, 343
Framework. See .NET

framework
permissions, 577
SDK, 420
security, 80–84

Free store/freestore, 69
Free threading, 262–264,

267
Friend

(keyword), 684
modifier, 697

FromFile method, 388
FromOADate method, 659
FrontPage 2000

Server Extensions, 99
Web extensions client, 93

FtpChannel, 600
FullTrust permission set,

569, 586
Function

definition, 235
signature, 674
statement, 697

Functionality, sharing, 238
Functions, 192–196, 215

calls, parameters, 273
differentiation, 675
overloading, 674
procedures, overloading,

675
values, 24–25

G
GAC. See Global Assembly

Cache
Gacutil. See General

Assembly Cache
utility

Garbage Collection (GC),
8, 62, 69, 544

advantage, 682
managed heap, interac-

tion, 71–78
usage, 257, 262, 274–279

Garbage Collector, 258,
274, 544

GC. See Garbage Collection
GDI+. See Graphics Design

Interface
General Assembly Cache

utility (Gacutil), 619,
620, 631

Generated code, 498
Generation 0, 77, 275
Generation 1, 77, 275
Generation 2, 77, 275
Generations, 274

assignation, 77
GenericIdentity object, 581
GenericPrincipal, 579–583
Get

method, 230
statement, 26

GET protocol. See
HyperText Transport
Protocol

GetOrders, 508, 509
function, 511, 513

153_VBnet_index 8/16/01 2:32 PM Page 723

724 Index

GIF, 253
GIF icon, 388
Global Assembly Cache

(GAC), 45, 51, 55,
622–623

deployment, 40
usage, 50, 631

Global variables, 25
Global.asax, 463
GoSub statement, 666, 669
Goto statement, 666
Grants, 556
Graphical user identifica-

tions (GUIDs), 36
Graphical user interface

(GUI), 51, 348
design, 364

Graphics
commands, 663
display, 396

Graphics Design Interface
(GDI+)

engine, 221
functions, 267
Windows API, 267

Group radio buttons, 365
GroupBox control, 364,

396–397
GUI. See Graphical user

interface
GUIDs. See Graphical user

identifications

H
HACK, 127
Handles (keyword), 236,

475
Hanging indents, 367
Hardware-specific machine

code, 21
Hash, 602

Hash algorithm, 602. See
also One-way hash
algorithm; Secure
Hash Algorithm

Haskell, 38
Headers, 378. See also

Clickable headers;
Non-clickable
headers

Headers/footers, 321
HeaderStyle property, 378,

482
Heap. See Managed heap
Height property, 291, 482
Help filter, 112
/help option, 546
HelpLink, 62
Hidden attribute, 394
Hide method, 275
Hide/show code elements,

132–133
Hierarchical system, 64
High-performance

machines, 464
High-volume transaction,

464
HiveKey, 593
HKEY_LOCAL_

MACHINE, 591
Home page, 110–112
Horizontal control, 328
HotTrack property, 399
HREF link, 634
HRESULTS, 36
HTML. See HyperText

Markup Language
HTTP. See HyperText

Transport Protocol
Hyperlinks, 96, 112
HyperText Markup

Language (HTML),
119, 126, 139, 461.
See also Browser-

compliant HTML;
Dynamic HTML

code, 471, 500, 501
controls, 117
elements, 476, 478, 500
extensions, 14
files, 47
generation, 467, 504
output, 133, 445
rendering, 463
sending, 497
server controls, 477
source, 481
table, 443, 482
usage, 15, 411, 439, 450

HyperText Transport
Protocol (HTTP), 16,
504

HTTP-GET protocol,
505, 508, 509

HTTP-POST protocol,
505, 509

methods, 656
network traffic, 465
protocol, 16, 460, 695
remoting channels, 440
usage, 17

I
ICalculator interface, 700
ID attribute, 140
IDE. See Integrated

Development
Environment

Identifier type characters,
175

Identity, 51. See also Code
permissions, 556

IDTExtensibility2 interface,
104

#if statement, 537

153_VBnet_index 8/16/01 2:32 PM Page 724

Index 725

If...Then...Else statement,
178–183

IIS. See Internet
Information Server

ILDASM. See Intermediate
Language
Disassembler

IList interface, 441
IListSource interface, 441
Image property, 389
ImageAlign (property), 687
ImageList control, 369
Images, 253–256

class, 388
controls, 664
cropping, prevention, 389
files, manipulation, 253

Imaging namespace, 221
Imperative security, 559,

564–565
Implements

interface, 13
(keyword), 229, 696, 698
statement, 229, 698

Imports
command, 226–228
(keyword), 226–229, 265
statement, 226–228, 241,

256–257
Increment property, 387
Indents, 367. See also

Hanging indents
Index property, 687
InFile, 245
Information box, 376
Informational version, 59
InheritAct permission, 571
Inheritance, 11, 196–197.

See also Pseudo-inher-
itance

demand, 571
support, 10

usage, 12
Inherits

(keyword), 229
statement, 697

Initialization code, 235
In-memory copy, 426
In-memory data, 51, 52
In-memory manifest items,

optimization, 52
In-memory type library,

680
InnerException, 61–62
Input/output (I/O), 60. See

also File
INSERT statement, 421
InsertCommand, 423
Insertion point, 383
Instance ID, 401
intClassInstanceCount, 401
Integers, 658, 661
Integrated Development

Environment (IDE),
2, 100–136, 143, 461.
See alsoVisual Basic

capability, 123
changes, 92
commands, execution, 534
compiler, usage, 20
configuration, 120
customization, 135–141,

143
debugging tools. See

Visual Basic .NET
development accelerators,

5
environment automation

model, 100–104
examination, 3–5, 28
execution, 438
features, 5
improvements, 3–4
opening, 117

starting, 107
usage, 470, 495, 706

Integration testing, 547
Intellisense, 134–135
Interface, 226

contract, 54
defining, 260
implementation, 229–232,

266
model, 10
name, 52
statement, 229, 696, 697
type, 53
upgrading, 696–703
visibility, 52

Intermediate Language
Disassembler
(ILDASM), 680

Internationalization proj-
ects, 704

Internet
applications, 17, 57,

653–655
permission set, 569, 586
protocols, 504

Internet Explorer
version 5.5, 633–634
version 6.0, 93

Internet Information Server
(IIS), 99, 600

applications, 653, 654
Internet_Zone, 597

code, 599
Interoperability. See

Applications;
Language

managed code, interac-
tion, 263–264

Interoperation. See COM+
1.0 security

Interval property, 663
intNextInstanceID, 401

153_VBnet_index 8/16/01 2:32 PM Page 725

726 Index

Intranet
applications, 17, 653–655
zone, 563

Intrinsic controls, 476–478
Intrinsic datatypes, 542
Intrinsic functions, color-

coding, 527
Invoke method, 232
I/O. See Input/output
IPermission interface,

implementation, 577
Is (operator), 180
IsAnonymous, 585
IsAuthenticated, 578

field, 584
IsGuest, 585
IsInRole method, 584
IsNull function, 23
ISO C/C++, 35
IsSystem, 585
IsValid property, 489
isValid property, 492
Items

addition/removal, 118
collection, 333
marking, 123
property, 385
renaming, 118
repositioning, 119
sorting, 118
view, choice, 118

IUnrestrictedPermission
interface, implementa-
tion, 577

J
Java

exposure, 60, 272
(language), 18
relationship. See C++

JavaScript.NET, 9

JIT. See Just-in-time
JOIN clause, 694
JPEG, 253

formats, 388
JPG image, 637
Jscript.NET, 37
Just-in-time (JIT), 465

code, 40
compilation, 58

phase, 558, 570
compiler, 34, 63–64
debugger, 541
debugging, 679
updating, 71

K
Kerberos, 585

usage, 600
version 5.0, 557

Key pair, 602
Keyboard scheme, 111
/keycontainer option, 545
Key-value pairs, 689
Keywords. See Any;

Handles; Imports
changes, 665–667
color-coding, 527

L
Label control, 351–353, 686

usage, 358
Language

interoperability, 237–238,
266

variable, 537
Large heap, creation, 71
LargeChange property, 390,

391
Last in first out (LIFO), 61
Last known good system, 58
Late binding. See Object

usage, 650
Late-bound objects, 649,

687
Layering, 300
Layers. See Connected layer;

Disconnected layer
Layout, 130. See also

Window
toolbar. See Forms

LayoutMDI method, 299
LBound function, 189
Left property, 305
Legacy applications, 649
Legacy-code platform,

usage, 79
Legacy-code-based platform

invoke, 79
Let

procedure, 689
statement, 26

Let/Set statements, 26
LevelFinal, 599, 600
Libraries

projects, creation. See
Class Library; Control
library project

references. See
Unmanaged libraries

LIFO. See Last in first out
Like (operator), 180
Line code, 508
Line graphics, 249
Lines property, 687
LINK reference, 638
LINK tag, 633, 634
LinkArea property, 355
LinkArea.X property, 355
LinkBehavior property, 356
LinkColor property, 354
LinkLabel Control,

354–357
LinkVisited property, 356

153_VBnet_index 8/16/01 2:32 PM Page 726

Index 727

List style. See Drop-down
list style

Listbox, 117
ListBox control, 371–381
ListItems property, 378
ListView control, 376–381
ListView option, 118
LiteralControl API, 500
Load event, 475
Loader optimization, 39
Local assembly members, 52
LocalIntranet permission

set, 569, 586, 588–589
LocalIntranet_Zone

group, 595
permission, 600

Location, 39
object, 293, 305
option, 44
property, 293, 304
setting. See Forms
structure, 293, 305

Lock
implementation, 696
types, 414

Logic errors, 525
Logical operations, 666
LogonUser, 582
Long data type, 658
Loop While, usage, 186
Looping, 172
Loops. See For loops;While

loops
counter, 186

Lower-level languages, 9
Lset statement, 666–667

M
Machine

code. See Hardware-
specific machine code

configuration files,
624–625

files, 627
policy, 1237
security level, 563, 586

Machinewide code cache,
45

Macros, 109–110
Mail server, 352
MainMenu control, 323
Maintaining state, 415–416
Major/minor revision, 59
Makecab.exe, 620, 632
Malicious code, 555
Managed code, 36, 586

interaction. See
Interoperability

unmanaged code, contrast,
257, 261–264, 278

Managed execution envi-
ronments, 654

Managed extensions, 37
Managed heap, 69–71

interaction. See Garbage
collection

Managed providers, 410,
418

usage. See SQL Server
Managed types, 56
Manifest. See Standalone

manifest
custom attributes, 43
items, optimization. See

In-memory manifest
items

usage, 42–45
Margin adjustments, 321
Marshalling, 681. See also

ADO
Master-detail relationship,

696
MaxDate property, 394
Maximize button, 305

MaximizeBox property, 291
MaxLength property, 359
MD5. See Message Digest 5
MD5CryptoService

Provider, 601
MDI. See Multiple

Document Interface
MDILayout enumeration,

299
Members. See Local assem-

bly members; Public
members; Shared
members

defining, 54
listing, 134

Membership condition, 562
usage, 563

Memory
leaks, 10

repair, 72
Management, 8

Memory-intensive objects,
78

Menus
addition. See Forms
creation/usage, 323–327,

342
dynamic creation, 326
enhancements, 326

Mercury, 38
Message, 61, 62. See also

Error
boxes, displaying, 306
digest, 602
Queue, 119

Message Digest 5 (MD5),
601

MessageBox class, 323
Metadata, 36, 41, 260,

679–680, 683. See also
Type

APIs, 52
benefits, 52

153_VBnet_index 8/16/01 2:32 PM Page 727

728 Index

insertion, 51
mark, 53
storage, 42
understanding, 51–59, 86
usage. See Assemblies

MethodInfo object, 570
Methods, 53, 56. See also

Properties methods
and events

addition, 200–201
contract, 54
definition, 54
implementation, 668–676

Microsoft Intermediate
Language (MSIL), 21,
34, 63–64, 87

code. See PE MSIL code
conversion. See Native

code
format, 39
relation, 79
usage, 68

Microsoft Management
Console (MMC),
585, 595

Microsoft Message Queue
Services (MSMQ),
262

Microsoft Transaction
Server (MTS), 6, 15,
655–656

Middle-tier components,
348, 655

Migration, architecture con-
sideration, 653–657

MinDate property, 394
Minimize button, 305
MinimizeBox property, 291
Minimum property, 387
Miscellaneous options, 546
ML, 38
MMC. See Microsoft

Management Console

Modal forms
creation, 287
displaying, 288

Modeless forms
creation, 287
displaying, 289

Modifiers property, 686, 687
Module/assembly location,

57
Modules, 221–222, 265

enumeration, 57
Mondrian, 38
MousePointer property,

663, 687
MSDN, 111–112, 133, 535,

599
subscribers, 596

.msi files, creation, 620
MSIL. See Microsoft

Intermediate
Language

MSMQ. See Microsoft
Message Queue
Services

MTS. See Microsoft
Transaction Server

Multiassembly, 46
scenarios, 40

Multicast delegates, 236
MultiColumn property, 371
Multidimensional arrays,

189–191
Multidomain host setting,

39
Multidomain setting, 39
Multifile assembly, 44
MultiLine property, 359,

399
Multiple branching, 666
Multiple Document

Interface (MDI), 120
applications, 325

creation, 297–300, 341

child forms, 297, 325
arranging. See Active

MDI child forms
creation, 298–300
determination. See

Active MDI child
forms

displaying, 298–299
forms, 270
mode, 120–123
parent form, creation,

297, 298
windows, 271

Multiple selections, 129
Multiply function, 195
Multi-terabyte server, 435
Multithreaded applications,

221
Multi-tier applications, 348,

655–656
Multiuser environments,

538
MustInherit, usage, 205
MustOverride

member, 205
modifier, 698

N
Name

changes. See Controls;
Properties

property, 350, 663
value pairs, 411
variables. See File

Named permission set, 588
Namespaces, 13, 51,

222–226, 265. See also
System;
System.Drawing;
System.Threading;
System.Winforms

alias, setting, 497
creation, 222–226

153_VBnet_index 8/16/01 2:32 PM Page 728

Index 729

drawing, 248–261, 266
programmatic side, 220
root, 222
system, usage. See Classes

Naming, 39
Narrowing, 19
Native code, MSIL code

conversion, 262
Navigation. See Data
.NET. SeeVisual Basic

.NET
architecture, 7
assembly options, 545
class, 65
code execution, 35
component, coding/com-

piling, 678
graphics, 516
history, 6
installation. SeeVisual

Studio .NET
internal functionality, 35
platform, object-oriented

nature, 265
servers, 8

.NET Framework, 6–8, 29,
33, 93

classes, 8
configuration, 623–630,

641
definition, 34–35, 85
FAQs, 88–89
installation, 415
introduction, 34
solutions, 85–88
usage, 306, 410, 511
validation, 489

.NET programming funda-
mentals, 171

FAQs, 217
introduction, 172–173
solutions, 214–216

NetCodeGroup, 594
.NET-compliant languages,

37
.NET-compliant program-

ming languages,
usage, 37–39, 86

Netscape, 460
Network

resources, 694
traffic. See HyperText

Transport Protocol
New () procedure, 201
New (keyword), 200, 201,

681
Node images, 369
Non-clickable headers, 378
Non-deterministic finaliza-

tion, 276
Nonpublic types, enumera-

tion, 57
Nonspaghetti code, 466
Non-TrueType font, 663
Normal attribute, 394
Normal mode, 48
NorthWind database, 478
/nostdlib option, 545
NOT operator, 666
Notepad, 241
Nothing permission set,

569, 586
NotOverridable (keyword),

205
nSize parameter, 662
NTLM, 557, 585

usage, 600
Null

(keyword), 651, 690
usage, 668, 690

NULL propagation, 23–24
Null Propagation, avoid-

ance, 648, 650–651
Number property, 690

Number-of-windows prop-
erty, 200

Numeric field, 391
NumericUpDown control,

386–387
NumInstances variable, 206

O
Oberon, 38
Object, 65. See also Add-ins;

Build objects;
Clipboard; Code;
Command;
Component Object
Model; Debugger;
Events; Identity;
Project; Properties;
System;Window

allocation/deallocation,
275–276

data types, 175, 187, 657,
671

destruction, 74
implementation, 274
late binding, 649
layering. See Forms
manual termination, 75
orientation, history, 13
placement, 70
type, 53
variable, 650

OBJECT reference, 638
OBJECT tag, 634
Object-based components,

460
Object-based methodology,

554
Object-oriented (OO)

compliant syntax, 273
Object-oriented (OO)

concepts, 10–11

153_VBnet_index 8/16/01 2:32 PM Page 729

730 Index

Object-oriented (OO)
design, advantages,
11–12

Object-oriented (OO)
functionality, 196

Object-oriented (OO) lan-
guages, 10, 257, 259,
691

Object-oriented (OO)
nature. See .NET

Object-oriented (OO)
principles, 11

Object-oriented program-
ming (OOP), 65, 172,
196–206, 215–216

language, 196
Object-oriented-based

(OO-based) language,
10–13, 29

OCX, 18
ODBC providers, 418, 436
OLE Container control,

663
OLE DB, 418, 420, 436

libraries, 426
OLEDB provider, 410
OleDbCommand, 421, 424
OleDbConnection, 418,

420, 480
OleDbDataAdapter, 480
On Error Goto, 103

statement, 210
OnAddInsUpdate method,

104
OnBeginShutdown

event, 102
method, 104

OnCancelCommand, 445
OnChange event, 102
OnConnection method,

104
OnDisconnection method,

104

OnEditCommand, 445
One-way hash algorithm,

602–603
OnMacrosRuntimeReset

event, 102
OnPagePrint, 258
OnStartupcomplete event,

102
OnStartupComplete

method, 104
OnUpdateCommand, 445
OO. See Object-oriented
OOP. See Object-oriented

programming
Opacity property, 275
Open File dialog box, 308,

309, 369
Opened event, 103
OpenFileDialog control,

306–308
OpenType font, 663
Optimization. See Code

FAQs, 552
introduction, 524
options, 544
solutions, 551

OPTION BASE command,
23

Option Base statement,
659–660, 666

Optional function param-
eter, 195

Optional parameters, 202,
668–669, 676

/optioncompare option,
546

/optionexplicit option, 546
Options. See Compilers;

Error-checking
options; Miscellaneous
options; .NET;
Optimization; Output

file options;
Preprocessor options

/optionstrict option, 546
OR operator, 666
OrderDetail tables, 428
/out parameter, 637
OutFile, 245
Outlook bar, 307
Output

directory, 707
file options, 544–545
parameters, 424

OutputWindowEvents, 102
Overload procedures, 674
Overloaded functions, 134,

232
Overloading, 202–203, 668,

674–676. See also
Functions

implementation, 676
OverLoads (keyword), 697
Overloads (keyword), 202,

203
Overridable (keyword), 203,

204. See also
NotOverridable

Overrides
(keyword), 203
modifier, 698

Overriding, 203–205
Oz, 38

P
P1, 1216
P1A, 1216
Packaging code, 618–623,

641
Page directive, 473
Page object, inheriting, 474
Page orientation, 321
Pagelets, 493
Page_Load event, 444, 452

153_VBnet_index 8/16/01 2:32 PM Page 730

Index 731

PageSetupDialog control,
321–322

Paging, 486
PaneAdded event, 102
PaneClearing event, 102
Panel control, 394–396
PaneUpdated event, 102
ParamArray, 668, 672–674

function parameter, 195
parameters, 672, 676

Parameters, 667. See also
Command-line
parameters; Default
parameter; Functions;
Optional parameters;
Output; ParamArray;
Passing parameters

array, 109. See also Custom
parameters

data types, 674
information, 134
modifiers, 674
names, 674
number, 674
object, 423
order, 674
passing methods, 542–543

Parent
class, functionality, 13
form, 298

creation. See Multiple
Document Interface

Parent-child relationship,
428–430

Partial references, usage, 49
Pascal, 38
Passing methods. See

Parameter passing
methods

Passing parameters, 668, 672
Password text box, 357
PasswordChar property, 359

PE MSIL code, 41
Peek() method, 259
Performance

Counter, 119
monitoring, 548–549

PerformClick event, 363
Perl, 38
Permission, 79, 555–556.

See also Code;
Custom permissions;
Identity; Role-based
security; Security

class, design, 577
demands, 559, 570–571,

573
granting, 556
level, 82
policy, 80
requests, 41, 81, 559,

565–570
sets, 560. See also

eXtensible Markup
Language; Internet;
Named permission set

creation, 588–593
management/configura-

tion, 559
PermissionState, 584
PermitOnly, 572

override, 576
Person class, 230, 231
PictureBox control,

388–389
Platform

extensibility, 262
independence, 15
invoke. See Legacy-code-

based platform invoke
Platform-specific code, 63
PMEs. See Properties meth-

ods and events
Pointer

creation, 70

type, 53
Policy. See Machine policy;

Security; Users
assemblies, 587
level, 599
utility. See Code access

Polymorphism, 196, 197
Pooling. See Connection
Populating. See

Programmatic popu-
lating

DataSetCommand, usage,
432–433

XML, usage, 433–434
Portable executables, 618
POST protocol. See

HyperText Transport
Protocol

Preprocessor options, 546
PreRender trigger, 475
Preserve (keyword), 192
Primary keys, 430
PrimaryKey property, 426
Primitive data types, 241
Princauthenticated, 584
Principal, 556–557,

578–582
policy, 80
usage, 82–83

PrincipalObject, 581, 583
PrincipalPermission, 578,

583
objects, 584

PrincState, 583
Print() method, 256
PrintDialog control,

315–316
PrintDocument object, 256
Printer object, 256
Printing, 256–261, 268–269

namespace, 221
PrintPage

153_VBnet_index 8/16/01 2:32 PM Page 731

732 Index

event, 256
method, 257

PrintPreviewDialog control,
316–321

Print-related settings, 315
Private

(keyword), 684
modifier, 697

Private assemblies, 626
files, 51

Private key, 602, 603
PrivateGroup, 597, 599
PrivatePath attribute, 47,

48, 50
privatePath directories, 622
PrivatePermissions, 595
Probing, usage. See

Assemblies
Procedure

calls, 668, 670–671
declaration. See External

procedure declaration
variables, 667

Process, 119
control, performing, 262

Process.Start method, 356
Profile, 111
Profiling services, 262
PROGID/ProgID. See

Programmatic identi-
fier

Program execution, tracing,
467

Program flow control,
178–187, 214–215

Programmatic functionality,
348

Programmatic identifier
(PROGID/ProgID),
64, 678

Programmatic populating,
434–435

Programming. See Events
concepts. See Advanced

programming con-
cepts

differences, 668–690
languages

usage. See .NET-compli-
ant programming lan-
guages

users. See Third-party
programming lan-
guage users

Project Explorer, 127
ProjectAdded event, 103
ProjectRemoved event, 103
ProjectRenamed event, 103
Projects. See Class Library;

Console Application
projects; Startup;
Windows

collection objects, 101
debugging, 116, 536
files, list, 707
name, 707
options, 112–116

Propagation. See NULL
propagation

Properties, 25–27, 53, 56,
668, 684–689. See also
Default properties;
Forms; Opacity prop-
erty;TopMost proper-
ty;Windows forms

addition, 198–200. See also
Classes

contract, 55
grouping, 696
listing, 130
names, 689

changes, 668. See also
Controls

objects, 101
procedures

syntax, 689
usage, 684–685

windows, 129–130
Properties methods and

events (PMEs), 339
Property statement, 684,

697
Protected

(keyword), 684
modifier, 697

Proxy class, 510–511
Pseudo-inheritance, 196
Public

(keyword), 684
modifier, 697

Public access, 57
Public Constructor, inclu-

sion, 56
Public key, 602, 603

token, 622
Public members, 57
Public types, 57

enumeration, 57
Publicly declared variables,

530
Python, 38

Q
QFE. See Quick Fix

Engineering
QueryCloseSolution event,

103
Quick Fix Engineering

(QFE), 48, 50, 59, 621
Quick Launch toolbar, 617
Quickinfo, 135
Quotation marks, usage, 360

R
RAD. See Rapid

Application
Development

153_VBnet_index 8/16/01 2:32 PM Page 732

Index 733

RadioButton control,
365–367

Random number genera-
tion, 1240

Random Number
Generator (RNG),
601

RangeValidator, 488
Rapid Application

Development (RAD),
461

Raw finalize method, usage,
76

RC2. See Rivest’s Cipher 2
RC2CryptoServiceProvider,

601
RCW. See Runtime

Callable Wrapper
RDBMS, 436
RDO

applications, 657
code, 651
controls, 657

README file, 369
ReadOnly

attribute, 394
(keyword), 200

Read-only rich text box,
348

Read-only text box, 348,
359

Read-only up-down con-
trol, 386

Recessed border, 305
Recordset, 184, 694
Redim (keyword), 191
ReDim statement, 674
Reference

counting, 69
locating, 46
scope boundary, 41
type, 53
usage. See Weak references

Reflection, 56–58
API. See Common

Language Runtime
emit service, 52
service, 52

ReflectionPermission,
usage, 57

Registry, 555
dependence, 42
keys, 573
usage, 36, 259

RegistryPermission, 565,
570, 590

Regression testing, 548
REGTOOL, 228
RegularExpressionValidator,

488, 490
Relational data, 414, 440
Relational schema, 428–430
Remoting, 262, 439–440,

456. See also
ADO.NET

channels. See HyperText
Transport Protocol

section, 623
Remove method, 208, 373
/removeintchecks option,

545
Renamed event, 103
Repeater, 410, 450–453

control, 478
Report view, 376, 378
Representation, gaining,

82–83
RequestMinimum, 566
RequestOptional, 566
RequestRefuse, 566
Requests, 556
RequiredFieldValidator,

488, 490
Resgen. See Resource

Generator
Resource, 618

assembly, 636
files, 634–638. See also

eXtensible Markup
Language

Resource Generator
(Resgen), 637

Resource X Generator
(Resxgen), 637

Resurrection, 76
Resxgen. See Resource X

Generator
Return

command, 24
(keyword), 193
statement, 668–670, 676
value, data type, 662
values/types, 674

Revert method, 572
RevertAssert, 572
RevertDeny, 572
RevertPermitOnly, 572
RFC 3075, 601
RichTextBox control,

367–369
Right property, 305
Rivest Shamir Adleman

(RSA), 602
Rivest’s Cipher 2 (RC2),

601
RNG. See Random

Number Generator
RNGCryptoService

Provider, 601
Role-based security, 80, 81,

554, 565, 578–585,
609

checkts, 583–585
permissions, 556
usage, 600

Role-based validation, 579
Role-based verification,

580, 581
Rows property, 316

153_VBnet_index 8/16/01 2:32 PM Page 733

734 Index

RPC ports, 414
RSA. See Rivest Shamir

Adleman
RSACryptoServiceProvider,

602
Runat clause, 471, 477
Runtime. See Common

Language Runtime
code, 41
errors, 524–525
files. See Setup runtime

files
performance issues, 524
properties, 129, 348
requirement, 9–10
section, 623

Runtime Callable Wrapper
(RCW), 263–264,
679, 681–683

S
Satellite assemblies, 635
Save As Type box, 310, 311
SaveFileDialog control,

309–311
ScaleMode property, 663
Schedule, 119
Schema files. See eXtensible

Markup Language
Scheme, 38
Scope, 173, 188, 530

boundary. See Reference
Screen size/location, 293
Scripting Runtime Library,

239
Scripting.FileSystemObject

object, 239
ScrollBars property, 359
SDK. See Software develop-

ment kit
SDL. See Service

Description Language

Secure Hash Algorithm 1
(SHA1), 602

Security, 17–18, 30, 464,
466, 553. See also
Code access security;
Declarative security;
Imperative security;
Role-based security

boundary, 41
checks

completion, 572
overriding, 559,

572–576
concepts, 555–558,

607–608
configuration files,

627–630
FAQs, 611–613
features. See Common

Language Runtime
level. See Enterprise;

Machine; User
permissions, 51
policy, 80, 83–84, 558,

585–600, 609–610
level, 598

remoting, 600
section, 623
services, 79–84, 88, 262
solutions, 607–610
tools, 603–605, 610

security.config file, 593
security.config.cch file, 593
security.config.old file, 593
SecurityPermission, 581,

590
SECUTIL, 18
SelColor property, 369
Select Case statement,

182–184
Select statement, 178, 482
SelectCommand, 423, 424

SelectedIndex property, 373
Selection. See Multiple

selections
SelectionEvents, 102
SelectionLength property,

360–361
SelectionMode property,

373
SelectionStart property,

360–361
Self-describing applications,

58
Self-describing code, 126
SelFont property, 369
SelFontSize property, 369
SendToBack method, 304
Server. See Multi-terabyte

server;World Wide
Web

applications, 653, 655–656
controls. See Active Server

Pages; HyperText
Markup Language

process, 681
Server-side cursor, 695
Service Controller, 119
Service Description

Language (SDL),
509–510

Services, usage. See
Namespaces

Session keys, 602
Set

(keyword), 198
method, 230
statement, 26, 684

argument, 685
usage, 688

Setup files, 41
Setup runtime files, 93
SHA1. See Secure Hash

Algorithm 1

153_VBnet_index 8/16/01 2:32 PM Page 734

Index 735

SHA1CryptoService
Provider, 602

ShadowCopy attribute, 47
Shared assembly files, 51
Shared members, 205–206,

221
Short circuiting, 25
Short data type, 658
Shortcut keys, customiza-

tion, 135–136
Show method, 289, 306
ShowColor function, 233
ShowDialog method, 288,

308, 323
ShowNetwork property,

322
Side-by-side deployment,

58–59
Side-by-side execution

units, 41
Signcode.exe. See File

Signing tool
Simple data binding,

332–333
Simple delegates, 235
Simple Object Access

Protocol (SOAP),
16–17, 415, 439, 505,
508

usage, 510
SimpleCustomControl, 495,

496
Single dimension arrays,

190, 440
Single domain setting, 39
Single-tier applications, 653,

656
Size

object, 292
property, 292

SizeMode property, 389
SkipVerification permission

set, 569, 586

SLN file type, 115
SmallChange property, 390
SmallTalk, 38
sn.exe utility, 618
SOAP. See Simple Object

Access Protocol
Software development kit

(SDK), 45, 636. See
also Framework

Software Publisher
Certificate (SPC), 638

Solution Explorer, 127–129,
487

window, 274
SolutionEvents, 102
SomeSub, 262
Sorting property, 378
Sound files, 635
Source code, 536
Spaghetti code, 461
Span tag, 472
SPC. See Software Publisher

Certificate
SQL managed provider, 433
SQL namespace, 480
SQL Server, 410, 418

connection, 443
string, 419

managed provider, usage,
435–439, 456

setup, 480
SQL statement, 422, 425
SqlClient connections, 420
SqlCommand, 421, 435
SqlConnection, 435, 480

object, 437
SqlDataAdapter, 435

usage, 441
SqlDataReader, 435, 439
SqlDataSetCommand, 480
SSL, usage, 596

Stack walking, 559–561,
572

StackTrace, 61
Standalone manifest, 44
Standard EXE, 112
Start page, customization,

139–141
StartPosition property, 292
Startup

projects, 129
section, 623

State bag, 133
State management, 466. See

also Enhanced state
managed

Statements, 184, 198
Static modifier, 668, 669,

676
Static reference, 46
Static variables, 25
Status bars, addition. See

Forms
StatusBar control, 328
Step clause, 186
Stored procedures, 421
str (variable), 208
StreamReader, 267

object, 257, 259
Stress testing, 548–549
Strikeout, 311
String, 508, 543–544. See

also Connection;
Filename filter string;
Fixed-length strings

buffer, 667
class, 209
handling, 206–209, 216
initialization, 662
object, intrinsic type con-

version method, 273
padding, 667

StringBuilder object, 543

153_VBnet_index 8/16/01 2:32 PM Page 735

736 Index

Strong name, 562
Strong typed language,

465–466
Strong typing, 173
StrPtr, 667
Structured exception han-

dling, 103
Structures, 176–177, 214

(keyword), 176
usage, 177

Sub New procedure, 682
Sub statement, 697
subOne method, 229
SUO file type, 115
Switch classes, 540
Symmetric key algorithm,

602
SyncLock, 263–264
Syntax-related bugs, 524
System

controls, 117
namespace, 257, 264–269,

278, 690
derivation, 477

object, 34
services, usage, 60–63,

86–87
System attribute, 394
System.Array object, 188
System.Collections name-

space, 689
System.Diagnostics name-

space, 356
System.Drawing

namespace, 253, 268
object, 248–250

System.Drawing.Imaging
namespace, 253

System.Drawing.Printing
namespace, 256, 268

System.Drawing.Printing
.PrintPageEventArgs,
258

System.Exception class, 692
System.IO

class, 220
namespace, 226, 239–241,

245
System.IO.Directory class,

240
System.IO.File, 245
System.IO.StreamReader

class, 246
object, 245

System.IO.StreamWriter
class, 246
object, 245

System.Object, 201,
375–376

System.Security
.Cryptography, 601

System.Security
.Cryptography.X509
certificates, 601

System.Security
.Cryptography.Xml,
601

System.Text.StringBuilder,
543

System.Threading name-
space, 262

System.Web.HttpContext,
487

System.Winforms name-
space, 226

T
TabControl control,

397–399
Tables, 334, 336

collection, 430–431
TablesCollection object,

694
TabPages property, 397
Tabs

addition/removal, 118

displaying, 118
hiding, 118
renaming, 118

Task list, 123–127
filtering, 123

TaskList
views, 124–126
window, 126

TaskList by Priority, 123
TaskListEvents, 102
TCP, 439, 440

port 80, 505
TDS. See TypedDataSet
Template tags, 449, 452
TemplateColumn, 484, 485
Terminate event, 276
Testing. See Beta testing;

Integration testing;
Regression testing;
Stress testing; Unit
testing

FAQs, 552
introduction, 524
phases, 546–549
solutions, 551
strategies, 546–549, 551

Text
boxes, 351. See also

Password text box;
Read-only rich text
box; Read-only text
box

files, 243–246
property, 333, 385

Text Editor folder, 135
TextAlign property, 353
TextBox, 472

control, 357–361, 367,
502, 686–687

Textexpression, 183
Text-only view, 376, 378

153_VBnet_index 8/16/01 2:32 PM Page 736

Index 737

Text-with-large-icons view,
376, 378

Text-with-small-icons view,
376, 378

TextWriterTraceListener,
538

Third-party controls, 654
Third-party programming

language users, 37
Third-party vendors, 348
Thread, 262

creation, 263
management, 262

Threading. See Free thread-
ing

ThreeDCheckBoxes prop-
erty, 375

Throughput, 465
Throw statement, 693
TickFrequency property,

391
TickStyle property, 391
TIF, 253
Timer, 119
Title bar, 305
TLBIMP, 418
TLBIMP.EXE, 651
TODO, 124, 127
Toggle-style buttons, 330
Token, 124. See also

Comment tokens;
Public key

property, 585
setup. See Custom token

ToOADate function, 27
ToOADate method, 659
Tool windows, 122
Toolbars. See Floating tool-

bar; Forms
addition, 136–137. See also

Forms
commands, addition, 137
customization, 136–137

Toolboxes, 116–120
Tools. See Security
Top-most forms

creation, 287
displaying, 289

TopMost property, 275, 289
Trace

class, 538, 539
Trace Listeners, 538, 540
Traces, 538–540

addition, 525
TraceSwitch, 540
Trace.WritelineIf method,

539
TrackBar control, 389–391
Transitions, 542
TreeView control, 369–371
TripleDESCryptoService

Provider, 602
TrueType font, 663. See also

Non-TrueType font
Trusted code, 572
Try

block, 211, 691, 692
(keyword), 211

Try/catch
set, 60
statement, 61

Try...Catch...Finally block,
103, 533

Try...Catch...Finally syntax,
691

Type, 65
boundary, 41
casting, 271–273
(keyword), 176
libraries, 259
metadata, 618
safety, 18–20, 30, 68, 558,

654
Type Library Importer, 680
Type Mismatch, 270

Typed language. See Strong
typed language

TypedDataSet (TDS), 412,
436–439

usage, 437–439, 441–446
TypeLibConverter class, 680
Types, 53–55

exportation, 51

U
UBound function, 189
UDDI. See Universal

Description Discovery
Integration

UDT. See User-Defined
Types

UIPermission, 559, 560,
573, 575–576

UNC names/path, 591
Underline, 311
Underscores, 173
UNDONE, 127
Unit testing, 547
Universal Description

Discovery Integration
(UDDI), 512

UnLoad trigger, 475
Unmanaged assembly code,

55–56
Unmanaged code, 36, 55

contrast. See Managed
code

references, 668
Unmanaged COM interop,

79
Unmanaged libraries, refer-

ences, 677–683
Unrestricted matches, 583
UPDATE statement, 421
UpdateCommand, 423
Up-down control, 385–387.

See also Read-only
up-down control

153_VBnet_index 8/16/01 2:32 PM Page 737

738 Index

Upgrade
error, 667
settings, 707
time, 707
tool, usage, 703–707
Wizard, usage, 655, 688,

702–707
UPGRADE_ISSUE, 687,

706
UPGRADE_NOTE, 707
UPGRADE_TODO, 706
UPGRADE_WARNING,

707
URLAuthorizationModule,

466
URN, 62
UseLatestBuildVersion, 48
User. See Concurrent users

controls, 493
files, 627
interface, 130, 464

capabilities, 399, 403
notes, addition, 123
security level, 563, 586

User-created controls, 654
User-defined customiza-

tions, 100
User-defined data type, 666
User-Defined Types (UDT),

660, 661
User-interface layer, 655
User-interface object, 137
Utilities. See World Wide

Web services
class, creation, 221
programs, 656

V
Validation controls, 476,

488–489
usage, 489–492

ValidationSummary, 488

control, 492
Value property, 390
Variable lengths, 25–26
Variable lower bounds, 23
Variable names, 530
Variables, 25–27, 173–175,

214, 667. See also
Boolean variables;
Global variables;
Publicly declared
variables; Static vari-
ables

early binding, 648–650
pointers, 194

Variant data type, 23, 648,
657

Variants, 657–658
VarPtr, 667
VB. SeeVisual Basic
VBG. SeeVisual Basic

Group
VB.NET. SeeVisual Basic

.NET
editions, 92–93, 142
installation/configuration

FAQs, 143
introduction, 92
solutions, 142–143

VBProjectEvents, 103
VBScript, 7, 465
VCProjectEvents, 103
Verification. See Role-based

verification
process, 71

Version
boundary, 41
policy, checking, 47–49

/version option, 545
Versioning, 463. See also

Assemblies
support, 59

VES. SeeVirtual Execution
System

View property, 378
Virtual Execution System

(VES), 66, 79, 262
VisitedLinkColor property,

354, 356
Visual Basic Group (VBG),

115
Visual Basic .NET

(VB.NET), 34, 37,
676

data access changes,
693–696

FAQs, 31–32
features, 1
functionality, 3
IDE debugging tools, 529
introduction, 2–3
items, removal, 24–25
solutions, 28–32

Visual Basic (VB), 654
6.0 ActiveX DLLs, 348
applications, upgrading

considerations, 648–653
FAQs, 712
introduction, 648
solutions, 709–712

class, 237
code, 9, 425, 473–476
coders, 46
compiler, 436

architecture, 21
Developer, 111
file management, 21–22
forms, conversion. See

Windows forms
history, 13
IDE, 525
programming tasks, 225
runtime, 261
version 6.0, 440, 663

153_VBnet_index 8/16/01 2:32 PM Page 738

Index 739

changes, 23–27, 31
interfaces, upgrading,

699–703
Visual C++, 105

environment, 100
version 6.0, 135

Visual C++ 6.0 compo-
nent, 655

Visual Interdev, 93
Visual Studio IDE, 436
Visual Studio .NET

(VS.NET), 55, 417,
462

code editor, 132
command window, 110
editions, 92–93
extensibility model, 656
installation, 93–100,

142–143. See also
Windows 2000

VPD, 14
.VSDISCO file, 510
VS.NET. SeeVisual Studio

.NET

W
W3C guidelines, 433
Watches, 525, 529–530
Weak references, usage,

77–78
WebBrowser control, 663
WebClasses, 14, 112

applications, 654
Web.config, 487
WebControl, 495
WebForm

control, 446
DataGrid, 444

WebMethod attribute, 506
Web-style links, 354
Where clause, 428
While loops, 178, 184–186

While...Wend syntax, 184
Widening, 19
Width property, 291, 482
Win forms, 119
Win32 native applications,

debugging, 656
Win32API, 36
Window

configuration objects, 101
layout, 111–112
style, 130
types, 122

WindowEvents, 102
Windows. See Child;

Document windows;
Tool windows

API. See Graphics Design
Interface

data types, 661–662
arrangement, 123
authentication, 580
components

creation, 399–403. See
also Custom Windows

update, 94
Control projects, 116
controls, creation. See

Custom Windows
Windows 2000

Component services, 420
domain, 557
environment, 556, 557
operating system, 100
servers, 602
Service Pack 2, 93
Visual Studio .NET,

installation, 99–100
Windows CE, 6, 63
Windows Form Designer,

222
Windows Forms, 475

ActiveX Control
Importer, usage,
338–339, 343–344

applications, 354
Class Viewer, usage, 338
components/controls, 347

FAQs, 408
solutions, 407–408

contrast. See World Wide
Web forms

controls, 117
creation, 287–289

FAQs, 344–345
introduction, 270
solutions, 340–344

framework, 306, 324, 332
implementation, 440
Label, 351
manipulation, 275–294,

340–341
methods, 276–287
properties, 275–276
support, 663
usage. See Distributed

applications
VB forms, conversion,

662–665
Windows Installer, 631–632

version 2.0, 93
Windows NT

environment, 557
version 4.0, 93

Windows-based applica-
tions, 226, 270

WindowsDefaultLocation,
292

WindowsIdentity
object, 579, 580, 582
token, 582

WindowsImpersonation
Context

instance, 582

153_VBnet_index 8/16/01 2:32 PM Page 739

740 Index

object, 582
WindowsPrincipal,

579–581, 583
WindowsPrincipal.Identity

.IsAuthenticated, 584
WindowsPrincipal.Identity.

Name, 584
WindowState property, 321
WinMain, 41
WithEvents (keyword), 475
Wizard_Machine_Policy,

593–594
Wizards, 109

usage. See Add-ins
Word completion, 134
WordWrap property, 359
World Wide Web (WWW

// Web)
classes, 654
extensions client. See

FrontPage 2000
page loads, 488
servers, 13, 632
site, 573, 633

World Wide Web (WWW
// Web) applications,
13–17, 30, 410

development, 459
FAQs, 521–522
introduction, 460

overview, 13–14
solutions, 519–520

World Wide Web (WWW
// Web) forms,
14–15, 119, 133–134,
461–467, 511–513,
519

classic ASP, contrast,
465–467

control, 450, 471
addition, 467–492,

519–520
creation, 492–504. See

also Custom Web
form controls

example, 493–497
counterpart, 440
creation, 462–464
deployment, 476
performance, improve-

ment, 465
simplicity, 465
usage, 654. See also Active

Server Pages
Windows forms

contrast, 464–465
controls, contrast, 476

World Wide Web (WWW
// Web) services,
15–17, 460, 466,
504–513, 520

consuming, 511–513
developing, 505–509
function, explanation, 505
usage, 432, 440
utilities, 509–511

Wrapper classes, 263, 660.
See also Component
Object Model
Callable Wrapper;
Managed wrapper
classes

WriteXML method, 433

X
x86 machine, 63
XCOPY, 630
XDR. See eXtensible

Markup Language
Data Reduced

XML. See eXtensible
Markup Language

XMLDataReader, 421
XMLNavigator object, 412
XOR operator, 666
XPath, 412
XSD. See eXtensible

Markup Language
Schema Definition

XSL. See eXtensible
Stylesheet Language

153_VBnet_index 8/16/01 2:32 PM Page 740

Train with Global Knowledge
The right content, the right method,

delivered anywhere in the world, to any

number of people from one to a

thousand. Blended Learning Solutions™

from Global Knowledge.

Train in these areas:
Network Fundamentals
Internetworking
A+ PC Technician
WAN Networking and Telephony
Management Skills
Web Development
XML and Java Programming
Network Security
UNIX, Linux, Solaris, Perl
Cisco
Enterasys
Entrust
Legato
Lotus
Microsoft
Nortel
Oracle

www.globalknowledge.com

153_VBnet_bm 8/16/01 1:05 PM Page 741

Only Global Knowledge offers so much content
in so many formats—Classroom, Virtual Classroom,
and e-Learning. This flexibility means Global
Knowledge has the IT learning solution you need.

Being the leader in classroom IT training has paved
the way for our leadership in technology-based
education. From CD-ROMs to learning over the
Web to e-Learning live over the Internet, we have
transformed our traditional classroom-based
content into new and exciting forms of education.

Most training companies deliver only one
kind of learning experience, as if one
method fits everyone. Global Knowledge
delivers education that is an exact reflection
of you. No other technology education
provider integrates as many different
kinds of content and delivery.

www.globalknowledge.com

Every hour, every business day
all across the globe

Someone just like you
is being trained by

Global Knowledge.

153_VBnet_bm 8/16/01 1:05 PM Page 742

Win a 2002
Chrysler PT Cruiser

this could be you

It’s simple to sign up to win. Visit globalknowledge.com. Completely fill
out the form and you’re entered! See our web site for official rules.
www.globalknowledge.com. Not valid in Florida and Puerto Rico.

153_VBnet_bm 8/16/01 1:06 PM Page 743

Blended Learning Solutions
from Global Knowledge

The Power of Choice is Yours.
Get the IT Training you need—

how and when you need it.

Mix and match our Classroom, Virtual Classroom, and e-Learning
to create the exact blend of the IT training you need. You get
the same great content in every method we offer.

1-800-COURSES www.globalknowledge.com

Self-Paced
e-Learning

Self-paced training via CD or
over the Web, plus mentoring

and Virtual Labs.

Virtual Classroom
Learning

Live training with real
instructors delivered over the

Web.

Classroom
Learning

Train in the classroom with our
expert instructors.

™

153_VBnet_bm 8/16/01 1:06 PM Page 744

9000 Regency Parkway, Suite 500
Cary, NC 27512
1-800-COURSES

www.globalknowledge.com

At Global Knowledge, we strive to support the multiplicity of learning styles required
by our students to achieve success as technical professionals.We do this because we
know our students need different training approaches to achieve success as technical
professionals.That’s why Global Knowledge has worked with Syngress Publishing in
reviewing and recommending this book as a valuable tool for successful mastery of this
subject.

As the world’s largest independent corporate IT training company, Global Knowledge is
uniquely positioned to recommend these books.The first hand expertise we have gained
over the past several years from providing instructor-led training to well over a million
students worldwide has been captured in book form to enhance your learning experi-
ence.We hope the quality of these books demonstrates our commitment to your life-
long learning success.Whether you choose to learn through the written word,
e-Learning, or instructor-led training, Global Knowledge is committed to providing you
the choice of when, where and how you want your IT knowledge and skills to be
delivered. For those of you who know Global Knowledge, or those of you who have
just found us for the first time, our goal is to be your lifelong partner and help you
achieve your professional goals.

Thank you for the opportunity to serve you.We look forward to serving your needs
again in the future.

Warmest regards,

Duncan M.Anderson
President and Chief Executive Officer, Global Knowledge

P.S. Please visit us at our Web site www.globalknowledge.com.

153_VBnet_bm 8/16/01 1:06 PM Page 745

153_VBnet_bm 8/16/01 1:06 PM Page 746

Enter the Global Knowledge
Chrysler PT Cruiser Sweepstakes
This sweepstakes is open only to legal residents of the United States who
are Business to Business MIS/IT managers or staff and training decision
makers, that are 18 years of age or older at time of entry.Void in Florida
& Puerto Rico.
OFFICIAL RULES
No Purchase or Transaction Necessary To Enter or Win, purchasing will
not increase your chances of winning.
1. How to Enter: Sweepstakes begins at 12:00:01 AM ET May 1, 2001 and ends 12:59:59
PM ET December 31, 2001 the (“Promotional Period”). There are four ways to enter to win
the Global Knowledge PT Cruiser Sweepstakes: Online, at Trade shows, by mail or by
purchasing a course or software. Entrants may enter via any of or all methods of entry.

[1] To be automatically entered online, visit our web at www.globalknowledge.com click on the
link named Cruiser and complete the registration form in its entirety. All online entries must be
received by 12:59:59 PM ET December 31, 2001. Only one online entry per person, per e-mail
address. Entrants must be the registered subscriber of the e-mail account by which the entry is
made.

[2] At the various trade shows, during the promotional period by scanning your admission badge
at our Global Knowledge Booth. All entries must be made no later than the close of the trade
shows. Only one admission badge entry per person.

[3] By mail or official entry blank available at participating book stores throughout the
promotional period. Complete the official entry blank or hand print your complete name and
address and day & evening telephone # on a 3”x5” card, and mail to: Global Knowledge PT
Cruiser Sweepstakes, P.O. Box 4012 Grand Rapids, MN 55730-4012. Entries must be postmarked
by 12/31/01 and received by 1/07/02. Mechanically reproduced entries will not be accepted.
Only one mail in entry per person.

[4] By purchasing a training course or software during the promotional period: online at
http://www.globalknowledge.com or by calling 1-800-COURSES, entrants will automatically
receive an entry onto the sweepstakes. Only one purchase entry per person.

All entries become the property of the Sponsor and will not be returned. Sponsor is not
responsible for stolen, lost, late, misdirected, damaged, incomplete, illegible entries or postage due
mail.

2. Drawings: There will be five [5] bonus drawings and one [1] prize will be awarded in each
bonus drawing. To be eligible for the bonus drawings, on-line entries, trade show entries and
purchase entries must be received as of the dates listed on the entry chart below in order to be
eligible for the corresponding bonus drawing. Mail in entries must be postmarked by the last day
of the bonus period, except for the month ending 9/30/01 where mail in entries must be
postmarked by 10/1/01 and received one day prior to the drawing date indicated on the entry

747

153_VBnet_bm 8/16/01 1:06 PM Page 747

chart below. Only one bonus prize per person or household for the entire promotion period.
Entries eligible for one bonus drawing will not be included in subsequent bonus drawings.

Month starting/ending
Bonus Drawings 12:00:01 AM ET/11:59:59 PM ET Drawing Date on or about

1 5/1/01-7/31/01 8/8/01
2 8/1/01-8/31/01 9/11/01
3 9/1/01-9/30/01 10/10/01
4 10/1/01-10/31/01 11/9/01
5 11/1/01-11/30/01 12/11/01

There will also be a grand prize drawing in this sweepstakes. The grand prize drawing will be
conducted on January 8, 2002 from all entries received. Bonus winners are eligible to win the
Grand prize.

All random sweepstakes drawings will be conducted by Marden-Kane, Inc. an independent
judging organization whose decisions are final. All prizes will be awarded. The estimated odds of
winning each bonus drawing are 1:60,000, for the first drawing and 1:20,000 for the second,
third, fourth and fifth drawings, and the estimated odds of winning the grand prize drawing is
1:100,000. However the actual odds of winning will depend upon the total number of eligible
entries received for each bonus drawing and grand prize drawings.

3. Prizes: Grand Prize: One (1) PT Cruiser 2002 model Approx. Retail Value (ARV) $18,000.
Winner may elect to receive the cash equivalent in lieu of the car. Bonus Prizes: Five (5),
awarded one (1) per bonus period. Up to $1,400.00 in self paced learning products ARV up to
$1,400.00 each.

No substitutions, cash equivalents, except as noted, or transfers of the prize will be permitted except
at the sole discretion of the Sponsor, who reserves the right to substitute a prize of equal or greater
value in the event an offered prize is unavailable for any reason.Winner is responsible for payment
of all taxes on the prize, license, registration, title fees, insurance, and for any other expense not
specifically described herein.Winner must have and will be required to furnish proof of a valid
driver’s license. Manufacturers warranties and guarantees apply.

4. Eligibility: This sweepstakes is open only to legal residents of the United States, except
Florida and Puerto Rico residents who are Business to Business MIS/IT managers or staff and
training decision makers, that are 18 years of age or older at the time of entry. Employees of
Global Knowledge Network, Inc and its subsidiaries, advertising and promotion agencies including
Marden-Kane, Inc., and immediate families (spouse, parents, children, siblings and their respective
spouses) living in the same household as employees of these organizations are ineligible.
Sweepstakes is void in Florida and Puerto Rico and is subject to all applicable federal, state and
local laws and regulations. By participating, entrants agree to be bound by the official rules and
accept decisions of judges as final in all matters relating to this sweepstakes.

5. Notification: Winners will be notified by certified mail, return receipt requested, and may
be required to complete and sign an Affidavit of Eligibility/Liability Release and, where legal, a
Publicity Release, which must be returned, properly executed, within fourteen (14) days of
748

153_VBnet_bm 8/16/01 1:06 PM Page 748

issuance of prize notification. If these documents are not returned properly executed or are
returned from the post office as undeliverable, the prize will be forfeited and awarded to an
alternate winner. Entrants agree to the use of their name, voice and photograph/likeness for
advertising and promotional purposes for this and similar promotions without additional
compensation, except where prohibited by law.

6. Limitation of Liability: By participating in the Sweepstakes, entrants agree to indemnify
and hold harmless the Sponsor, Marden-Kane, Inc. their affiliates, subsidiaries and their respective
agents, representatives, officers, directors, shareholders and employees (collectively,“Releasees”)
from any injuries, losses, damages, claims and actions of any kind resulting from or arising from
participation in the Sweepstakes or acceptance, possession, use, misuse or nonuse of any prize that
may be awarded. Releasees are not responsible for printing or typographical errors in any instant
win game related materials; for stolen, lost, late, misdirected, damaged, incomplete, illegible
entries; or for transactions, or admissions badge scans that are lost, misdirected, fail to enter into
the processing system, or are processed, reported, or transmitted late or incorrectly or are lost for
any reason including computer, telephone, paper transfer, human, error; or for electronic,
computer, scanning equipment or telephonic malfunction or error, including inability to access
the Site. If in the Sponsor’s opinion, there is any suspected or actual evidence of electronic or
non-electronic tampering with any portion of the game, or if computer virus, bugs, unauthorized
intervention, fraud, actions of entrants or technical difficulties or failures compromise or corrupt
or affect the administration, integrity, security, fairness, or proper conduct of the sweepstakes
the judges reserve the right at their sole discretion to disqualify any individual who tampers with
the entry process and void any entries submitted fraudulently, to modify or suspend the
Sweepstakes, or to terminate the Sweepstakes and conduct a random drawing to award the
prizes using all non-suspect entries received as of the termination date. Should the game be
terminated or modified prior to the stated expiration date, notice will be posted on
http://www.globalknowledge.com. Any attempt by an entrant or any other individual to
deliberately damage any web site or undermine the legitimate operation of the promotion is a
violation of criminal and civil laws and should such an attempt be made, the sponsor reserves the
right to seek damages and other remedies from any such person to the fullest extent permitted by
law. Any attempts by an individual to access the web site via a bot script or other brute force
attack or any other unauthorized means will result in the IP address becoming ineligible. Use of
automated entry devices or programs is prohibited.

7. Winners List: For the name of the winner visit our web site www.globalknowledge.com

on January 31, 2002.

8. Sponsor: Global Knowledge Network, Inc., 9000 Regency Parkway, Cary, NC 27512.
Administrator: Marden-Kane, Inc. 36 Maple Place, Manhasset, NY 11030.

749

153_VBnet_bm 8/16/01 1:06 PM Page 749

SYNGRESS PUBLISHING LICENSE AGREEMENT
THIS PRODUCT (THE “PRODUCT”) CONTAINS PROPRIETARY SOFTWARE, DATA
AND INFORMATION (INCLUDING DOCUMENTATION) OWNED BY SYNGRESS
PUBLISHING, INC. (“SYNGRESS”) AND ITS LICENSORS.YOUR RIGHT TO USE THE
PRODUCT IS GOVERNED BY THE TERMS AND CONDITIONS OF THIS
AGREEMENT.

LICENSE: Throughout this License Agreement, “you” shall mean either the individual or the
entity whose agent opens this package. You are granted a limited, non-exclusive and non-
transferable license to use the Product subject to the following terms:
(i) If you have licensed a single user version of the Product, the Product may only be used on a
single computer (i.e., a single CPU). If you licensed and paid the fee applicable to a local area
network or wide area network version of the Product, you are subject to the terms of the following
subparagraph (ii).
(ii) If you have licensed a local area network version, you may use the Product on unlimited
workstations located in one single building selected by you that is served by such local area network.
If you have licensed a wide area network version, you may use the Product on unlimited
workstations located in multiple buildings on the same site selected by you that is served by such
wide area network; provided, however, that any building will not be considered located in the same
site if it is more than five (5) miles away from any building included in such site. In addition, you
may only use a local area or wide area network version of the Product on one single server. If you
wish to use the Product on more than one server, you must obtain written authorization from
Syngress and pay additional fees.
(iii) You may make one copy of the Product for back-up purposes only and you must maintain an
accurate record as to the location of the back-up at all times.

PROPRIETARY RIGHTS; RESTRICTIONS ON USE AND TRANSFER: All rights
(including patent and copyright) in and to the Product are owned by Syngress and its licensors.You
are the owner of the enclosed disc on which the Product is recorded. You may not use, copy,
decompile, disassemble, reverse engineer, modify, reproduce, create derivative works, transmit,
distribute, sublicense, store in a database or retrieval system of any kind, rent or transfer the Product,
or any portion thereof, in any form or by any means (including electronically or otherwise) except
as expressly provided for in this License Agreement.You must reproduce the copyright notices,
trademark notices, legends and logos of Syngress and its licensors that appear on the Product on the
back-up copy of the Product which you are permitted to make hereunder.All rights in the Product
not expressly granted herein are reserved by Syngress and its licensors.

TERM: This License Agreement is effective until terminated. It will terminate if you fail to
comply with any term or condition of this License Agreement. Upon termination, you are
obligated to return to Syngress the Product together with all copies thereof and to purge and
destroy all copies of the Product included in any and all systems, servers and facilities.

DISCLAIMER OF WARRANTY: THE PRODUCT AND THE BACK-UP COPY OF THE
PRODUCT ARE LICENSED “AS IS”. SYNGRESS, ITS LICENSORS AND THE AUTHORS
MAKE NO WARRANTIES, EXPRESS OR IMPLIED,AS TO RESULTS TO BE OBTAINED

750

153_VBnet_bm 8/16/01 1:06 PM Page 750

BY ANY PERSON OR ENTITY FROM USE OF THE PRODUCT AND/OR ANY
INFORMATION OR DATA INCLUDED THEREIN. SYNGRESS, ITS LICENSORS AND
THE AUTHORS MAKE NO EXPRESS OR IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE WITH
RESPECT TO THE PRODUCT AND/OR ANY INFORMATION OR DATA INCLUDED
THEREIN. IN ADDITION, SYNGRESS, ITS LICENSORS AND THE AUTHORS MAKE
NO WARRANTY REGARDING THE ACCURACY,ADEQUACY OR COMPLETENESS
OF THE PRODUCT AND/OR ANY INFORMATION OR DATA INCLUDED THEREIN.
NEITHER SYNGRESS,ANY OF ITS LICENSORS, NOR THE AUTHORS WARRANT
THAT THE FUNCTIONS CONTAINED IN THE PRODUCT WILL MEET YOUR
REQUIREMENTS OR THAT THE OPERATION OF THE PRODUCT WILL BE
UNINTERRUPTED OR ERROR FREE.YOU ASSUME THE ENTIRE RISK WITH
RESPECT TO THE QUALITY AND PERFORMANCE OF THE PRODUCT.

LIMITED WARRANTY FOR DISC: To the original licensee only, Syngress warrants that the
enclosed disc on which the Product is recorded is free from defects in materials and workmanship
under normal use and service for a period of ninety (90) days from the date of purchase. In the
event of a defect in the disc covered by the foregoing warranty, Syngress will replace the disc.

LIMITATION OF LIABILITY: NEITHER SYNGRESS, ITS LICENSORS NOR THE
AUTHORS SHALL BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL,
PUNITIVE, CONSEQUENTIAL OR SIMILAR DAMAGES, SUCH AS BUT NOT LIMITED
TO, LOSS OF ANTICIPATED PROFITS OR BENEFITS, RESULTING FROM THE USE
OR INABILITY TO USE THE PRODUCT EVEN IF ANY OF THEM HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.THIS LIMITATION OF LIABILITY SHALL
APPLY TO ANY CLAIM OR CAUSE WHATSOEVER WHETHER SUCH CLAIM OR
CAUSE ARISES IN CONTRACT, TORT, OR OTHERWISE. Some states do not allow the
exclusion or limitation of indirect, special or consequential damages, so the above limitation may
not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS. If the Product is acquired by or for the U.S.
Government then it is provided with Restricted Rights. Use, duplication or disclosure by the U.S.
Government is subject to the restrictions set forth in FAR 52.227-19.The contractor/manufacturer
is Syngress Publishing, Inc. at 800 Hingham Street, Rockland, MA 02370.

GENERAL: This License Agreement constitutes the entire agreement between the parties relating
to the Product.The terms of any Purchase Order shall have no effect on the terms of this License
Agreement. Failure of Syngress to insist at any time on strict compliance with this License Agreement
shall not constitute a waiver of any rights under this License Agreement.This License Agreement shall
be construed and governed in accordance with the laws of the Commonwealth of Massachusetts. If
any provision of this License Agreement is held to be contrary to law, that provision will be enforced
to the maximum extent permissible and the remaining provisions will remain in full force and effect.

*If you do not agree, please return this product to the place of purchase for a refund.

751

153_VBnet_bm 8/16/01 1:06 PM Page 751

SYNGRESS SOLUTIONS…

soluti o n s @ s y n g r e s s . c o m

AVAILABLE OCTOBER 2001
ORDER at
www.syngress.com

AVAILABLE OCTOBER 2001
ORDER at
www.syngress.com

AVAILABLE OCTOBER 2001
ORDER at
www.syngress.com

ASP.NET Web Developer’s Guide
This book covers ASP.NET, part of the emerging .NET platform.
It teaches new programming framework that enables the rapid
development of powerful Web applications and services.
ISBN: 1-928994-51-2

Price: $49.95 US, $77.95 CAN

BizTalk Server 2000 Developer’s Guide for .NET
Written for developers responsible for installing, configuring, and
deploying BizTalk Server. The book discusses B2B application integration,
BizTalk enhancements, XML, and the tools incoporated into BizTalk.
ISBN: 1-928994-40-7

Price: $49.95 US, $77.95 CAN

C#.NET Web Developer’s Guide
Teaches Web developers to build solutions for the Microsoft .NET
platform. Web developers will learn to use C# (C Sharp) components
to build services and applications available across the Internet.
ISBN: 1-928994-50-4

Price: $49.95 US, $77.95 CAN

153_VBnet_bm 8/16/01 1:06 PM Page 752

http://www.syngress.com/book_catalog/166_asp_dev
http://www.syngress.com/book_catalog/167_c/
http://www.syngress.com/book_catalog/145_biztalk

	Cover
	Table of Contents
	Foreword
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Index
	Related Titles

